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SAŽETAK 

 

Diplomskim radom analizirana su globalna valna opterećenja u slučaju naplavljivanja 

oštećenog broda. Analiza pomorstvenosti provedena je uz pretpostavku trodimenzionalnog 

linearnog potencijalnog strujanja sa slobodnom površinom korištenjem numeričke metode 

rubnih elemenata, programirane u računalnom kodu WAMIT. Budući da rezultati analize u 

WAMIT-u ne sadrže globalna valna opterećenja, već samo hidrodinamičke tlakove na 

oplakanoj površini i prijenosne funkcije gibanja, u programskom sučelju MATLAB izrađen je 

u tu svrhu odgovarajući programski kod. Razvijeni kod na temelju prethodno navedenih 

izlaznih rezultata i definirane distribucije masa računa vertikalne valne smične sile i momente 

savijanja.  

Proračun vertikalnih valnih opterećenja proveden je prema vrpčastoj metodi. Brod je po 

duljini diskretiziran na segmente pune širine i visine, a ograničene duljine (vrpce). Za svaku 

vrpcu računaju se hidrodinamičke, povratne i inercijske sile, a zatim se numeričkom 

integracijom (odabrana je trapezna metoda) računaju globalna valna opterećenja. 

Uz računanje vertikalnih globalnih valnih opterećenja navedeni kod, na temelju definirane 

geometrije trupa i tankova, automatski generira ulazne datoteke potrebne za analizu u 

WAMIT-u te pokreće simulaciju.  

Trodimenzionalni model i mreža trupa broda i njegovi odjeljci modelirani su u programu 

Rhinoceros. Mreža je u svrhu olakšanja numeričke integracije definirana u skladu sa 

dimenzijama pojedinih vrpci, tj. cjelokupna površina panela mora biti unutar jedne vrpce. 

Provedene su simulacije za brod u neoštećenom stanju te 8 slučajeva uslijed naplavljivanja 

oštećenog broda. Naplavljena tekućina u tanku nalazi se u razini vodne linije, dok je oplata 

tanka zbog pojednostavljenja ostala netaknuta. 

Maksimalni iznosi vertikalnih valnih momenata su za neke slučajeve oštećenja i valove u 

pramac znatno povećani u odnosu na neoštećen brod dok su za valove u krmu poprilično 

smanjeni. Stoga bi pri budućim istraživanjima bilo zanimljivo istražiti kako bi se krcanjem 

balasta za neke slučajeve smanjila globalna valna opterećenja i gibanja broda. 
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Usporedbom s rezutatima iz [21], dobivenim simulacijama u programu HydroSTAR 

(metodom dodane mase te metodom gubitka istisnine), primijećene su odgovarajuće razlike. 

Upotreba različite mreže, zadavanje trima i bočnog nagiba, zajedno s gibanjem fluida u 

tankovima te različite brzine napredovanja neki su od mogućih razloga tim razlikama. Za 

vjerodostojnije i kvalitetnije zaključke potrebna su daljnja istraživanja. 

 

 

Ključne riječi: globalna valna opterećenja, brod u oštećenom stanju, gibanje krutog tijela na 

valovima, automatska simulacija i analiza rezultata 
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ABSTRACT 

 

The present work is meant to investigate wave-induced global loads of a ship in realistic 

flooding conditions, while developing a code for automated hydrodynamic simulations and 

computation of vertical wave induced global loads. 

The scenarios investigated are represented by water ingress into the starboard ballast tanks for 

collision damage cases and both starboard and port side tanks for grounding. Seakeeping 

computations are performed for 8 damage scenarios and 1 intact condition, each 

corresponding to different changes in displacement, trim and heel. For each of them, response 

amplitude operators of vertical motions are calculated using a potential linear 3D panel 

hydrodynamic code WAMIT in the frequency domain. The wave-induced global loads are 

computed using a code for post processing developed in MATLAB. The obtained results are 

compared with others already published. 

For some cases, the results show significant variations in the global loads with respect to the 

intact ship.  

 

 

Keywords: wave induced global loads; damaged conditions, automated simulation and post 

processing, rigid body motion in waves 
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1. INTRODUCTION 

1.1. Background of the study 

Rational structural design of ships should consider strength of the vessel both in intact and 

damage condition. Damage of merchant ship may occur due to collision with another ship, 

grounding or some other type of human mistake. In case of such an accident, the ship strength 

could be significantly reduced while still water loads may increase and could become 

considerable cause of the structural overloading (Luis et al. 2009 [17]). A large number of 

ship accidents continue to occur despite the advances with the navigation systems. These 

accidents cause the loss of cargo, pollution of environment, even loss of human beings. Based 

on statistical data of Lloyd’s Register of Shipping (Lloyd’s Register, 2000 [16]), a total of 

1336 ships were lost with 6.6 million gross tonnage cargo loss between 1995 and 2000. 2727 

people were reported killed or missing as a result of total losses in this period. So it is very 

important to ensure an acceptable safety level for damaged ships. 

Stability is the primary effect under damage condition and almost a solved problem in the 

initial design of ships. In fact, there are many guidelines and rules for considering the effect of 

damage on stability in the preliminary design stage of various ships. The structural strength of 

damaged ships is the next important concern (Mohammadi et al. 2014 [18]). Conventionally, 

only the structural strength in intact condition was assessed in the design. Unfortunately, 

adequate structural strength in intact condition does not necessarily guarantee an acceptable 

safety margin in damaged conditions (Lee et al. 2012 [15]). Moreover, an effective damage in 

one section of the ship not only causes loss in structural strength of that section, but also has 

some effects on the other sections of the ship. Furthermore, load distribution on the ship 

changes depending upon the size and location of the hull damage. When a ship is damaged, 

the operators need to decide the immediate maintenance actions by evaluating the effects of 

the damage on the safety of the ship using the load prediction procedure and the residual 

strength assessment for the damaged ship. For these aforementioned reasons, changes in 

loading and structure of the ship due to damage should be considered during the design. 

1.2. State of the art 

Not much research has been done on wave loads of damaged ships. The main reason is that 

design requirements for global wave loads on damaged ship are much lower compared to the 
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intact condition (Hirdaris et al. 2014 [8]). Thus, the IACS Harmonized Common Structural 

Rules (CSR-H) (IACS, 2012 [9]), are aimed at checking the hull girder ultimate bending 

capacity in the damaged state using partial safety factor for wave loads of 0.67, while in the 

intact condition this factor reads 1.1. The reason for reduced partial safety factor in damaged 

condition is reduced exposure time and milder environmental conditions to be taken into 

account. While for intact ships the North Atlantic wave environment is usually adopted, local 

scatter diagrams are proposed, as applicable, for the reliability assessment of damaged ships 

as suggested by Luis et al. (2009) [17]. Reduced exposure time to environmental conditions 

after damage should also be considered before salvage to a safe location. For example, 

Teixeira and Guedes Soares (2010) [23] proposed a time period of one week as the voyage 

duration of a damaged ship to dry-dock. They concluded that the mean extreme Vertical 

Wave Bending Moment (VWBM) of a Suezmax tanker is about 15% lower when the 

exposure time is reduced from one year in the North Atlantic to one week in European coastal 

areas.  

Although research on loads on damaged ships in waves is rare, motions of damaged ships are 

widely covered in the literature (e.g. Korkut et al. 2004 [13]). Application of risk-based 

design methods that includes structural reliability of damaged ship requires rational 

evaluation of all pertinent random variables, including wave loads of damaged ship (Prestileo 

et al. 2013 [22]) that was the motivation for some of recent studies on that subject.  

Six degrees of freedom motion response tests of a Ro-Ro model have been reported in regular 

waves for intact and damaged conditions by Korkut et al. (2004) [13]. Korkut et al. (2005) 

[14] reported measurements of global loads acting on a Ro-Ro ship. The stationary model was 

tested in different wave heights and wave frequencies for the head, beam and stern quartering 

seas in order to explore the effect of damage and wave heights on the global loads acting on 

the model. 

Chan, et al, (2001) [2] have shown that the most critical condition for a damaged Ro-Ro ship 

is in quartering seas. Although the vertical bending moment in quartering seas is smaller than 

that in head seas, the horizontal bending moment is quite large. The ratio of horizontal 

bending moment to vertical bending moment could be as large as 1.73. So the combined 

effect of vertical bending moment and horizontal bending moment is more serious. In 

addition, torsion, which is not considered in the above study, normally reaches maximum in 

quartering seas. So the effect of horizontal bending moment and torsion on the ultimate hull 

girder strength should be considered in the assessment of the safety level of damaged ships. If 
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a ship is asymmetrically flooded, some effects resulting from heel could be monitored and 

should be examined. 

Chan et al. (2003) [1] presented wave induced load (bending moment, horizontal bending 

moment and dynamic torsion as well as dynamic shear force) predictions with experimental 

results on a damaged Ro-Ro ship using a non-linear time domain simulation method. But they 

did not provide more accurate results compared to those of the present linear strip method, 

although they applied a more complicated time domain nonlinear method. 

Folso et al. (2008) [6] have performed seakeeping computations on a damaged ship by the 3D 

linear hydrodynamic method. The damage scenarios corresponded to water ingress into the 

forepeak and/ or the double hull ballast tanks of the ship sailing in full load. For the case of 

the flooded ballast tank in the midship area, they obtained Response Amplitude Operators 

(RAOs) of the VWBM larger than those evaluated for the intact condition. Interesting 

conclusion from the paper is that keeping a bow quartering encounter angle, with the higher 

freeboard on the weather side, minimizes VWBM. 

Lee et al. (2012) [15] applied a computational tool based on a two dimensional linear method 

to predict the hydrodynamic loads of damaged warship. They obtained larger VWBM for 

damaged, compared to the intact ship. The global dynamic wave induced loads calculated 

using 2D linear method were also compared to measurements. In head and stern quartering 

waves, differences between computations and measurements of global dynamic wave induced 

load response amplitudes were reasonable. 

In general, however, linear strip theory overestimated measurements for both intact and 

damaged ship. The analysis of wave loads on damaged ship is performed also by Downes et 

al. (2007) [4] where it has be shown that the RAO peak value of VWBM increases, with 

increasing damage size and heel angle. It can also be seen however, that there is no significant 

difference between the RAOs due to the effects of damage. That study indicated that the 

change in global hull loading may be much smaller for tankers than for Ro-Ro ferries and 

cruise ships. 

However the previous works carried out by a number of investigators did not consider the 

asymmetric situations on damaged ships. This means that the vessel has to be always 

modelled and analysed in the upright condition without heel. The two dimensional linear suit 

aims at helping the operators to decide the immediate maintenance actions by evaluating the 
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effects of the damage and at providing acceptable predictions compared to those of a time 

domain simulation method [15]. 

When a ship is in damaged condition its floating condition could be changed dramatically. Its 

draught is increased and it may heel or trim. It could also have large holes in the structure. If 

the methodology used for intact condition is blindly applied to damaged condition, the results 

could be misleading. Ideally the environmental loads should be calculated together with the 

assessment of the residual strength of the ship. 

1.3. Aim of the study 

The main goal of the thesis is to study the effect of flooded compartments on a ship regarding 

the global vertical loads in the presence of waves. 3D panel hydrodynamic code WAMIT is 

used in the analysis. WAMIT only provides numerical results for hydrodynamic coefficients 

and excitation as well as transfer functions of ship motion, so it is necessary to develop some 

tool for calculating transfer functions of wave-induced global loads along the vessel as well as 

for graphical presentation of results. MATLAB code is developed for calculating transfer 

functions of VWBM and VWSF. For graphical presentation of results, Microsoft Excel is 

used alongside MATLAB. After modelling the side shell of double hull oil tanker and its 

compartments, a MATLAB tool, able to call WAMIT to simulate the ship behavior for 

different flooded conditions, is developed. Transfer functions of ship motion and global wave 

induced loads are then calculated and plotted using tool developed in the first step.  

With aim of comparison and evaluation obtained results are compared with other already 

published, in particular in references [20] and [21]. 

Analysis of results will provide relevant conclusions and indicate further work.  
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2. POTENTIAL FLOW THEORY AND BEHAVIOUR OF 

STRUCTURES IN REGULAR WAVES 

2.1. Basic assumption 

The sea water is assumed incompressible and inviscid. The fluid motion is irrotational. A 

velocity potential  is used to describe the fluid velocity vector v in equation (1) at time t at 

the point x (2) in a Cartesian coordinate system fixed in space. This means that i, j and k are 

unit vectors along the x-, y- and z-axes, respectively. 

 

 (       )  (     ) 

 (       )        (       )        
  

  
  
  

  
  

  

  
 

(1) 

   (     ) (2) 

A velocity potential has no physical meaning itself, but is introduced because it is convenient 

in the mathematical analysis of irrotational fluid motion. The fluid is irrotational when the 

vorticity vector  defined in (3) is equal to zero everywhere in the fluid. 

                 (3) 

Also, since water is incompressible velocity potential has to satisfy the Laplace equation (4). 

       
   

   
 
   

   
 
   

   
   (4) 

The complete mathematical problem of finding a velocity potential of irrotational, 

incompressible fluid motion consists of the solution of the Laplace equation with relevant 

boundary conditions on the fluid. Boundary conditions are presented in following subsections. 

If the z-axis it’s assumed to be vertical and positive upwards, pressure p can be calculated 

from Bernoulli's equation (5) where C is an arbitrary function of time,  represents water 

density, while g denotes acceleration of gravity. 

        
  

  
 
 

 
       (5) 
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The time dependence of C will be included in the velocity potential and so C can be a 

constant. Equation (5) is true for unsteady, irrotational and inviscid fluid motion. It is assumed 

that the only external force field is gravity. Mean free-surface level corresponds to z = 0. The 

constant C can be related to the atmospheric pressure or the ambient pressure. 

2.2. Boundary conditions 

For a fixed body in a moving fluid the body boundary condition on the body surface is 

defined as in equation (6) where differentiation of velocity potential along the normal to the 

body surface is equal to 0.  

 
  

  
   (6) 

The positive normal direction is defined to be into the fluid domain. Equation (6) expresses 

impermeability, i.e. that no fluid enters or leaves the body surface. The tangential velocity 

component on a body surface in a potential flow problem is unspecified. If the body is 

moving with velocity u, equation (6) can be generalized as it is shown in equation (7). 

 
  

  
     (7) 

Here u can be any type of body velocity. For a rigid body it includes translatory and rotary 

motion effects in general. This means u may be different for different points on the body 

surface. 

A free-surface, for two dimensional flow, v = 0, is defined by equation (8) where  is the wave 

elevation. 

    (     ) (8) 

Kinematic free-surface boundary condition, defined in equation (9), assumes that fluid particle 

on the free-surface stays on the free-surface i.e. that the vertical velocity of a water particle at 

the free surface of the fluid is identical to the vertical velocity of that free surface itself. 

 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
   (9) 
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The dynamic free-surface boundary condition simply assumes that the water pressure is equal 

to the constant atmospheric pressure po on the free-surface. If constant C in Bernoulli's 

equation (5) is set as po so that the equation holds with no fluid motion for z = Bernoulli's 

equation is transformed to (10) or in different notation to (11). 
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(     )     (11) 

2.3. Linear wave theory 

The free-surface boundary conditions (11) and (10) are non-linear. It’s not known where the 

free-surface is before the problem has been solved. However, by linearizing the free-surface 

conditions one is able to simplify the problem and still get sufficient information in most 

cases. In the study of interactions between linear waves and linear wave-induced motions and 

loads on ships and offshore structures, the linear surface boundary conditions will depend on 

the forward speed or the presence of .a current. It is assumed that the structure has no forward 

speed and that the current is zero. Linear theory means that the velocity potential is 

proportional to the wave amplitude. It is valid if the wave amplitude is small relative to a 

characteristic wavelength and body dimension. Linear theory transfers the free-surface 

conditions from the free-surface position z =  to the mean free-surface at z = 0. 

The second term in expression (9) is a product of two values, which are both small because of 

the assumed small wave steepness so this product becomes even smaller (second order) and 

can be ignored. Linearized kinematic free-surface boundary condition at z = 0 is given in (12) 

 
  

  
 
  

  
 (12) 

Since the waves have a small steepness (u and w are small), linearized dynamic free-surface 

boundary condition at z = 0 is given in (13). 

    
  

  
   (13) 
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Equations (12) and (13) combined give combined kinematic-dynamic free-surface boundary 

condition stated in equation (14). 

 
   

   
  

  

  
   (14) 

By assuming a horizontal sea bottom and a free-surface of infinite horizontal extent one is 

able to derive linear wave theory (sometimes called Airy theory) for propagating waves. Sea 

bottom condition (no-leak condition) (15) defines that the vertical velocity of water particles 

at the sea bed, z = - h is zero. 

 
  

  
   (15) 

The dynamic free-surface condition (13) is then used together with the Laplace equation (4) 

and the sea bottom condition (15) to obtain wave velocity potential given in (16). 

   (     )  
   

 
 
     (   )

      
    (     ) (16) 

In previous expression a represents wave amplitude,  denotes circular wave frequency (18) 

and k denotes wave number (19), while h denotes water depth. A substitution of the 

expression for the wave potential (16) in equation (14) gives the dispersion relation (17) for 

any arbitrary water depth. 

           (  ) (17) 

Dispersion relation defines connection between wave frequency  (ratio between 2 and 

wave period Ts) and wave number k (ratio between 2 and wavelength ). 

   
  

  
 (18) 

   
  

 
 (19) 

2.4. Behaviour of structures in waves 

Following text discuses analysis of structures in incident regular sinusoidal waves of small 

wave steepness. The dynamics of rigid bodies and fluid motions are governed by the 
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combined actions of different external forces and moments as well as by the inertia of the 

bodies themselves. When studying behaviour of structures in waves a steady state condition is 

assumed, meaning there are no transient effects present due to initial conditions. It implies 

that the linear dynamic motions and loads on the structure are harmonically oscillating with 

the same frequency as the wave loads that excite the structure [19]. The hydrodynamic 

problem in regular waves is normally dealt with as two sub-problems namely: 

A. The forces and moments on the body when the structure is restrained from oscillating 

and there are incident regular waves. The hydrodynamic loads are called wave 

excitation loads and composed of so-called Froude-Kriloff and diffraction forces and 

moments. 

B. The forces and moment on the body when the structure is forced to oscillate with the 

wave excitation frequency in any rigid-body motion mode. There are no incident
 

waves. The hydrodynamic loads are identified as added mass, damping and restoring 

terms. 

Due to linearity the forces obtained in A and B can be added to give the total hydrodynamic 

forces. 

Before describing the different hydrodynamic loads, it is necessary to define a coordinate 

system and the rigid body motion modes. When on board a ship looking toward the bow 

(front end) one is looking forward. The stern is aft at the other end of the ship. As one looks 

forward, the starboard side is one’s right and the port side is to one’s left. The motions of a 

ship, just as for any other rigid body, can be split into three mutually perpendicular 

translations of the centre of gravity, G, and three rotations around G. These definitions have 

been visualized in Figure 1 

Three translations of the ship’s centre of gravity in the direction of the x-, y- and z-axes  are: 

1. surge (x or ) in the longitudinal x-direction, positive forwards, 

2. sway (y or ) in the lateral y-direction, positive to port side, and 

3. heave (z or ) in the vertical z-direction, positive upwards. 

Three rotations about these axes: 

1. roll ( or ) about the x-axis, positive right turning, 

2. pitch ( or ) about the y-axis, positive right turning, and 
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3. yaw ( or ) about the z-axis, positive right turning. 

  

Figure 1 Definition of Ship Motions in Six Degrees of Freedom [11]. 

Three right-handed orthogonal coordinate systems are used to define the ship motions: 

1. An earth-bound coordinate system S(x0, y0, z0). The (x0, y0)-plane lies in the still 

water surface, the positive x0-axis is in the direction of the wave propagation; it can be 

rotated at a horizontal angle  relative to the translating axis system O(x, y, z) as 

shown in Figure 2. The positive z0-axis is directed upwards. 

2. A body-bound coordinate system G(xb, yb, zb) is connected to the ship with its origin 

at the ship's centre of gravity, G. The directions of the positive axes are: xb in the 

longitudinal forward direction, yb in the lateral port side direction and zb upwards. If 

the ship is floating upright in still water, the (xb, yb) )-plane is parallel to the still water 

surface 

3. A steadily translating coordinate system O(x, y, z) is moving forward with a constant 

ship speed V. If the ship is stationary, the directions of the O(x, y, z) axes are the same 

as those of the G(xb, yb, zb) axes. The (x, y)-plane lies in the still water surface with the 

origin 0 at, above or under the time-averaged position of the centre of gravity G. The 

ship is supposed to carry out oscillations around this steadily translating O(x, y, z) 

coordinate system. 
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Figure 2 Coordinate systems [11]. 

Knowing the motions of and about the centre of gravity, G, one can calculate the motions at 

any point on the structure using superposition. Absolute motions are the motions of the ship in 

the steadily translating coordinate system O(x, y, z). The angles of rotation ,  and  are 

assumed to be small because it is a necessity for linearization. Absolute harmonic motions of 

a certain point P(xP, yP, zP)  on the structure are given by equation (20). 

 

                

                

                

(20) 

As is already said flow around the structure in regular wave is described by total velocity 

potential. The linearization of the problem permits the decomposition of the total velocity 

potential  into the radiation R and diffraction D components as in (22). 

  (       )    (       )    (       ) (21) 

Diffraction potential D is used to describe flow around the structure restrained from 

oscillating that occurs due to incident regular waves. 

   (       )    (       )    (       ) (22) 
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As equation (22) denotes diffraction potential D is composed from the incident wave velocity 

potential 0 and the velocity potential 7 due to scattered disturbance of the incident wave by 

the body fixed at its undisturbed position. Incident wave velocity potential 0 for 3D flow in 

complex notation is given in equation (23), where  is the angle between the direction of 

propagation of the incident wave and the positive x-axis as defined in Figure 3. 

   (       )  
    
 

 
    [ (   )]

    (  )
                       (23) 

Radiation potential R is used to describe flow around the structure that is forced to oscillate 

with the wave excitation frequency in any rigid-body motion mode. 

   (       )    ∑    

 

   

 (24) 

The constants i denote the complex amplitudes of the body oscillatory motion in its six rigid-

body degrees of freedom, while j represents the corresponding unit-amplitude radiation 

potential. 

On the undisturbed position of the body boundary, the radiation and diffraction potentials are 

subject to the no-leak boundary conditions: 

 
   
  

  
   
  

 (25) 

 
   

  
      (26) 

Under the assumptions that the responses are linear and harmonic, the equation of motions of 

a vessel in regular waves can be written in the following general equation of coupled motions. 

 ([   ]  [   ]){ ̈ }  [   ]{ ̇ }  [   ]{  }  {  } (27) 

In previous expression [Mij] represents generalised mass matrix, [Cij] denotes matrix of 

hydrostatic and gravitational restoring coefficients, {Fi} denotes vector of exciting forces and 

moments, [Aij] and [Bij] are matrices of the added mass and damping coefficients, while j and 

k indicate the direction of fluid force and the modes of motion (i, j = 1-surge, 2-sway, 3-
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heave, 4-roll, 5-pitch, 6-yaw).Computation of hydrodynamic and hydrostatic coefficients and 

forces is presented in 2.5. 

 

Figure 3 Definition of wave heading [15]. 

2.5. Hydrodynamic and hydrostatic quantities evaluated by WAMIT 

Body motions and forces are defined in relation to the origin of the same Cartesian coordinate 

system relative to which the panel offsets are defined. Note that this origin may be located on, 

above or below the free surface. 

2.5.1. Hydrostatic data 

All hydrostatic data can be expressed in the form of surface integrals over the mean body 

wetted surface Sb, by virtue of Gauss’ divergence theorem. All three forms of the 

displacement volume  are devaluated in WAMIT, as independent checks of the panel 

coordinates. The median volume of the three is used for the internal computations. 

    ∬      
  

  ∬      
  

  ∬      
  

 (28) 

Coordinates of center of buoyancy are calculated from (29). 

 

   
  

  
∬    

   
  

 

   
  

  
∬    

   
  

 

(29) 
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∬    

   
  

 

Matrix of hydrostatic and gravitational restoring coefficients [Cij] is defined in (30) and (31), 

where C(i, j) = C(j, i) for all i, j, except for C(4, 6) and C(5, 6). For all other values of the 

indices i, j, C(i, j) = 0. In particular, C(6, 4) = C(6, 5) = 0.  

 

 (   )    ∬     
  

 

 (   )    ∬       
  

            

 (   )    ∬       
  

            

(30) 

   

 

 (   )    ∬      
  

 

 (   )     ∬      
  

 

 (   )     ∬       
  

 

 (   )              

 (   )              

(31) 

In C(4,4), C(4,6), C(5,5) and C(5,6), m denotes the body mass, while (xg, yg, zg) represent 

coordinates of the center of gravity. 

2.5.2. Hydrodynamic data 

Added-mass and damping coefficient are obtained from equation  

     
 

 
      ∬       

  

 (32) 

Exciting forces and moments are obtained from direct integration of hydrodynamic pressure: 
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        ∬       
  

 (33) 

The complex unsteady hydrodynamic pressure on the body boundary or in the fluid domain is 

related to the velocity potential (21) by the linearized Bernoulli equation (5) which leads to 

expression (34). 

     
  

  
 (34) 

2.5.3. Body motion in waves 

The inertia matrix is defined as follows. 

   

[
 
 
 
 
 
                  
                 
                  

        
        
        

        
        
        

                     
                     
                      ]

 
 
 
 
 
 

 (35) 

The moments of inertia Iij are defined in terms of the corresponding radii of gyration rij, 

defined by the relation (36). 

         
  (36) 

The complex amplitudes of the body’s motions are obtained from the solution of the 6×6 

linear system (37). 

 ∑[   (       )           ]  

 

   

    (37) 

Ratio between ship response and wave amplitude is expressed by response amplitude operator 

RAO. 

      
  

  
 (38) 
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3. COMPUTATIONAL ASPECTS 

3.1. Software adopted for computations 

WAMIT (Wave Analysis at Massachusetts Institute of Technology) is a radiation/diffraction 

program based on a three-dimensional panel method, following the potential theory developed 

for the analysis of the interaction of surface waves with offshore structures. The main program 

consists of two top-level sub-programs POTEN and FORCE which evaluate the velocity 

potentials and desired hydrodynamic parameters, respectively. The water depth can be infinite 

or finite, and either one or multiple interacting bodies can be analysed. The bodies may be 

located on the free surface, submerged, or mounted on the sea bottom. A variety of options 

permit the dynamic analysis of bodies which are freely floating, restrained, or fixed in 

position. 

The flow is assumed to be ideal and time-harmonic. The free-surface condition is linearized 

(except in Version 6.1S where the second-order free-surface condition and body boundary 

conditions are imposed). We refer to this as the ‘linear’ or ‘first-order’ analysis. 

Mean second-order forces are included in this analysis, since they can be computed rigorously 

from the linear solution. The radiation and diffraction velocity potentials on the body wetted 

surface are determined from the solution of an integral equation obtained by using Green’s 

theorem with the free-surface source-potential as the Green function. 

WAMIT is designed to be flexible in its use with a variety of practical applications. It consists 

of two subprograms, POTEN and FORCE, which normally are run sequentially. POTEN 

solves for the radiation and diffraction velocity potentials (and source strengths) on the body 

surface for the specified modes, frequencies and wave headings. FORCE computes global 

quantities including the hydrodynamic coefficients, motions, and also first and second-order 

forces. Velocities and pressures on the body surface are evaluated by FORCE. Additional 

field data may also be evaluated by FORCE, including velocities and pressures at specified 

positions in the fluid domain and wave elevations on the free surface. 

Except WAMIT, MATLAB is used for developing codes for calling WAMIT simulations 

automatically and post-processing of obtained numerical data. MATLAB (matrix laboratory) 

is a multi-paradigm numerical computing environment and fourth-generation programming 

language. MATLAB allows matrix manipulations, plotting of functions and data, 

https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Matrix_%28mathematics%29
https://en.wikipedia.org/wiki/Function_%28mathematics%29
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implementation of algorithms, creation of user interfaces, and interfacing with programs 

written in other languages. 

3.2. Adopted mesh and damaged vessel scenarios 

The studied ship is Aframax oil tanker with main particulars presented in Table 1. Cargo hold 

area is divided into 6 pairs of Cargo Tanks (CT) and 6 corresponding pairs of Water Ballast 

Tanks (WBT) in double bottom and side. WBTs are divided into portside and starboard tanks 

by center line girder in double bottom. The general arrangement of the ship is shown in 

Figure 4. The damage scenarios correspond to water ingress into the double hull ballast tanks 

of the ship sailing in full load. From a computational point of view, the simulated amount of 

water entries corresponds to static equilibrium situations where internal levels in the 

compartments affected by the flooding are equal to the still water external levels. 

Table 1 Main particulars of the Aframax oil tanker. 
  

Dimension Unit (m, dwt) 

  

Length between perp., LPP 234 

Breadth, B 40 

Depth, D 20 

Draught, T 15 

Deadweight, DWT  105000 
    

 

Figure 4 General arrangement of the Aframax  oil tanker. 

Side shell of double hull oil tanker and its compartments are created in 3D computer graphics 

and computer-aided design (CAD) application software Rhinoceros (Rhino3D). Discretization 

of the hull i.e. meshing is based on a distribution of plane quadrilaterals, hereafter denoted 

simply as panels. Panels usually do not require to be connected i.e. hanging nodes and small 

 CT 5  CT 4  CT 3   CT 2  CT 1  CT6 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/3D_computer_graphics_software
https://en.wikipedia.org/wiki/Computer-aided_design
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gaps in the mesh are possible without compromising the validity of the obtained results 

Jafaryeganeh et al. (2014) [7]. 

 

Figure 5 Hydrodynamic panel model of the intact tanker. 

Ko et al. (2011) [12] relate the required panel size to depend on the incident wave length, and 

so does DNV (2010). The latter gives a set of general directives regarding the panels: 

diagonal length less than 1/6 of the shortest wave length analysed; refined mesh in the areas 

of abrupt geometrical change; and increased refinement of the mesh in the vicinity of the 

waterline. 

 

Figure 6 Hydrodynamic panel model of the intact tanker (bottom view). 
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Due to lack of time, sensitivity tests haven’t been carried out so panels’ size are defined 

respecting previously mentioned directives form DNV. The hydrodynamic panel model of the 

intact ship presented in Figure 5 and Figure 6. Wetted hull surface of the intact tanker is 

modelled with 6698 panels. For other cases number of panels varies depending on number of 

damaged tanks each having around 800 panels. Figure 7 presents hydrodynamic panel model 

of starboard side (SB) WBTs no. 1, 4, and 6. 

 

Figure 7 Hydrodynamic panel model of the WBTs nos. 1, 4 and 6. 

As ship damage may occur in a number of ways, damage parameters are in general random 

quantities that may be described by probability distributions. Such probability distributions of 

damage size and location, for cases of the collision and grounding damages are proposed by 

International Maritime Organization (IMO, 2003). In order to define credible damage 

scenarios, Monte Carlo (MC) simulation according to IMO probabilistic models is performed 

by Parunov et al. (2015) [21]. 1000 random numbers are drawn according to IMO models and 

events resulting in damage of certain number of compartments counted and presented in 

Figure 8 a) and b) for collision and grounding respectively. Figure 8 shows probabilities of 

damage in the longitudinal sense only, i.e. it is assumed that only WBTs are damaged, while 
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damage does not penetrate through the inner bottom or inner hull. Fore peak tank and engine 

room are also considered as separate tanks in the present damage analysis.  

 

a) Collision      b) Grounding 

Figure 8 Probabilities of number of damaged tanks in the longitudinal direction Values represent 

number of outcomes in 1000 simulations [21]. 

Single tank damage in Figure 8 represents case when outcome of MC simulation results in the 

damage of only one of WBTs or FP tank or engine room. Two tanks damage case means that 

MC simulation results in the damage of FP tank and WBT no.1, any combination of two 

consecutive WBTs or WBT no.6 and the engine room. For damage of more tanks applies 

analogous reasoning is applied. Furthermore, it is to be noted that the collision always results 

in the asymmetrical damage, i.e. only starboard or portside tanks are damaged. For grounding, 

however, damage may be symmetrical, i.e. pairs of WBTs may be damaged together. Such 

conservative assumption is adopted in the present study, i.e. grounding damage is considered 

always as symmetrical damage. It is interesting to notice from Figure 3 that damage of single 

compartment has the highest probability for collision, while damage of two pairs of 

compartments is the most probable scenario for grounding. 

The scenarios investigated are represented by water ingress into the starboard ballast tanks for 

collision damage cases and both starboard and port side tanks for grounding as presented in 

Table 2. In total, 9 damage cases including intact condition are examined. Grounding damage 

cases, precisely 2 of them are studied mainly for comparison with previous work presented in 

Parunov et al 2015 [21] and obtaining some rough validation. Furthermore 6 collision damage 

cases are also presented in the thesis. 

The linear approximation in 3D potential flow simulations applied to cases presented in Table 

2 is questionable, as the inclination and trim of the vessel adds nonlinear aspects to the 

problem. This applies in particular (but not only) to the hydrostatic restoring terms for 
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vertical, pitch and roll motions. In the examined cases, the ship sides are actually inclined 

with respect to the free surface; this results in reality in a lateral and longitudinal displacement 

of the centre of buoyancy creating an evident dissymmetry in the restoring forces for listed 

motions and a coupling between the motions in the longitudinal and transversal planes. 

Table 2 Intact and damaged conditions details. 

     

Damage 

case 

Damaged 

tanks 
Draught (m) Trim () Heal () 

 

   

 

DC0 

(intact) 
NONE 15.00 0 0 

DC 1 WBT: 2S 15.99 0.65 1.71 

DC 2 WBT: 3S 15.98 0.39 2.30 

DC 3 WBT: 4S 15.99 0.16 2.54 

DC 4 WBT: 1S+2S 16.28 0.89 3.73 

DC 5 WBT: 3S+4S 16.26 0.52 4.26 

DC 6 WBT: 5S+6S 16.25 0.08 4.44 

DC 7 WBT: 4P&S 16.23 0.43 0.24 

DC 8 WBT: 2-4P&S 17.36 1.13 0.22 
       

 

3.3. WAMIT files 

For better understanding of ideas and procedures in MATLAB codes it is necessary to 

become familiar with WAMIT input and output files. Five input files are used for simulations 

presented in this thesis: 

 Filenames list (FNAMES.WAM) is used to specify the filenames of the primary input 

files CFG, POT, FRC, and GDF 

 Configuration file (*.cfg) is used to specify various parameters and options in WAMIT 

 Geometric Data File (*.gdf) is used for specific body geometry mesh data 

 Potential Control File (*.pot) is used to specify various parameters for POTEN 

subprogram: 

o water depth h, 

o wave periods Ts or frequencies , 

o wave heading angle , 
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o motions included in simulation and 

o position of body-fixed coordinate system relative to the global coordinate 

system 

 Force Control File (*.frc) is used to specify various parameters for FORCE 

subprogram: 

o which hydrodynamic parameters are to be evaluated and output from the 

program, 

o fluid density , 

o coordinates of the body center of gravity, 

o the inertia matrix as defined in (35) and so on 

Output files used for post-processing are: 

 Low-order GDF file (*_low.gdf) - from input GDF file WAMIT creates body surface 

mesh up to waterline using flat quadrilaterals. 

 Numeric output files (*.num) created for each hydrodynamic parameter evaluated in 

the FORCE subprogram. 

Detailed description of listed files is given in WAMIT User manual Version 6.4 [25]. 

3.4. MATLAB codes 

Three separate codes have been created in MATLAB for the purpose of this research. Created 

tools cooperate with WAMIT and are able to create input files, run simulations and collect 

data, as well to calculate wave induced loads during post-processing faze for a lot of different 

damage scenarios. 

A lot of data modification and transfer algorithms are included in the codes so it would be 

time and paper consuming if every code line were explained. Instead only main ideas and 

mathematical background of computations are presented in this thesis.   

3.4.1. MATLAB code for automated creation of input files and running of 

simulations in WAMIT 

Before running simulations, for each damage scenario it is necessary to create input files. For 

each damage scenario, folder along with corresponding input files is created. Information for 

creating input files, along with data about damage cases and ship in particular are imported 
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from specifically defined excel file. Along with data from Table 2 and Table 3 that file also 

contains necessary inertia matrix information: body mass, coordinates of the center of gravity 

and moments of inertia. Actual code has around 400 lines so thereby highly simplified version 

of pseudocode is given in following 12 lines. 

1- Import path  % location of folder with input files for this code 

2- Export path  % location of folder with output files and folders 

3- Import data from excel file 

Variables in 1
st
 line, as it stated in comment, define location of folder that contains input files 

for presented code. Location of folder containing output files and folders that are actually 

input files for WAMIT is defined in 2
nd

 line. Line 3 represents data import from excel file and 

assignment to respective variables. Loop from 4
th

 to 12
th

 line creates WAMIT input files for 

each damage case. 

% automated creation of input files, i represents specific damage case (DC) 

4- for i = 1 to nDC   % nDC denotes number of damage cases 

5-    create folder (fname(i)) % function that creates folder for WAMIT 

input files for specified DC 

6-    create file (FNAMES.WAM) % function that creates file FNAMES.WAM 

7-    create file (fname(i).pot) % function that creates POT file 

8-    create file (fname(i).frc) % function that creates FRC file 

9-    create file (fname(i).gdf) % function that creates GDF file 

10- create file (fname(i).cfg) % function that creates CFG file 

11- save files 

12- end  

Folder for saving WAMIT input files for each damage case (DC) is created in line 5. Variable 

fname(i) denotes file name for every DC while i represents number of damage case. 

Filenames list (FNAMES.WAM) contains names of other 4 input files so only number that 

indicates DC in file names is changed for each pass through loop. Except line that indicates 

GDF file for simulation, data in POT file remains unchanged for different damage cases. In 

FRC file only distance between vertical centre of gravity (VCG) and reference coordinate 

system placed on waterline, zgi, has to be changed. Draught for specific DC (Ti) is listed in 

Table 2. 

            (39) 
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GDF file for specific damage case (DC) is created combining intact ship hull GDF file with 

particular GDF file of WBT plating. Those files are located in input folder defined in 1
st
 line. 

Table 3 contains information which GDF files are relevant for specific DC. 

Table 3 Instructions for creating GDF files. 

 

There are 12 WBT, so numbers from 1 to 12 are assigned to each tank starting from starboard 

WBT at bow, as it is shown in bolded part of Table 3. For each damage case is necessary to 

define number of damaged tanks (3
rd

 column) and in following columns numbers that define 

damaged tanks. Damage case 7 e.g. has 2 damaged tanks and numbers 4 and 10 are listed in 

table that indicates that WBT 4S and 4P GDF files are to be merged with intact hull GDF file. 

Merging of files is done using for loop that goes from 1 to number of damage tanks. With 

every pass through the loop panels from WBT GDF file are copied to GDF for considered DC 

that, before entering loop, contains only panels from the ship hull. After DC GDF file is 

created. In CFG file, only data for heel and trim (listed in Table 2) angle has to be changed. 

Free surface water level in internal tanks is set to correspond to waterline free surface around 

the hull. At the end of each loop created files for specific DC are saved to folder defined in 5
th

 

line.  

After input files are created code for automated calling of WAMIT is run. It is a short code 

containing only functions for moving files and calling WAMIT executable file. Pseudocode is 

given in following lines. 

1- move files (input files) 

2- run(wamitv6.4.exe) 

3- move files (output files) 

WBT WBT WBT WBT WBT WBT WBT WBT WBT WBT WBT WBT

1S 2S 3S 4S 5S 6S 1P 2P 3P 4P 5P 6P

= = = = = = = = = = = =

1 2 3 4 5 6 7 8 9 10 11 12

1 WBT: 1S 1 2

2 WBT: 4S 1 3

3 WBT: 6S 1 4

4 WBT: 1S+2S 2 1 2

5 WBT: 3S+4S 2 3 4

6 WBT: 5S+6S 2 5 6

7 WBT: 4P&S 2 4 10

8 WBT: 2-4P&S 6 2 3 4 8 9 10

DC
Damaged 

tanks

No. 

of d.t.



Antonio Mikulić Master´s Thesis 

Faculty of Mechanical Engineering and Naval Architecture 25 

Function in 1
st
 line, transfers input files from DC folder (fname(i)) to folder containing 

WAMIT executable file. After the simulation is finished output files are transferred, by 

function in 3
rd

 line, back into same DC folder. 

For post-processing obtained results MATLAB code for calculation of wave induced loading 

is developed and short description is given in following subsection. 

3.4.2. MATLAB code for calculation of wave induced loading 

As already noted WAMIT doesn’t provide numerical results for wave-induced global loads 

along the vessel and therefore MATLAB code has been developed to address that issue. 

MATLAB code contains more than a 1000 lines so only mathematical background and main 

idea are to be explained. 

The total structural loading at any instant is a sum of the wave pressure forces, the ship 

motion-induced pressure forces and the reaction loads due to the acceleration of the ship 

masses. Calculation of bending moment and shear force on a ship hull in waves requires 

knowledge of the time-varying distribution of fluid forces over the wetted surface of the hull 

f(x) together with the distribution of the inertial reaction loads m(x)az(x). Fluid loads depend 

on the wave-induced motions of the water and the corresponding motions of the ship. The 

inertial loads are equal to the product of the local mass of the ship m(x) and the local absolute 

acceleration az(x). The shear force V and bending moment M are then obtained at any instant 

by evaluating the first and second integrals of the longitudinally distributed net vertical force 

per unit length q(x) defined in equation (40). 

  ( )   ( )   ( )  ( ) (40) 

At any instant of time, the shear force, V(x1), at a section whose x-coordinate is x1 is obtained 

by integrating q(x) from the aft end of the ship, x = 0, up to the station at x = x1. The bending 

moment M(x1) at x1, is obtained, in turn, by integrating the shear force, V(x), from x = 0 to x = 

x1. 

  (  )  ∫  ( )  
  

 

 (41) 

  (  )  ∫  ( )  
  

 

 ∫ ∫  ( )  
  

 

  
  

 

 (42) 
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In order to compute integrals, ship hull along with mass is discretized into a series of 

transverse strips of constant length of 1.92m. One of the important assumptions of linear strip 

theory is that both the wave and ship motion amplitudes are, in some sense, small. As a result, 

it is possible to consider the total instantaneous vertical fluid force f(x)dx on a thin transverse 

strip or element of length, dx, to be composed of the sum of several terms that are computed 

independently of each other. Corresponding with WAMIT outputs, vertical fluid force f(x)dx 

is decomposed in to hydrodynamic pressure force fhp(x)dx and restoring force fr(x)dx. 

  ( )      ( )     ( )   (43) 

Vertical hydrodynamic pressure panel force fhp(x)dx, is calculated by multiplying the pressure 

acting on the surface of the panel pi, defined in expression (34), panel surface Ap,i and z-

component of panel surface normal vector n3,i. Vertical hydrodynamic pressure force for 

specified strip is computed summing fhp,i(x)dx for all panels along specified strip, Nsp. 

    ( )   ∑           
   

   
 (44) 

For an arbitrary quadrilateral V0V1V2V3 one can take the midpoints of its 4 edges to get 4 

vertices which form a new quadrilateral M0M1M2M3 as presented in. Figure 9. It is then easy 

to show that this midpoint quadrilateral is always a parallelogram, called the "Varignon 

parallelogram", and that its area is exactly one-half the area of the original quadrilateral [26]. 

Area of quadrilateral V0V1V2V3 can be computed using expression (45). Panel normal vector is 

obtained by normalizing cross product of vector V2V0 and vector V3V0. 

  

Figure 9 Arbitrary quadrilateral [26]. 
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To simplify sorting of panels and computation of hydrodynamic force fhp(x)dx on a strip, size 

and distribution of panels are taken into a consideration while creating a mesh. Maximum 

panel length correspond to strips length, while whole surface of the panel has to be inside one 

strip only. In Figure 10, a closer look on mesh is presented and one can see that panels are 

sorted vertically forming strips and facilitating numerical integration. 

 

Figure 10 Closer look on mesh definition. 

Restoring force is defined in equation (46) where Bwl(x) denotes beam of a strip on waterline. 

   ( )        ( )   (46) 

Local mass of the ship m(x) is obtained from input excel file with predefined mass 

distribution. At any instant of time, the motion of the ship will consist of superimposed 

motions of pitch and heave, so az(x) is calculated from equation (47), where RAO3 represents 

response amplitude operator of heave motion while RAO5 denotes response amplitude 

operator of pitch motion. 

   ( )    
 (          ) (47) 
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4. RESULTS 

RAOs of VWBM at amidships and RAOs of heave and pitch motions are calculated for intact 

and for damaged ship conditions. RAOs of VWBM for damaged vessel are determined for 8 

damage cases. As for the computation of ship motions, ship speed is assumed to be zero. Two 

grounding damage cases are used for comparative analysis of loads and motions. Is should be 

emphasized that there are some differences between model used in WAMIT and one used in 

HydroSTAR i.e. mesh used for simulation is not completely the same and the HydroSTAR 

simulations for damage cases are run with speed of advance equal to 5 knots. 

4.1. Comparison between ship motions calculated by WAMIT and HydroSTAR 

Results of the comparative analysis of heave motion for intact case are presented in Figure 11, 

12 and 13. 

 

Figure 11 RAOs of heave motion for head seas. 

 

 



Antonio Mikulić Master´s Thesis 

Faculty of Mechanical Engineering and Naval Architecture 29 

 

Figure 12 RAOs of heave motion for quartering seas. 

 

 

Figure 13 RAOs of heave motion for bow seas. 

Differences between RAOs of heave motion calculated by WAMIT and the ones obtained 

from HydroSTAR are noticeable even for intact condition especially in range from 0.4 to 0.6 

rad/s. Results for the pitch motion have slightly bigger difference, while also following 

previously mentioned “rule”. Comparative analysis for pitch motion for intact case are given 

in Figure 14, 15 and 16. 
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Figure 14 RAOs of pitch motion for head seas. 

 

Figure 15 The RAOs of heave motion for quartering seas. 

It should be noted that mesh used for simulations in WAMIT is different than one For 

HydroSTAR and since the inclination and trim of the vessel, which is not done in 

HydroSTAR, results in a lateral and longitudinal displacement of the centre of buoyancy, 

creating an evident dissymmetry in the restoring forces for heave and especially for pitch 

motions, some differences had to occur. 
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Figure 16 RAOs of heave motion for bow seas. 

For two grounding damage cases, as well as for intact ship, RAOs of heave and pitch motion 

for head seas are compared with [21] in Figure 17, 18, 19 and 21. 

 

Figure 17 RAOs of heave motion for head seas DC7. 
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Figure 18 RAOs of heave motion for head seas DC8. 

Regarding RAOs of ship motion for damage cases one can notice much bigger difference than 

it was for intact case. Speed of advance along with motion of fluid in internal tanks instead of 

rigid cargo or lost buoyancy modeling approach is probably the cause of bigger differences.  

 

Figure 19 RAOs of pitch motion for head seas DC8. 
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Figure 20 RAOs of pitch motion for head seas DC8. 

4.2. Comparison between VWBMs calculated by WAMIT and HydroSTAR 

RAOs of VWBM amidships are calculated for intact (Figure 21) and for damaged ship. RAOs 

of VWBM for damaged vessel are determined for two grounding damage cases (Figure 22 

and Figure 23). As for the ship motions, constant ship speed of 5 knots is assumed for cases 

run in HydroSTAR, while in WAMIT, speed of advance is set to 0. 

 

Figure 21 RAOs of VWBM for head seas, intact condition. 
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Figure 22 RAOs of VWBM for head seas DC8. 

 

Figure 23 RAOs of VWBM for head seas DC7. 

Looking at the previous 3 figures one can conclude that RAOs of ship VWBM are acting like 

RAOs of ship motion. Hence for damage cases one can notice much bigger difference than it 

was for intact case. Speed of advance set to 0 instead of 5 knots along with motion of fluid in 

internal tanks instead of rigid cargo or lost buoyancy, is probably the cause of bigger 

differences. 



Antonio Mikulić Master´s Thesis 

Faculty of Mechanical Engineering and Naval Architecture 35 

4.3. Distribution of vertical wave loads 

Distribution of vertical wave loads for wave frequency where vertical wave loads reach 

maximum is presented in Figure 24 and Figure 25. Theoretically, vertical loads should reach 

zero value at the end, but due to inaccurate numerical integration method that force balance 

has not obtained in any case. For higher frequencies force unbalance at the end becomes 

bigger but for majority of cases it is inside 10% range. 

 

Figure 24 Distribution of VWBM for intact condition (=0.4712 rad/s). 

 

Figure 25 Distribution of VWSF for intact condition (=0.4712 rad/s). 
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4.4. Comparison of ship vertical wave loads for intact and damage condition  

RAOs of VWBM amidships are calculated and compared both for intact and for damaged 

ship case. Most of collision damage cases presented in Figure 26 and both grounding damage 

case presented in Figure 28 are taken into a consideration. Also RAOs of VWBM at 

amidships for different wave headings in intact condition are presented in Figure 27. 

 

Figure 26 RAOs of VWBM for head seas, collision DCs. 

 

Figure 27 RAOs of VWBM for different wave headings of intact condition. 



Antonio Mikulić Master´s Thesis 

Faculty of Mechanical Engineering and Naval Architecture 37 

 

 

Figure 28 RAOs of VWBM for head seas, grounding DCs. 

From looking at Figure 26 and Figure 28 one can conclude there are some differences in 

maximum values of VWBMs between intact and damage condition for head seas. It is also 

noticeable that maximum values for damage condition occurs at almost same angular 

frequencies as intact condition. 
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4.5. Comparison of maximum VWBM at amidships for different heading angles 

Maximum VWBM for different wave heading angles are presented in Figure 29. One can see 

that bow quartering and head seas are toughest cases. Biggest increase of VWBM with 

respect to intact condition occurs for DC 5 and 8 at heading angle =225 and is almost 25%.  

 

Figure 29 Maximum VWBM for different wave heading angles. 

One should notice that for most of DCs following and beam sea denotes decrease of VWBM 

with respect to intact condition e.g. for DC1, with =225 VWBM is about 25% lower. Even 
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greater decrease of VWBM regarding to intact condition occurs for some other cases at beam 

seas. Maximum VWSF for different wave heading angles is presented in Figure 30 and 

presented diagram it is almost opposite to VWBM diagram. Head seas are lowering SF while 

following increases it. DC5 and 4 have the biggest value. 

  

Figure 30 Maximum VWSF for different wave heading angles. 
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In Figure 31, maximum heave motion is presented. There are no big increases or decreases, 

intact condition has the lowest values, while maximum for heave motion is during beam seas. 

 

Figure 31 Maximum heave motion for different wave heading angles. 

Maximum pitch motion is presented in Figure 32. Same as for heave, no big increases or 

decreases of maximum amplitude of motion are noticed for quartering seas. 
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Figure 32 Maximum pitch motion for different wave heading angles. 
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5. DISCUSSON 

MATLAB code, as can be seen from Figure 27 and Figure 28, is not fully force balanced, and 

probably some of the reasons are inaccuracy of numerical integration method as well as 

constant pressure distribution assumption along the panel surface. Also, there are some 

inconsistencies in input data that occurred due to missing ship data. Unfortunately, due to 

insufficient time and computer resources those problems have not been resolved completely. 

Regardless of the previously reported computer code shortcomings, results around global 

extremes are good, hence maximum VWBM or SF, like in Figure 29, and can be used for 

further research. Even without computation of global vertical loads developed code still offers 

a quick and relatively easy way to generate and simulate a lot of different cases.  

Maximum VWBM for some damage cases is significantly increased regarding to intact 

condition at bow quartering seas while at stern quartering and beam seas is significantly 

decreased. Surprising fact is that while VWBM is decreased for some wave headings, ship 

motions are always decreasing. Therefore, it can be useful for future research work e.g. to 

study optimal heading angle for any loading or damage case. Furthermore it is possible to 

study effect of loading ballast in order to lower the motion and loads by changing mass 

distribution and also by superimposing force induced by motion of fluid inside the tank. 

Linear method is used in this thesis, tanks are already almost full and hull is left undamaged, 

so it would be interesting to study motion and loads with different amount of fluid inside of 

the tank before ship reaches quasi-static equilibrium. 

Horizontal wave bending moment as well as torsional moments are not included in the present 

analysis but definitely need further investigation. With not so many adjustments presented 

code will be able to calculate horizontal wave bending moment along with torsional moments. 

That should be a next step after debugging is finished. 

Aspect that has not been included, yet disserving attention is the influence of the sloshing of 

liquid in damaged compartments. There is a lot of uncertainty and lack of research in this 

field. 

Finally, the effect of structure opening on hydrodynamic interaction with the waves is also 

neglected and deserves further research.  
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6. CONCLUSION 

The thesis presented a code for automated hydrodynamic simulations and computation of 

vertical wave induced global loads. Wave-induced global loads and motions of a ship in intact 

and damaged conditions are investigated. Flooding scenarios investigated are represented by 

water ingress into the ballast tanks while the hull is left undamaged. For each investigated 

case, response amplitude operators of ship motions are calculated using WAMIT, linear 3D 

panel hydrodynamic code in the frequency domain. The wave-induced global loads are 

computed using presented code for post processing developed in MATLAB. Even though 

presented code has not achieved perfect balance in terms of forces, it could be used reliably in 

wave frequency range from 0.3 to 1.2 rad/s.  

Maximum VWBM for some damage cases is significantly increased regarding to intact 

condition at bow quartering seas while at stern quartering and beam seas is significantly 

decreased. Surprising fact is that while VWBM is decreased for some wave headings ship 

motions are always decreasing. Therefore, for future research work would be interesting to 

study optimal heading angle or effect of loading ballast in order to lower the motion and 

loads. 

The obtained results are also compared with ones computed in HydroSTAR, published by 

[21]. Comparing results for RAOs of ship motion for intact condition some differences can be 

noticed. Those differences are getting even bigger for damage cases. Some differences are 

noticed for results of VWBMs since wave moments depend on ship motion in waves. Usage 

of different mesh while also including inclination and trim of the vessel along with motion of 

fluid in internal tanks and included speed of advance are probably the reasons for differences, 

but further research is necessary for obtaining more reliable conclusions. 
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