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Abstract
Modern implicitly coupled pressure–velocity algorithms introduced a considerable increase

in the convergence rates when compared with segregated algorithms. Although, segregated

treatment of turbulence model equations often limits such algorithms from reaching their full

potential. Hence, implicit coupling of two-equation turbulence models is investigated.

In order to implement the implicitly coupled turbulence models in the block-matrix frame-

work, it is necessary to linearise the non-linear source and sink terms. The linearised sources

and sinks also need to undergo the stability and boundedness analysis. Linearisation and im-

plementation of two-equation turbulence models, k− ε and k−ω SST, in foam-extend (the

community-driven fork of the OpenFOAM) software is presented.

Validation of implemented turbulence models is performed. The two validation cases are: a

separated flow past a NACA 4412 airfoil at maximum lift and an incompressible turbulent flow

over a backward facing step. Validation of the implicitly coupled k−ω SST model is performed

for both cases, whereas validation of the implicitly coupled k− ε model is performed only for

the backward facing step case.

Finally, performance of implemented turbulence models is compared with existing segre-

gated models. Benchmarking is performed on the two validation cases. Similarly as for the

validation, both implemented turbulence models are benchmarked on the backward facing step

case and only the k−ω SST is benchmarked on the NACA 4412 case.

Key words: CFD, OpenFOAM, foam-extend, turbulence modelling, k− ε , k−ω SST, block-

matrix, implicit coupling, linearisation, validation, benchmarking.
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Sažetak
Korištenje modernih implictno spregnutih algoritama za povezivanje jednadžbi brzine i tlaka

dovelo je do znatno brže konvergencije rješenja u usporedbi s tradicionalnim odvojenim al-

goritmima. Prilikom simulacije turbulentnih strujanja spregnutim rješavačima brzine i tlaka

konvergenciju rješenja često ograničava odvojeno rješavanje jednadžbi modela turbulencije,

stoga se u ovom radu razmatra implicitno sprezanje dvojednadžbenih modela turbulencije.

Prije implementacije implicitno spregnutih dvojednadžbenih modela turbulencije, nužno

je provesti linearizaciju nelinearnih izvorskih i ponorskih članova te analizu stabilnosti i poz-

itivnosti produkata linearizacije. Prikazuju se linearizacija i implementacija dvojednadžbenih

modela turbulencije k−ε i k−ω SST unutar foam-extend (OpenFOAM-ova inačica koju razvija

zajednica) softverskog paketa.

Validacija implementiranih modela turbulencija provodi se na dva poznata slučaja strujanja

za koja su dostupna eksperimentalna mjerenja: odvojeno nestlačivo strujanje oko NACA 4412

aeroprofila pri maksimalnom uzgonu te nestlačivo strujanje u kanalu s naglim proširenjem.

Validacija k−ω SST modela turbulencije provodi se na oba slučaja strujanja, dok se k− ε

model validira samo na strujanju unutar kanala.

Takoder se usporeduju performanse implementiranih implicitno spregnutih modela s odgo-

varajućim postojećim odvojenim inačicama modela turbulencija. Slično kao i prilikom vali-

dacije, usporeba k−ω SST modela provodi se na oba slučaja strujanja, dok se k− ε model

usporeduje samo na slučaju strujanja unutar kanala.

Ključne riječi: CFD, OpenFOAM, foam-extend, modeliranje turbulencije, k− ε , k−ω SST,

blok-matrica, implicitno sprezanje, linearizacija, validacija, mjerenje performansi.
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Prošireni sažetak
Korištenje modernih implicitno spregnutih algoritama za povezivanje jednadžbi brzine i tlaka

dovelo je do znatno brže konvergencije rješenja u usporedbi s tradicionalnim odvojenim al-

goritmima. Prilikom simulacije turbulentnih strujanja spregnutim rješavačima konvergenciju

rješenja često ograničava odvojeno rješavanje jednadžbi modela turbulencije, stoga se u ovom

radu razmatra implicitno sprezanje dvojednadžbenih modela turbulencije k− ε i k−ω SST

unutar foam-extend (OpenFOAM-ova inačica koju razvija zajednica) softverskog paketa.

Nestlačivi k− ε model turbulencije
Jednadžba turbulentne kinetičke energije unutar k− ε modela turbulencije glasi:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = G− ε, (1)

gdje k označava turbulentnu kinetičku energiju, u vremenski osrednjenu brzinu, Γk,e f f efek-

tivnu difuziju za polje k, G izvorski član (stvaranje turbulentne kinetičke energije), a ε je po-

norski član, odnosno disipacija turbulentne kinetičke energije. Jednadžba disipacije turbulentne

kinetičke energije glasi:

∂ε

∂ t
+∇•(uε)− ε∇•u−∇•(Γε,e f f ∇ε) =C1

ε

k
G−C2

ε2

k
, (2)

gdje Γε,e f f označava efektivnu difuziju za polje ε , a C1 i C2 su konstantne modela.

Nestlačivi k−ω SST model turbulencije
Jednadžba turbulentne kinetičke energije unutar k−ω SST modela turbulencije glasi:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = min(G, c1β
∗kω)−β

∗kω, (3)

gdje c1 i β ∗ označavaju konstante modela. Jednadžba specifične disipacije turbulentne ki-

netičke energije glasi:

∂ω

∂ t
+∇•(uω)−ω∇•u−∇•(Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω max

(
a1ω, b1F23

√
S2

)]
−βω

2 +(1−F1)CDkω ,

(4)
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gdje Γω,e f f označava efektivnu difuziju za polje ω , S2 kvadrat simetričnog dijela tenzora gra-

dijenta brzine, F1 funkciju miješanja, CDkω medudifuziju, dok su a1, β i c1 konstante modela.

Struktura blok-sustava
Većina CFD algoritama koristi odvojene algoritme, koji rješavaju svaku jednadžbu zasebno,

jednu nakon druge. Nedostatak takvih algoritama je u eksplicitnom sprezanju jednadžbi, tj.

rješenja jednadžbi se moraju znatno podrelaksirati radi osiguravanja numeričke stablinosti te

konvergencije rješenja. Prilikom implicitnog sprezanja, jednadžbe se rješavaju simultano, unu-

tar blok-matrice, što rezultira većim linearnim sustavom, ali smanjenjem potrebe za podrelak-

siranjem te ubrzavanjem procesa konvergencije rješenja.

Prostornom diskretizacijom domene (koristeći metodu konačnih volumena) dobivamo line-

arni sustav jednadžbi: 
a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

... . . . ...

aN,1 aN,2 · · · aN,N




φ1

φ2
...

φN

=


b1

b2
...

bN

 , (5)

gdje N označava broj kontrolnih volumena, ai, j član matrice, φi vrijednost polja u ćeliji i za

koju se rješava sustav, dok bi označava desnu stranu jednadžbe za ćeliju i.

Kod odvojenih algoritama, članovi matrica ai, j, vrijednosti polja φi i bi su skalari jer se

svaka jednadžba rješava zasebno. Prilikom implicitnog sprezanja jednadžbi, odnosno kod blok-

matrica, ai, j je tenzor dimenzija n×n gdje je n broj implicitno spregnutih jednadžbi, u skladu

s tim φi i bi postaju vektori dimenzija n.

U ovom se radu razmatraju dvojednadžbeni modeli turbulencija, stoga radi jednostavnijeg i

preglednijeg prikaza uvode se dvije generičke, uvijek pozitivne, varijable φA i φB te pripadajuće

generičke skalarne transportne jednadnžbe:

∂φA

∂ t
+∇•(uφA)−φA∇•u−∇•(ΓA∇φA) = SA , (6)

∂φB

∂ t
+∇•(uφB)−φB∇•u−∇•(ΓB∇φB) = SB , (7)

gdje su SA i SB neto izvorski članovi, koji u sebi uključuju sve izvorske i ponorske članove

jednadžbe, stoga mogu poprimiti i pozitivnu i negativnu vrijednost. U slučaju implicitnog
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sprezanja jednadžbi (6) i (7), φi postaje vektor:

φi =

φAi

φBi

 , (8)

a član matrice ai, j tenzor:

ai, j =

 aφAi,φA j aφAi,φB j

aφBi,φA j aφBi,φB j

 . (9)

Linearizacija
Prije umetanja jednadžbi u blok-matricu, neto izvorski članovi moraju biti linearizirani po svim

varijablama koje se tretiraju implicitno:

Sn
A ≈ So

A +

(
∂SA

∂φA

)o

(φ n
A−φ

o
A)+

(
∂SA

∂φB

)o

(φ n
B−φ

o
B) , (10)

Sn
B ≈ So

B +

(
∂SB

∂φA

)o

(φ n
A−φ

o
A)+

(
∂SB

∂φB

)o

(φ n
B−φ

o
B) , (11)

gdje eksponent ·n označava implicitno tretirani član, a ·o označava eksplicitno tretirani član.

Nakon linearizacije dobiveni članovi se analiziraju te razvrstavaju u odgovarajuće grupe:

Sn
A = S+A +S∗Aφ

n
B +S−A φ

n
A , (12)

Sn
B = S+B +S∗Bφ

n
A +S−B φ

n
B , (13)

gdje su S+ eksplicitni (uvijek pozitivni) izvori, S∗ (uvijek pozitivni) izvori koji implicitno

sprežu jednadžbe, a S− implicitni (uvijek negativni) ponori. Analiza i preraspodjela produkata

linearizacija nužna je radi očuvanja pozitivnosti rješenja jednadžbi. Varijable koje se javljaju

unutar modela turbulencije (npr. k, ε , ω itd.) su po definiciji uvijek pozitivne vrijednosti te u

slučaju pojavljivanja negativnog rješenja u procesu rješavanja sustava jednadžbi, često uzrokuju

destabilizaciju i neželjene učinke na ostatak proračuna. Implicitno tretiranje ponora pridonosi

dijagonalnoj dominantnosti matrice što povoljno utječe na linearne rješavače. Izvori koji im-

plicitno sprežu jednadžbe nalaze se izvan dijagonale člana matrice (9), stoga njihov predznak

mora biti suprotan od onih na dijagonali kako ne bi negativno utjecao na dijagonalnu dominant-

nost, isto se pravilo primjenjuje i za eksplicitne izvore jer desna strana jednadnžbe, kod uvijek

pozitivnih varijabli, mora biti suprotnog predznaka od dijagonale da bi se osigurala pozitivna

xv



S+A

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S+B

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S∗A

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S∗B

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S−A

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S−B

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



Slika 1: Doprinos pojedinih produkata linearizacije blok-sustavu.

ograničenost rješenja. Doprinos pojedinih članova jednadžbi (12) i (13) blok-sustavu prikazan

je na slici 1.

Implementacija implicitno spregnutog k− ε modela turbulencije
Nakon manipulacije ponora unutar jednadžbe (1), nakon provedene linearizacije te analize

članova, implicitno spregnuti k− ε model turbulencije implementiran je u sljedećoj formi:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = G+Cµ

(ko)2

νt
−2Cµ

ko

νt
kn , (14)

∂ε

∂ t
+∇•(uε)− ε∇•u−∇•(Γε,e f f ∇ε) =C1

εo

ko G+C2

(
εo

ko

)2

kn−2C2
εo

ko ε
n , (15)
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gdje su članovi označeni plavom bojom izvori koji implicitno sprežu jednadnžbe, a članovi

označeni crvenom bojom implicitni ponori.

Implementacija implicitno spregnutog k−ω SST modela turbulencije
Nakon linearizacije te analize članova jednadžbi (3) i (4), implicitno spregnuti k−ω SST model

turbulencije implementiran je u sljedećoj formi:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = min(G, c1β
∗ko

ω
n)−β

∗
ω

okn, (16)

∂ω

∂ t
+∇•(uω)−ω∇•u−∇•(Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω

o max
(

a1ω
o, b1F23

√
S2

)]
+β (ωo)2−2βω

o
ω

n+(1−F1)CDkω ,

(17)

gdje su članovi označeni plavom bojom izvori koji implicitno sprežu jednadnžbe, članovi

označeni crvenom bojom implicitni ponori, a član (1−F1)CDkω definiran je izrazom:

(1−F1)CDkω =

(1−F1)CDkω = (1−F1)CDkω

ko kn CDkω > 0 ,

(1−F1)CDkω = (1−F1)CDkω

ωo ωn CDkω < 0 .
(18)

Primjeri validacije implementiranih modela turbulencije
Validacija implementiranih modela turbulencija se provodi na dva poznata slučaja strujanja za

koja su dostupna eksperimentalna mjerenja: odvojeno nestlačivo strujanje oko NACA 4412

aeroprofila pri maksimalnom uzgonu te nestlačivo strujanje u kanalu s naglim proširenjem.

Validacija k−ω SST modela turbulencije provodi se na oba slučaja strujanja, dok se k− ε

model validira samo na strujanju unutar kanala.

Slika 2 prikazuje usporedbu površinske raspodjele koeficijenta tlaka po aeroprofilu. Iz nje

je vidljivo da rezultati dobiveni implicitno spregnutim k−ω SST modelom turbulencije dobro

opisuju trendove eksperimentalnih podataka.

Slika 3 prikazuje položaj šest linija duž kojih su dostupni eksperimentalni podaci normalizi-

rane brzine u smjeru profila, dok slika 4 prikazuje usporedbu dobivenih rezultata s eksperimen-

talnim podacima iz koje je vidljivo da se numerički rezultati poklapaju s eksperimentalnima.
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Slika 2: NACA 4412: Usporedba površinske raspodjele koeficijenta tlaka.
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Slika 3: NACA 4412: Položaj linija duž kojih su dostupni eksperimentalni podaci.
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Slika 4: NACA 4412: Usporedba normaliziranih profila brzine u smjeru aeroprofila.
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Slika 5 prikazuje usporedbu površinske raspodjele koeficijenta tlaka po donjem zidu kanala,

a slika 6 usporedbu površinske raspodjele koeficijenta trenja po donjem zidu kanala. Iz njih

je vidljivo da rezultati dobiveni obama implicitno spregnutim modelima turbulencije dobro

opisuju trendove eksperimentalnih podataka.
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Slika 5: BFS: Usporedba raspodjele koeficijenta tlaka duž donjeg zida.

Slika 7 prikazuje položaj pet linija duž kojih su dostupni eksperimentalni podaci normalizi-

rane brzine u x smjeru, dok slika 8 prikazuje usporedbu dobivenih rezultata s eksperimentalnim

podacima iz koje je vidljivo da se numerički rezultati dobiveni obama implementiranim mode-

lima poklapaju s eksperimentalnima.
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Slika 6: BFS: Usporedba raspodjele koeficijena trenja duž donjeg zida.

Slika 7: BFS: Položaj linija duž kojih su dostupni eksperimentalni podaci.
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Slika 8: BFS: Usporedba normaliziranih profila brzine u x smjeru.
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Usporedba performansi implementiranih implicitno spregnutih modela s
odvojenim modelima turbulencije
Provodi se i usporedba performansi implementiranih implicitno spregnutih modela s odgova-

rajućim postojećim odvojenim inačicama modela turbulencija. Slično kao i prilikom validacije,

usporeba k−ω SST modela provodi se na oba slučaja strujanja, dok se k−ε model usporeduje

samo na slučaju strujanja unutar kanala.

Slika 9 prikazuje položaj triju sondi pomoću kojih su praćene vrijednosti polja kroz itera-

cije. Slike 10 i 11 prikazuju usporedbu konvergencije vrijednosti polja implicitno spregnutog i

odvojenog k− ε modela te spregnutog i odvojenog k−ω SST modela turbulencije.

Slika 9: BFS: Položaj sondi.
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Slika 10: BFS: Usporedba konvergencije vrijednosti polja implicitno spregnutog i odvojenog

k− ε modela turbulencije.
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Slika 11: BFS: Usporedba konvergencije vrijednosti polja implicitno spregnutog i odvojenog

k−ω SST modela turbulencije.
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Slika 12 prikazuje konvergenciju minimalnih i maksimalnih vrijednosti polja po iteracijama

za oba implementirana modela te pripadajuće odvojene inačice.
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Slika 12: BFS: Usporedba konvergencije minimalnih i maksimalnih vrijednosti polja.

Slika 13 prikazuje konvergenciju koeficijenata sile po iteracijama dobivenih implicitno

spregnutim te odvojenim k−ω SST modelom turbulencije na slučaju opstrujavanja NACA

4412 aeroprofila.
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Slika 13: NACA: Konvergencija koeficijenata sile po iteracijama.
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Slika 14 prikazuje konvergenciju minimalnih i maksimalnih vrijednosti polja po iteracijama

za implicitno spregnuti te odvojeni k−ω SST model turbulencije.

0 200 400 600 800 1000 1200

Iteration

40

60

80

100

m
ax

(U
) 

coupled k - ω SST

segregated k - ω SST

NACA 4412
Velocity

(a) max(U),

0 200 400 600 800

Iteration

360

380

400

420

m
ax

(p
)

coupled k - ω SST

segregated k - ω SST

NACA 4412
Kinematic pressure

(b) max(p),

0 200 400 600 800 1000

Iteration

-4000

-3000

-2000

-1000

0

m
in

(p
)

coupled k - ω SST

segregated k - ω SST

NACA 4412
Kinematic pressure

(c) min(p).

Slika 14: NACA: Usporedba konvergencije minimalnih i maksimalnih vrijednosti polja.

Slika 15 prikazuje konvergenciju koeficijenata sile kao funkciju procesorskog vremena, za

implicitno spregnuti te odvojeni k−ω SST model turbulencije.
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Slika 15: NACA: Konvergencija koeficijenata sile kroz procesorsko vrijeme.
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Iz prethodno prikazanih slika vidljivo je da implicitno sprezanje jednadžbi modela turbulen-

cije pospješuje mirniju i bržu konvergenciju rješenja (ne samo turbulentnih varijabli već i tlaka

i brzine), često sprječava premašivanje vrijednosti u procesu računanja te ubrzava konvergen-

ciju minimalnih i maksimalnih vrijednosti polja u proračunskoj domeni. Implicitno spregnuti

modeli dosljedniji su u očuvanju pozitivnosti varijabli te u kontekstu procesorskog vremena

skraćuju vrijeme trajanja proračuna. U slučaju proračuna koeficijenata sile uzgona i otpora za

NACA 4412 aeroprofil, ubrzanje je otprilike 20%.

xxx



Chapter 1

Introduction

1.1 Background

Development and implementation of implicitly coupled pressure–velocity algorithms for in-

compressible flows in Computational Fluid Dynamics (CFD) introduced a substantial increase

in the convergence rates for the velocity and pressure equations, compared with corresponding

segregated algorithms (e.g. SIMPLE or PISO) [1]. When implicitly coupled solvers are used

for turbulent flow simulations, convergence rates are often controlled by segregated treatment

of turbulence model equations. Therefore, implicit coupling of two-equation eddy viscosity

(incompressible) turbulence models, k− ε and k−ω SST, shall be presented in this thesis.

1.2 Previous and Related Studies

Two-equation turbulence models include two extra transport equations for representation of the

turbulent flow properties, which are by definition positive quantities. Despite their relatively

simple mathematical representation, turbulence model equations present serious numerical dif-

ficulties, among which are non-linear coupling, convergence and positivity preserving difficul-

ties. The inter-equation coupling is usually strongly non-linear, leading to added numerical

stiffness which usually results in slower convergence. Furthermore, in the process of conver-

gence, non-physical solutions, namely negative values of the turbulence quantities may appear

even if the equation set analytically guarantees to remain positive [2]. Therefore, stability and

boundedness of the implemented turbulence models is becoming an active and challenging field

1
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for research.

Ilinca et al. [3, 4] propose a substitution of dependent variables that guarantees positivity of

turbulence variables in numerical simulation algorithms. The approach solves for the natural

logarithm of the turbulence variables which are known to be strictly positive.

Du and Wu [5] prove that the mixed (analytical/numerical) method based on operator split-

ting, which is extended to the k− ε turbulence model, does not converge to a stable steady

state solution. Therefore, an unsplit mixed method with implicit treatment of the source term

is proposed.

Wasserman et al. [6] present a robust multigrid method for the solution of Reynolds-

Averaged Navier-Stokes (RANS) equations with two-equation turbulence models. The method

employs a basic relaxation scheme (alternating line Gauss-Siedel) where mean-flow and tur-

bulence model equations are marched in time in a loosely-coupled manner. The proposed

multigrid method uses an extended version of the unconditionally positive-convergent scheme

for two-equation turbulence models (adapted for use in multigrid) and a strongly coupled multi-

grid cycling strategy.

Moryossef and Levy [7, 8] propose an unconditionally positive-convergent implicit proce-

dure for two-equation turbulence models. The implicit procedure is based on designing the

implicit Jacobian to be an M-matrix. The suggested M-matrix design should guarantee the pos-

itivity of the turbulence equation dependent variables for any time step, without the use of any

a posteriori artificial numerical bounding.

In this thesis we shall explore options for accelerated convergence of the two-equation eddy

viscosity turbulence equations by means of block-solution. Here, equations of the turbulence

model are solved together using a block-matrix and a single call of the (iterative) linear equation

solver. This allows us to consider various forms of linearised implicit inter-equation coupling,

with a view of accelerated convergence.

1.3 Thesis Outline

Chapter 2 introduces the basic governing equations in fluid dynamics and gives a brief overview

of turbulence modelling for CFD, with a focus on the (incompressible) k− ε and k−ω SST

turbulence models and the corresponding wall functions.
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Chapter 3 describes the block-system structure which is used to achieve inter-equation cou-

pling. Linearisation procedure for the non-linear source terms is described. Analysis of sta-

bility and boundedness of the linearised model is examined. Furthermore, linearisation and

implementation of k− ε and k−ω SST turbulence models in the block-matrix framework is

summarised.

Chapter 4 presents validation of the implemented turbulence models. Two validation cases

are examined, a separated flow past a NACA 4412 airfoil at maximum lift and an incompress-

ible turbulent flow over a backward facing step.

Chapter 5 presents the performance benchmark tests of implemented turbulence models on

both validation cases. The implemented models are compared with the corresponding segre-

gated versions.

Chapter 6 summarises the Thesis and gives a comprehensive conclusion.
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Chapter 2

Turbulent Flow Modelling

Majority of flows encountered in engineering practice are turbulent by nature, therefore the

ability to appropriately model turbulent phenomena is essential. As Wilcox [9] suggests, an

ideal turbulence model should introduce minimal amount of complexity while capturing the

essence of the relevant physics. Main properties of turbulent flows are:

• High unsteadiness,

• Three-dimensionality,

• Vorticity,

• High diffusivity (turbulent diffusion),

• Dissipation,

• Coherent structures,

• Fluctuations on broad ranges of length and time scales. [10]

Time-dependent, three-dimensional Navier-Stokes equations describe all the physics of tur-

bulent flow. However, due to the non-linearity of the convection term, resolving the whole range

of spatial and temporal scales of turbulence is prohibitively expensive for most engineering ap-

plications [9, 11]. The goal of turbulence modelling is to find approximate solutions for the

Navier-Stokes equations in a manner that they either describe the turbulence in terms of mean

properties or limit the spatial/temporal resolution requirements associated with the full model

[11].
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2.1 Incompressible Navier–Stokes Equation

The Navier-Stokes or the momentum equation, is the basic governing equation which de-

scribes the motion of viscous fluids and belongs to the class of vector convection-diffusion

equations.The momentum equation is accompanied by the continuity (mass conservation) and

the energy conservation equation. This thesis does not deal with heat transfer, therefore the

energy equation is neglected.

The momentum and the continuity equation for the incompressible flow read:

∂u
∂ t

+∇•(uu)−∇•(ν∇u) =−∇p , (2.1.1)

∇•u = 0 , (2.1.2)

where u is the instantaneous velocity field, ν is the kinematic molecular viscosity and p is the

kinematic pressure defined as p = P/ρ , where P is the pressure and ρ is the density.

2.2 Overview of Turbulence Modelling for CFD

There are three basic approaches for predicting turbulent flows in CFD [9]:

• Direct Numerical Simulation (DNS), solves the Navier-Stokes equations for all scales

without turbulence modelling. Sufficient temporal and spatial resolution is required.

• Large Eddy Simulation (LES), solves filtered Navier-Stokes equations, where large scale

turbulence and coherent structures are simulated, but filtered small scale eddies are mod-

elled.

• Reynolds-Averaged Navier-Stokes equations (RANS), solves the averaged Navier-Stokes

equations, where turbulent fluctuations are appropriately modelled. Consequently, a

coarser spatial and temporal resolution is sufficient and it is possible to introduce a con-

vent of solutions which are steady or two-dimensional in the mean, compared to the in-

trinsically three-dimensional and unsteady nature of turbulent flows. Additional closure

correlations are required.

In this thesis, only the RANS approach will be considered in a more detailed manner.
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2.2.1 Reynolds Temporal Averaging of Navier-Stokes Equations

If the objective of the simulations is to obtain the mean properties of the flow without consid-

ering the details of turbulent fluctuations, Reynolds averaging is the most appropriate choice.

Following the Reynolds decomposition of u and p, instantaneous fields are decomposed

into a mean and fluctuating part:

u = u+u′ , (2.2.1)

p = p+ p′ , (2.2.2)

where · denotes the mean and ·′ denotes the fluctuating part.

Time averaging of Equations (2.1.1) and (2.1.2) yields the Reynolds-Averaged Navier-

Stokes Equations and the time-averaged continuity equation:

∂u
∂ t

+∇•(uu)−∇•(ν∇u) =−∇p−∇•
(
u′u′

)
, (2.2.3)

∇•u = 0 . (2.2.4)

Equation (2.2.4) is identical to (2.1.2), with the mean velocity replacing the instantaneous ve-

locity. The only difference between the time-averaged Equation (2.2.3) and instantaneous mo-

mentum Equation (2.1.1) is the appearance of the correlation−u′u′, which is commonly known

as the Reynolds-stress tensor [9]. As Equations (2.2.3) and (2.2.4) do not form a closed set, a

turbulence model is introduced to model the Reynolds-stress tensor. The most common types

of turbulence models are the eddy viscosity models in which the Reynolds-stress tensor is mod-

elled with:

−u′u′ = νt

(
∇u+(∇u)T

)
− 2

3
Ik , (2.2.5)

where νt is the kinematic eddy viscosity, I is the identity tensor (Kronecker delta) and k is the

turbulent kinetic energy.

Following [10], the molecular viscosity ν is replaced with the effective viscosity νe f f which

is equal to the sum of the molecular and eddy viscosity (turbulent viscosity) νe f f = ν + νt .

The Reynolds-averaged momentum equation with an eddy-viscosity turbulence model has the

following form:
∂u
∂ t

+∇•(uu)−∇•
(
νe f f ∇u

)
=−∇p , (2.2.6)

and the continuity equation remains the same, Equation (2.2.4).

Eddy viscosity models are often divided into [9]:
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• Algebraic models,

• One-equation models,

• Two-equation models.

Only the two-equation models are covered in scope of this thesis, more information about

remaining models can be found in [9].

2.3 Two-Equation Turbulence Models

The two-equation models are the work-horse of engineering simulations today. Therefore, two

extensively used two-equation turbulence models k− ε and k−ω SST will be analysed in this

thesis. [12, 11]

In most of the two-equation models, the first equation is the turbulent kinetic energy k equa-

tion which determines the velocity scale, and the second equation is the turbulent dissipation

ε equation which determines the length scale of the turbulence. Instead of ε , the inverse time

scale ω (specific turbulence dissipation or eddy turnover time) can also be used as the second

equation.

At this point, it is useful to emphasize that the complexity of turbulence phenomena makes

it unlikely that any single Reynolds-averaged model will be able to represent all turbulent flows.

Hence, turbulence models should be regarded as engineering approximations rather than scien-

tific laws [10].

Equations described in the following sections represent the implementation of the incom-

pressible k− ε and k−ω SST models in OpenFOAM [13], more precisely in the community-

driven fork of the OpenFOAM, i.e. the OpenFOAM Extend-Project [14] (hereinafter referred

to as foam-extend).

2.3.1 Incompressible k− ε Turbulence Model

In foam-extend, k− ε turbulence model (kEpsilon) is implemented according to Jones and

Launder [15] and is often referred to as the standard k− ε turbulence model. In the standard
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k− ε model the turbulent kinetic energy equation reads:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = G− ε, (2.3.1)

Despite the fact that the flow is assumed to be incompressible, the−k∇•u term is implemented,

because it enhances the conservativeness of the solution during the calculation.

Γk,e f f = ν +νt . (2.3.2)

Dissipation of turbulence kinetic energy equation reads:

∂ε

∂ t
+∇•(uε)− ε∇•u−∇•(Γε,e f f ∇ε) =C1

ε

k
G−C2

ε2

k
, (2.3.3)

Γε,e f f = ν +
νt

σε

. (2.3.4)

The eddy viscosity is defined as:

νt =Cµ

k2

ε
, (2.3.5)

and the production of turbulent kinetic energy:

G = 2νt

∣∣∣∣12 (∇u+(∇u)T
)∣∣∣∣2. (2.3.6)

Closure coefficients have the following values: Cµ = 0.09, C1 = 1.44, C2 = 1.92, σε = 1.3.

2.3.2 Incompressible k−ω SST Turbulence model

In foam-extend, k−ω SST turbulence model (kOmegaSST) is implemented according to the

model described by Menter and Esch [16] with updated coefficients from [12], but with the

consistent production according to NASA Turbulence Modeling Resource web-page [17]. Op-

tional F3 term for rough walls is added according to Hellsten [18]. In the k−ω SST model

turbulent kinetic energy equation reads:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = min(G, c1β
∗kω)−β

∗kω, (2.3.7)

Γk,e f f = αkνt +ν . (2.3.8)

Specific dissipation rate equation reads:

∂ω

∂ t
+∇•(uω)−ω∇•u−∇•(Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω max

(
a1ω, b1F23

√
S2

)]
−βω

2 +(1−F1)CDkω ,

(2.3.9)
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Γω,e f f = αωνt +ν . (2.3.10)

The eddy viscosity is calculated as:

νt =
a1k

max
[
a1ω, b1F23

√
2
∣∣∣1

2

(
∇u+(∇u)T

)∣∣∣] (2.3.11)

and the production of turbulent kinetic energy reads:

G = νtS2, (2.3.12)

S2 = 2
∣∣∣∣12 (∇u+(∇u)T

)∣∣∣∣2 . (2.3.13)

The k−ω SST formulation combines the best properties of k−ω and k−ε turbulence models.

The use of k− ε in the free-stream removes the the sensitivity of the original k−ω to the

inlet free-stream turbulence properties. The use of k−ω in the inner parts of the boundary

layer makes the model usable close to the wall without damping functions. Thus, each of the

constants represents a blend of constants from set 1 (k−ω) and set 2 (k− ε):

αk = F1 (αk1−αk2)+αk2, (2.3.14)

αω = F1 (αω1−αω2)+αω2, (2.3.15)

β = F1 (β1−β2)+β2, (2.3.16)

γ = F1 (γ1− γ2)+ γ2, (2.3.17)

where the blending is performed via blending functions, F1 is a function that is one in the

sublayer and logarithmic region of the boundary layer and gradually switches to zero in the

wake region [19]:

F1 = tanh
[
(arg1)

4
]
, (2.3.18)

arg1 = min

{
min

[
max

( √
k

β ∗ωy
,

500ν

y2ω

)
,

4αω2k
CDkω+y2

]
, 10

}
, (2.3.19)

F2 is a function that is one for boundary-layer flows and zero for free shear layers [19]:

F2 = tanh
[
(arg2)

2
]
, (2.3.20)

arg2 = min

[
max

(
2
√

k
β ∗ωy

,
500ν

y2ω

)
, 100

]
. (2.3.21)
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Hellsten [18] introduced the implementation of function F3 designed to prevent the SST limi-

tation from being activated in the roughness layer in rough-wall flows, i.e. the layer very close

to the rough wall:

F3 = 1− tanh
[
(arg3)

4
]
, (2.3.22)

arg3 = min
(

150ν

y2ω
,10
)
. (2.3.23)

Blending function F23 is by default equal to F2, but if the optional F3 function is activated, F23

becomes equal to the product of both F2 and F3.

F23 =

F23 = F2 default setting,

F23 = F2F3 optional term for rough-wall flows.
(2.3.24)

Positive portion of the cross-diffusion term is introduced for numerical stability:

CDkω+ = max
(
CDkω , 10−10) , (2.3.25)

CDkω = 2αω2
∇k • ∇ω

ω
. (2.3.26)

Closure coefficients have the following values: αk1 = 0.85, αk2 = 1, αω1 = 0.5, αω2 = 0.856,

β1 = 0.075, β2 = 0.0828, β ∗ = 0.09, γ1 = 5/9, γ2 = 0.44, a1 = 0.31, b1 = 1, c1 = 10.

2.4 Near-Wall Treatment

When studying part of the wall bounded turbulent flows, the near-wall region is traditionally

divided into the inner and outer turbulent boundary layer. In this thesis only the inner layer will

be briefly investigated since all the important phenomena for near-wall flow modelling in CFD

occur in this layer. Various regions of the turbulent boundary layer are shown in Figure 2.4.1.

Roughly speaking, the inner layer consists of: the viscous linear sublayer (0 < y+ < 5), the

buffer sublayer (5 < y+ < 30) and the inertial sublayer (30 < y+ < 200−300) where y+ is the

normalised distance to the wall calculated as:

y+ =
C1/4

µ k1/2

ν
y. (2.4.1)
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Figure 2.4.1: Regions of the turbulent boundary layer. [20]

In the viscous linear sublayer, molecular viscosity is dominant and the turbulence effects are

negligible. In the inertial sublayer, turbulent viscosity is dominant, making the molecular vis-

cosity unimportant. In the buffer sublayer both turbulent and molecular viscosities are equally

important.

The presented assumptions allow implementation of simple expressions, which model be-

haviour of important variables in the near-wall region (as functions of wall distance). Fig-

ure 2.4.2 shows the dependency of dimensionless velocity U+ with respect to y+ (the red line
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represents the experimental observations and the two blue lines represent the two derived pro-

files). The linear profile in the viscous sublayer and the logarithmic profile in the inertial

sublayer fit the experimental observations, while the buffer sublayer can be viewed as a smooth

transition between the two. Consequently, it is recommended to put the first cell centre either

in the viscous linear sublayer or in the inertial sublayer. The buffer sublayer should be avoided,

as it represents a transitional region from the linear to the log profile.

Figure 2.4.2: Law of the wall. [21]

Positioning the first cell in the linear sublayer is an attribute of low Reynolds turbulence

modelling, while placing it in the inertial (log-layer) is a characteristic of high Reynolds mod-
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elling.

Figure 2.4.3: High Reynolds number vs. low Reynolds number approach. [22]

In CFD codes, the previously described correlations are implemented as wall functions. The

focus of this thesis is the implicit coupling of two-equation incompressible k−ω SST and k−ε

turbulence models, therefore wall boundary conditions for k, ε and ω , and their implementation

in foam-extend will be covered in detail.

In foam-extend wall function for field k is denoted with kqRWallFunction, for field ε

epsilonWallFunction, for ω omegaWallFunction and the correction for νt is done in

nutWallFunction.

2.4.1 Standard Wall Functions for k− ε Turbulence Model

In foam-extend, k− ε turbulence model is implemented only as a high Reynolds version and

therefore uses standard wall functions, which avoid solving the flow inside the viscous sublayer

by using empirical relations applicable in the inertial sublayer. Furthermore, in adjacent cells

to the wall, Equation (2.3.3) for ε is not solved and an algebraic expression is used instead:

ε =
C3/4

µ k3/2

κ y
, (2.4.2)
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where κ is the von Kármán constant with a default value of 0.41. The production term G in

Equation (2.3.1) for k is calculated using the following expressions:

G =

G = Gvis for y+ ≤ y+lam,

G = Glog for y+ > y+lam,
(2.4.3)

Gvis = 0, (2.4.4)

Glog =
((νt +ν) |∇u|)2

κ C1/4
µ k1/2 y

. (2.4.5)

The k equation is still solved in cells adjacent to the wall. Equation (2.4.5) was altered in com-

parison with [23] for achieving consistency with ANSYS Fluent implementation [24]. Simi-

larly as in [23] the normalised distance to the wall y+ is calculated from Equation (2.4.1) and

the interface between the viscous and the inertial sublayer (log-layer) y+lam is calculated with:

y+lam =
ln
(
max

(
E y+lam, 1

))
κ

, (2.4.6)

where E is a dimensionless constant with a default value of 9.8. Equation (2.4.6) is solved

iteratively in ten iterations.

2.4.2 Automatic Wall Treatment for k−ω SST Turbulence Model

In contrast to the k−ε , the k−ω SST (and k−ω) turbulence model does not need extra damping

functions to act as a low Reynolds model because the ω equation has a known solution in both

viscous and inertial (log-layer) sublayer. Adopting this property, Menter [16] developed a

blending technique which allows a smooth transition from high to low Reynolds formulation

and vice versa. Despite the smooth shift, automatic wall treatment does not give a correct

representation of the buffer layer. The blending is performed by:

ω =
√

ω2
vis +ω2

log, (2.4.7)

where ωvis and ωlog are defined as follows:

ωvis =
6ν

β1 y2 , (2.4.8)

ωlog =
k1/2

κ C1/4
µ y

. (2.4.9)
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Similarly as in the standard wall functions for k− ε , Equation (2.3.9) for ω is not solved

for cells adjacent to the wall, rather, its value is obtained from Equation (2.4.7). In these cells

the production term G in Equation (2.3.9) is modified according to:

G =

G = Gvis if y+ ≤ y+lam,

G = Glog if y+ > y+lam.
(2.4.10)

Gvis = 0, (2.4.11)

Glog =
C1/4

µ k1/2 (νt +ν) |∇u|
κ y

, (2.4.12)

where y+ and y+lam are calculated from Equation (2.4.1) and Equation (2.4.6).
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Chapter 3

Implicit Coupling of Two-Equation

Turbulence Models

In the previous chapter, a short theoretical overview of turbulence modelling in CFD was de-

scribed and special attention was given on two-equation turbulence models (k− ε and k−

ω SST ) and their implementation in foam-extend. In this chapter, implementation of two-

equation turbulence models (k− ε and k−ω SST ) in the block-matrix framework is presented.

Related problems regarding the linearisation, stability and boundedness of the models are also

investigated.

3.1 Block-Coupling

Most CFD algorithms use segregated algorithms in order to solve two-equation turbulence

models, where the turbulence equations are solved sequentially one after another. Bottleneck

of segregated algorithms is the explicit coupling, where the solution variables need to be sub-

stantially under-relaxed to ensure numerical stability. On the other hand, segregated algorithms

are memory-efficient because only one discretisation matrix at a time needs to be stored.

Implicit coupling introduces a simultaneous way of solving governing equations. All the

equations are considered as part of a single system which has a block-banded structure [10], and

all equations in the block are solved together. Implicit coupling should be able to improve con-

vergence (under-relaxation factors can be considerably increased) but it leads to a substantially

larger linear system and an increased memory usage [25].
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3.2 Block-System Structure

The structure of the block-system can be represented by two levels: the first is bound to the

calculated compact-stencil discretisation of the computational domain with control volumes

(CV) and the second handles the format of the each matrix entry [25].

Spatial discretisation (via finite volume method) of the domain into N CVs, leads to a linear

system of N unknowns: 
a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

... . . . ...

aN,1 aN,2 · · · aN,N




φ1

φ2
...

φN

=


b1

b2
...

bN

 , (3.2.1)

where ai, j is a matrix entry, φi is the field value to be solved in the cell i, and bi is the right hand

side (RHS) term for the cell i.

In the segregated approach, each matrix entry is a scalar, since every equation is solved

sequentially. In the simultaneous implicitly coupled approach, each φi is a n-dimensional vec-

tor, where n is the number of the implicitly coupled equations. The same applies for the RHS

vector bi and each matrix entry ai, j is a n× n tensor, which models the coupling between the

implicitly coupled equations.

If the two-equation turbulence models are used, two additional transport equations need to

be solved, which are coupled through source and sink terms. Assume that the two transported

variables are φA and φB (which are also positive-bounded) and that the transport equations have

the following generic form:

∂φA

∂ t
+∇•(uφA)−φA∇•u−∇•(ΓA∇φA) = SA , (3.2.2)

∂φB

∂ t
+∇•(uφB)−φB∇•u−∇•(ΓB∇φB) = SB , (3.2.3)

where SA and SB are net source terms, which are both functions of φA and φB, i.e. SA =

SA (φA,φB) and SB = SB (φA,φB). In case of implicit coupling of the two-equations, field value

φi in the cell i is a two-dimensional vector:

φi =

φAi

φBi

 , (3.2.4)
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and each matrix entry ai, j is a 2× 2 tensor which models the coupling between the two-

equations:

ai, j =

 aφAi,φA j aφAi,φB j

aφBi,φA j aφBi,φB j

 , (3.2.5)

where aφAi,φA j models the coupling between φA in cell i with φA in cell j, aφAi,φB j models the

coupling between φA in cell i with φB in cell j, aφBi,φA j models the coupling between φB in cell

i with φA in cell j and aφBi,φB j models the coupling between φB in cell i with φB in cell j.

Here, it is important to emphasize that the turbulence equations are mainly coupled through

their source terms, as shown in Chapter 2, therefore, cross-coupling terms aφAi,φB j and aφBi,φA j

which are located on the off-diagonal of the matrix entry ai, j (3.2.5) have a nonzero value only

on the diagonal of the linear system (3.2.1), i.e. when i = j.

Furthermore, the global sparseness pattern related to mesh connectivity can be preserved

by choosing an appropriate form of the block-matrix layout.

3.3 Analysis of Stability and Boundedness of the Linearised

Model

Turbulence variables, e.g. turbulent kinetic energy k, dissipation ε and specific dissipation ω

belong to the group of positive-bounded variables, i.e. these variables are physically or by

definition non-negative quantities, therefore their value should always remain positive during

the calculation. If the negative values do occur, numerical instabilities are inevitable, which

may have an undesirable effect on the rest of the calculation. [26]

If φ is a generic, positive-bounded scalar dependent variable and Equation (3.3.1) is the

appropriate generic scalar transport equation:

∂φ

∂ t
+∇•(uφ)−φ∇•u−∇•(Γ∇φ) = S , (3.3.1)

the net source term S in Equation (3.3.1), accounts for any sources or sinks that either create

or destroy φ , therefore S can acquire both positive and negative values. If the net source term

is not properly handled, the positive-bounded variable may acquire erroneous negative values.

Hence, Patankar [26] suggests dividing the net source term into the source (which is always
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positive) and sink (which is always negative) terms:

S = S++S−φ , (3.3.2)

where the sink term S− is treated implicitly and the source term S+ is treated explicitly. Implicit

treatment of the sink term, increases the diagonal dominance of the matrix, which is conducive

to convergence and explicit treatment of the source, enhances the boundedness and the stability

of the solution.

In case of turbulence modelling, the source/sink terms are often non-linear functions of

the dependent variable itself. Since the discretised equations are solved using linear algebraic

solvers, the non-linear dependency needs to be linearised. In this thesis the Picard’s method is

adopted:

Sn ≈ So +

(
∂S
∂φ

)o

(φ n−φ
o) , (3.3.3)

where the superscript ·n denotes the new time-level (implicit treatment) and the superscript ·o

denotes the old time-level (explicit treatment).

After the linearisation, the source terms are converted into the explicit form and added into

the S+ term, while the sink terms are treated implicitly by combining them into S−:

Sn = S++S−φ
n . (3.3.4)

If the two-equation turbulence model equations should be solved in an implicitly coupled

manner, linearisation of the net source terms with respect to both variables is necessary. Again,

the two generic transport equations (Equations (3.2.2) and (3.2.3)) are used as an example and

the linearisation is performed according to the Taylor expansion:

Sn
A ≈ So

A +

(
∂SA

∂φA

)o

(φ n
A−φ

o
A)+

(
∂SA

∂φB

)o

(φ n
B−φ

o
B) , (3.3.5)

Sn
B ≈ So

B +

(
∂SB

∂φA

)o

(φ n
A−φ

o
A)+

(
∂SB

∂φB

)o

(φ n
B−φ

o
B) . (3.3.6)

Despite the fact that the equations are inserted into the block-system and that the system is

solved in a simultaneous manner, proper net source term treatment is necessary, if the bound-

edness of the variables is to be preserved.
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Applying the same reasoning for the net source term treatment as previously described in

this section, products of linearisation are divided into three groups: the explicit sources S+, the

implicit cross-coupling sources S∗ and the implicit sinks S−:

Sn
A = S+A +S∗Aφ

n
B +S−A φ

n
A , (3.3.7)

Sn
B = S+B +S∗Bφ

n
A +S−B φ

n
B . (3.3.8)

The contribution of the individual terms from Equations (3.3.7) and (3.3.8) to the block-

system is shown in Figure 3.3.1.

S+A

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S+B

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S∗A

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S∗B

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S−A

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



S−B

 aφAi,φAi aφAi,φBi

aφBi,φAi aφBi,φBi

 ,

bφAi

bφBi



Figure 3.3.1: Contribution of the individual products of the linearisation to the block-system.
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Regarding the division and treatment of the products of the linearisation, the only major

difference between the segregated and the implicitly coupled approach lies in the S∗ term,

which models the implicit cross-coupling of the two-equations. Since this term lies on the

off-diagonal of the matrix entry ai,i, its sign needs to be opposite of that from S−, in order to

preserve the diagonal dominance of the block-matrix. If the same sign (negative on the RHS

of the equation) is used, problems regarding the boundedness of the always positive variables

emerge (which destabilises the convergence of the solution), hence lower under–relaxation

factors need to be used which directly negates potential benefits of the implicit cross-coupling.

Therefore, negative signs of the S∗ term should be avoided at all cost.

3.4 Linearisation and Implementation of the Two-Equation

Models

In this section the derived guidelines for the linearisation and proper net source treatment of

implicitly coupled equations are carried out on the incompressible k− ε and k−ω SST turbu-

lence models. Furthermore, implementation of the implicitly coupled turbulence equations in

the block-matrix framework is presented.

3.4.1 Linearisation and Implementation of the k−ε Turbulence Model in

the Block-Matrix Framework

Prior to the implementation of the k−ε turbulence model in the block-matrix framework, some

manipulations of Equations (2.3.1) and (2.3.1) and linearisation of the corresponding net source

terms are necessary.

If Sk is the (net source term) RHS of Equation (2.3.1) for k, in the current formulation of

the k− ε turbulence model, Sk is equal to:

Sk = G− ε . (3.4.1)

The linearisation of the Sk with respect to both variables yields:

Sn
k ≈ So

k +

(
∂Sk

∂k

)o

(kn− ko)+

(
∂Sk

∂ε

)o

(εn− ε
o) . (3.4.2)
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and division of the linearisation products in appropriate groups (see Section 3.3) is:

Sn
k = S+k +S∗kε

n +S−k kn . (3.4.3)

This gives the corresponding terms: S∗k = 0, S−k = 0 and Sn
k = S+k . Therefore, the current

formulation of Equation (2.3.1) is not suitable for implicit coupling. In order to model the

cross-coupling in a numerically beneficial way, the sink term is substituted with [27, 28, 29]:

− ε =−Cµ

k2

νt
. (3.4.4)

Also, the production term G is substituted with Equation (2.3.6) where νt is expressed as in

Equation (2.3.5):

G = 2Cµ

∣∣∣∣12 (∇u+(∇u)T
)∣∣∣∣2 k2

ε
. (3.4.5)

After the substitutions, the new formulation of the k equation has the following form:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = 2Cµ

∣∣∣∣12 (∇u+(∇u)T
)∣∣∣∣2 k2

ε
−Cµ

k2

νt
. (3.4.6)

Once again, the linearisation of the new Sk (with respect to both variables) is performed. For

clarity, the linearisation is performed one term at a time. Moreover the linearisation products

which have a contribution to the implicit cross-coupling source S∗k are coloured blue and prod-

ucts which have a contribution to the implicit sink S−k are coloured red:

C∗µ = 2Cµ

∣∣∣∣12 (∇u+(∇u)T
)∣∣∣∣2 , (3.4.7)

(
C∗µ

k2

ε

)n

≈
(

C∗µ
k2

ε

)o

+


∂

(
C∗µ

k2

ε

)
∂k


o

(kn− ko)+


∂

(
C∗µ

k2

ε

)
∂ε


o

(εn− ε
o) , (3.4.8)

(
C∗µ

k2

ε

)n

= C∗µ
(ko)2

εo +2C∗µ
ko

εo (k
n− ko)−C∗µ

(ko)2

(εo)2 (ε
n− ε

o) ,

= 2C∗µ
ko

εo kn−C∗µ

(
ko

εo

)2

ε
n ,

(3.4.9)

(
−Cµ

k2

νt

)n

≈
(
−Cµ

k2

νt

)o

+


∂

(
−Cµ

k2

νt

)
∂k


o

(kn− ko) , (3.4.10)
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(
−Cµ

k2

νt

)n

=−Cµ

(ko)2

νt
−2Cµ

ko

νt
(kn− ko) ,

=Cµ

(ko)2

νt
−2Cµ

ko

νt
kn ,

=Cµ

(ko)2

νt
−2Cµ

ko

νt
kn .

(3.4.11)

Although, the substitutions do not give a suitable implicit cross-coupling term, an implicit sink

term is provided:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) =

2C∗k
ko

εo kn−C∗k

(
ko

εo

)2

ε
n +Cµ

(ko)2

νt
−2Cµ

ko

νt
kn .

(3.4.12)

The following form of the k equation for the k−ε turbulence model is reformulated as follows:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = G+Cµ

(ko)2

νt
−2Cµ

ko

νt
kn . (3.4.13)

After the reformulation of the k equation, the ε equation is investigated. Sε is the (net

source term) RHS of Equation (2.3.3). Linearisation of the Sε in respect with both variables is

performed according to:

Sn
ε ≈ So

ε +

(
∂Sε

∂k

)o

(kn− ko)+

(
∂Sε

∂ε

)o

(εn− ε
o) . (3.4.14)

Again, the linearisation products are divided into appropriate groups (see Section 3.3):

Sn
ε = S+ε +S∗εkn +S−ε ε

n . (3.4.15)

The linearisation is performed one term at a time and the linearisation products which have

a contribution to the implicit cross-coupling source S∗ε are coloured blue and products which

have a contribution to the implicit sink S−ε are coloured red:

(
C1

ε

k
G
)n
≈
(

C1
ε

k
G
)o

+

∂

(
C1

ε

k
G
)

∂k


o

(kn− ko)+

∂

(
C1

ε

k
G
)

∂ε


o

(εn− ε
o) , (3.4.16)

(
C1

ε

k
G
)n

=C1
εo

ko G−C1
εo

(ko)2 G(kn− ko)+C1
1
ko G(εn− ε

o) ,

=C1
εo

ko G−C1
εo

(ko)2 Gkn +C1
1
ko Gε

n ,

(3.4.17)
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(
−C2

ε2

k

)n

≈
(
−C2

ε2

k

)o

+


∂

(
−C2

ε2

k

)
∂k


o

(kn− ko)+


∂

(
−C2

ε2

k

)
∂ε


o

(εn− ε
o) ,

(3.4.18)

(
−C2

ε2

k

)n

=−C2
(εo)2

ko +C2
(εo)2

(ko)2 (k
n− ko)−2C2

εo

ko (ε
n− ε

o) ,

=C2

(
εo

ko

)2

kn−2C2
εo

ko ε
n ,

=C2

(
εo

ko

)2

kn−2C2
εo

ko ε
n .

(3.4.19)

After the linearisation and substitution, the ε equation has the following form:

∂ε

∂ t
+∇•(uε)− ε∇•u−∇•(Γε,e f f ∇ε) =

C1
εo

ko G−C1
εo

(ko)2 Gkn +C1
1
ko Gε

n+C2

(
εo

ko

)2

kn−2C2
εo

ko ε
n .

(3.4.20)

The ε equation for the k− ε turbulence model is implemented as:

∂ε

∂ t
+∇•(uε)− ε∇•u−∇•(Γε,e f f ∇ε) =C1

εo

ko G+C2

(
εo

ko

)2

kn−2C2
εo

ko ε
n . (3.4.21)

Additionally, it is important to emphasize that the cross-coupling coefficients S∗k and S∗ε

need to be eliminated from the block-system in the near-wall cells.

In foam-extend, implementation of k−ε turbulence in the block-matrix framework is named

the coupledKEpsilon model.

3.4.2 Linearisation and Implementation of the k−ω SST Turbulence Model

in the Block-Matrix Framework

Prior to the implementation of the k−ω SST turbulence model in the block-matrix framework,

linearisation of the net source terms in both equations is necessary.

Sk is the (net source term) RHS of Equation (2.3.7) for k. Linearisation of the Sk with

respect to both variables is performed according to:

Sn
k ≈ So

k +

(
∂Sk

∂k

)o

(kn− ko)+

(
∂Sk

∂ω

)o

(ωn−ω
o) . (3.4.22)

Faculty of Mechanical Engineering and Naval Architecture 24



Robert Keser Master’s Thesis

The linearisation products are divided into appropriate groups (see Section 3.3):

Sn
k = S+k +S∗kω

n +S−k kn . (3.4.23)

For clarity, the linearisation is performed one term at a time. Moreover, the linearisation prod-

ucts which have a contribution to the implicit cross-coupling source S∗k are coloured blue and

products which have a contribution to the implicit sink S−k are coloured red.

In Equation (2.3.7), a production limiter is used to prevent the build-up of turbulence in stagna-

tion regions [12], consequently the source term in k equation is calculated as min(G, c1β ∗kω).

The linearisation of both arguments needs to be investigated.

G is calculated according to Equation (2.3.12):

G = νtS2, (2.3.12)

where νt is defined by Equation (2.3.11):

νt =
a1k

max
[

a1ω, b1F23
√

2
∣∣∣∣12 (∇u+(∇u)T

)∣∣∣∣] . (2.3.11)

In case when G < c1β ∗kω and a1ω > b1F23
√

2
∣∣∣1

2

(
∇u+(∇u)T

)∣∣∣ the source term in k equa-

tions is calculated as S2
k
ω

.

(
S2

k
ω

)n

≈
(

S2
k
ω

)o

+

∂

(
S2

k
ω

)
∂k


o

(kn− ko)+

∂

(
S2

k
ω

)
∂ω


o

(ωn−ω
o) , (3.4.24)

(
S2

k
ω

)n

= S2
ko

ωo +
S2

ωo (k
n− ko)−S2

ko

(ωo)2 (ω
n−ω

o) ,

= S2
ko

ωo +
S2

ωo kn +S2
ko

(ωo)2 ω
n .

(3.4.25)

None of the linearisation products in Equation (3.4.25) is suitable for treatment as an implicit

cross-coupling term nor implicit sink, as both potential candidates have unfavourable signs.

In case G < c1β ∗kω and a1ω < b1F23
√

2
∣∣∣1

2

(
∇u+(∇u)T

)∣∣∣ the source term in k equation

is calculated as a1k
b1F23

√
2| 12(∇u+(∇u)T)|S2. For easier manipulation of the expression the constant

part (in context of k and ω) is substituted with CG, a1k
b1F23

√
2| 12(∇u+(∇u)T)|S2 =CG

k
F23

. If blending
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term F23 is assumed to be equal to F2 (rough wall flow treatment is neglected), then F23 is

calculated according to:

F23 = F2 = tanh
[
(arg2)

2
]
, (3.4.26)

where arg2 is defined by Equation (2.3.21):

arg2 = min

[
max

(
2
√

k
β ∗ωy

,
500ν

y2ω

)
, 100

]
. (2.3.21)

In case G < c1β ∗kω , a1ω < b1F23
√

2
∣∣∣1

2

(
∇u+(∇u)T

)∣∣∣ and 500ν

y2ω
< 2

√
k

β ∗ωy < 100 the source

term in k equation is calculated as:

Gb =CG
k

tanh

( 2
√

k
β ∗ωy

)2
 ,

(
Gb
)n
≈
(

Gb
)o

+

(
∂
(
Gb)

∂k

)o

(kn− ko)+

(
∂
(
Gb)

∂ω

)o

(ωn−ω
o) , (3.4.27)

(
∂
(
Gb)

∂k

)o

=CG coth

(
4ko

(β ∗)2 (ωo)2 y2

)
−

4CG kocsch2

(
4ko

(β ∗)2 (ωo)2y2

)
(β ∗)2 (ωo)2y2

,

= S2
a1

b1
√

2
∣∣∣∣12 (∇u+(∇u)T

)∣∣∣∣ coth

(
4ko

(β ∗)2 (ωo)2 y2

)

−

4S2
a1

b1
√

2
∣∣∣∣12 (∇u+(∇u)T

)∣∣∣∣ kocsch2

(
4ko

(β ∗)2 (ωo)2y2

)

(β ∗)2 (ωo)2y2
,

(3.4.28)

(
∂
(
Gb)

∂ω

)o

=

8CG (ko)2csch2
(

4ko

β ∗(ωo)2y2

)
(β ∗)2 (ωo)3y2

,

=

8S2
a1

b1
√

2
∣∣∣∣12 (∇u+(∇u)T

)∣∣∣∣ (k
o)2csch2

(
4ko

β ∗(ωo)2y2

)

(β ∗)2 (ωo)3y2
,

(3.4.29)
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where coth() is the hyperbolic cotangent and csch() is the hyperbolic cosecant function. The

linearisation products presented in Equations (3.4.28) and (3.4.29) could eventually even give

terms which are suitable for treatment as implicit cross-coupling terms or implicit sinks but

their implementation is inapplicable, therefore, blending functions will be treated as constants

(and not as functions of k and ω) in the context of linearisation.

In case G > c1β ∗kω the source term in k equation is calculated as c1β ∗kω:

(c1β
∗kω)n ≈ (c1β

∗kω)o +

(
∂ (c1β ∗kω)

∂k

)o

(kn− ko)+

(
∂ (c1β ∗kω)

∂ω

)o

(ωn−ω
o) ,

(3.4.30)

(c1β
∗kω)n = c1β

∗ko
ω

o + c1β
∗
ω

o (kn− ko)+ c1β
∗ko (ωn−ω

o) ,

=−c1β
∗ko

ω
o + c1β

∗
ω

okn + c1β
∗ko

ω
n ,

=−c1β
∗ko

ω
o + c1β

∗
ω

okn+c1β
∗ko

ω
n .

(3.4.31)

Equation (3.4.31) gives a suitable term for implicit cross-coupling, but it is only active when

c1β ∗kω < G:

(−β
∗kω)n ≈ (−β

∗kω)o +

(
∂ (−β ∗kω)

∂k

)o

(kn− ko)+

(
∂ (−β ∗kω)

∂ω

)o

(ωn−ω
o) ,

(3.4.32)

(−β
∗kω)n =−β

∗ko
ω

o−β
∗
ω

o (kn− ko)−β
∗ko (ωn−ω

o) ,

= β
∗ko

ω
o−β

∗
ω

okn−β
∗ko

ω
n ,

= β
∗ko

ω
o−β

∗
ω

okn−β
∗ko

ω
n .

(3.4.33)

Equation (3.4.33), i.e. the linearisation of the sink term in k equation, gives a suitable implicit

sink term but the cross-coupling term has the unfavourable sign for implicit treatment.

After the linearisation and substitution, the k equation has the following form:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = min(G,−c1β
∗ko

ω
o + c1β

∗
ω

okn+c1β
∗ko

ω
n)

+β
∗ko

ω
o−β

∗
ω

okn−β
∗ko

ω
n.

(3.4.34)

The k equation for the k−ω SST turbulence model is implemented as:

∂k
∂ t

+∇•(uk)− k∇•u−∇•(Γk,e f f ∇k) = min(G, c1β
∗ko

ω
n)−β

∗
ω

okn. (3.4.35)
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After the implementation of the k equation, the ω equation is investigated. Sω is the (net

source term) RHS of Equation (2.3.9). Linearisation of the Sω in respect with both variables is

performed according to:

Sn
ω ≈ So

ω +

(
∂Sω

∂k

)o

(kn− ko)+

(
∂Sω

∂ω

)o

(ωn−ω
o) . (3.4.36)

The linearisation products are divided into appropriate groups see (Section 3.3):

Sn
ω = S+ω +S∗ωkn +S−ω ω

n . (3.4.37)

Again, the linearisation is performed one term at a time and the linearisation products which

have a contribution to the implicit cross-coupling source S∗ω are coloured blue products which

have a contribution to the implicit sink S−ω are coloured red.

In case S2 >
c1
a1

β ∗ω max
(
a1ω, b1F23

√
S2
)

and a1ω > b1F23
√

S2 the source term in ω equa-

tion is calculated as γ c1 β ∗ω2:(
γ c1 β

∗
ω

2)n ≈
(
γ c1 β

∗
ω

2)o
+

(
∂
(
γ c1 β ∗ω2)

∂ω

)o

(ωn−ω
o) , (3.4.38)

(
γ c1 β

∗
ω

2)n
= γ c1 β

∗ (ωo)2 +2γ c1 β
∗
ω

o (ωn−ω
o) ,

=−γ c1 β
∗ (ωo)2 +2γ c1 β

∗
ω

o
ω

n .
(3.4.39)

Linearisation products in Equation (3.4.39) are not suitable for treatment as implicit cross-

coupling term nor as implicit sink.(
−βω

2)n ≈
(
−βω

2)o
+

(
∂
(
−βω2)
∂ω

)o

(ωn−ω
o) , (3.4.40)

(
−βω

2)n
=−β (ωo)2−2βω

o (ωn−ω
o) ,

= β (ωo)2−2βω
o

ω
n ,

= β (ωo)2−2βω
o

ω
n .

(3.4.41)

Equation (3.4.41), the linearisation of the sink term in ω equation, gives a suitable implicit sink

but the implicit cross-coupling is not present.

After the linearisation and substitution, the ω equation has the following form:

∂ω

∂ t
+∇•(uω)−ω∇•u−∇•(Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω

o max
(

a1ω
o, b1F23

√
S2

)]
+β (ωo)2−2βω

o
ω

n +(1−F1)CDkω .

(3.4.42)
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Equation (3.4.41) does not have implicit cross-coupling terms, therefore modifications are in-

troduced in order to obtain additional implicit cross-coupling of k and ω equations.

The ω equation for the k−ω SST turbulence model is implemented as:

∂ω

∂ t
+∇•(uω)−ω∇•u−∇•(Γω,e f f ∇ω) =

γ min
[

S2,
c1

a1
β
∗
ω

o max
(

a1ω
o, b1F23

√
S2

)]
+β (ωo)2−2βω

o
ω

n+(1−F1)CDkω ,

(3.4.43)

where (1−F1)CDkω term is defined as:

(1−F1)CDkω =

(1−F1)CDkω = (1−F1)CDkω

ko kn CDkω > 0 ,

(1−F1)CDkω = (1−F1)CDkω

ωo ωn CDkω < 0 .
(3.4.44)

Additionally, it is important to emphasize that the cross-coupling coefficients S∗k and S∗ω need

to be eliminated from the block-system in the cells adjacent to the wall, where wall functions

are used.

In foam-extend, implementation of k−ω SST turbulence in the block-matrix framework is

named coupledKOmegaSST.

3.4.3 Linearisation of the Wall Functions for k− ε Turbulence Model

For evaluation of the implicit coupling potential of wall functions for k− ε turbulence model,

the linearisation is necessary.

As described in Section 2.4.1, for wall function cells the value ε is obtained by solving

the algebraic Equation (2.4.2) and not the ε equation. The value of k is obtained from Equa-

tion (2.3.1), but the generation term G is modified according to Equation (2.4.3). Considering

that Gvis = 0, only the expression for Glog is linearised:

Gn
log ≈ Go

log +

(
∂Glog

∂k

)o

(kn− ko) , (3.4.45)

Gn
log =

((νt +ν) |∇u|)2

κ C1/4
µ (ko)1/2 y

− 1
2
((νt +ν) |∇u|)2

κ C1/4
µ (ko)3/2 y

(kn− ko) ,

=
3
2
((νt +ν) |∇u|)2

κ C1/4
µ (ko)1/2 y

− 1
2
((νt +ν) |∇u|)2

κ C1/4
µ (ko)3/2 y

kn .

(3.4.46)
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Since ε equation is not solved for wall function cells, the G term is only present in the k equa-

tion, therefore the Equation (3.4.46), in which Glog is a function only of k, does not represent

a cross-coupling term, but it could be implemented as an implicit sink term because the coeffi-

cient of kn is negative on the RHS of the k equation.

If νt in Equation (2.4.5) is substituted with Equation (2.3.5), Glog becomes a function of

both k and ε:

Glog =
((νt +ν) |∇u|)2

κ C1/4
µ k1/2 y

=

(
ν2

t +2νtν +ν2) |∇u|2

κ C1/4
µ k1/2 y

,

=
|∇u|2

κ C1/4
µ k1/2 y

(
C2

µ k4

ε2 +
2Cµν k2

ε
+ν

2

)
,

=
|∇u|2

κ C1/4
µ y

(
C2

µ k7/2

ε2 +
2Cµν k3/2

ε
+

ν2

k1/2

)
,

(3.4.47)

and after linearisation as a multi-variable function, the expression has the following form:

Gn
log ≈ Go

log +

(
∂Glog

∂k

)o

(kn− ko)+

(
∂Glog

∂ε

)o

(εn− ε
o), (3.4.48)

Gn
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|∇u|2

κ C1/4
µ y
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(ko)1/2

)

+
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7
2
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(εo)3 −
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(εo)2
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(εn− ε
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(εo)2 +
3Cµν (ko)1/2

εo − 1
2

ν2

(ko)3/2

)
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− |∇u|2

κ C1/4
µ y

(
2C2

µ (ko)7/2

(εo)3 +
2Cµν (ko)3/2

(εo)2

)
ε
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(3.4.49)

According to the guidelines for proper source treatment presented in Section 3.3, the poten-

tial cross-coupling term with implicit εn has the unfavourable sign for implementation as an

implicit cross-coupling term.

Moreover, the linearisation and implicit cross-coupling potential of Equation (2.4.2) is in-
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vestigated:

ε
n ≈ ε

o +

(
∂ε

∂k

)o

(kn− ko), (3.4.50)

ε
n =

C3/4
µ (ko)3/2

κ y
+

3
2

C3/4
µ (ko)1/2

κ y
(kn− ko) ,

=−1
2

C3/4
µ (ko)3/2

κ y
+

3
2

C3/4
µ (ko)1/2

κ y
kn.

(3.4.51)

Equation (3.4.51) is suitable for implicit cross-coupling, because the coefficient of the kn term

is positive on the RHS.

Overall implicit cross-coupling potential of the standard wall functions for the k− ε turbu-

lence model is partial. Linearisation of the modified production term G for the wall function

cell does not give adequate terms for implicit treatment but the linearisation of the algebraic

expression, which replaces the ε equation in the wall function cells, gives a suitable implicit

cross-coupling term. This thesis does not present implementation of the implicit wall functions

for the k− ε turbulence model.

3.4.4 Linearisation of the Wall Functions for k−ω SST Turbulence Model

For evaluation of the implicit coupling potential of wall functions for k−ω SST turbulence

model, the linearisation is necessary.

As described in Section 2.4.2, for wall function cells the value ω is obtained by solving

the algebraic Equation (2.4.7) and not the ω equation. The value of k is obtained from Equa-

tion (2.3.7), but the generation term G is modified according to Equation (2.4.10). Considering

that Gvis = 0, only the expression for Glog is linearised:

Gn
log ≈ Go

log +

(
∂Glog

∂k

)o

(kn− ko) , (3.4.52)

Gn
log =

C1/4
µ (ko)1/2 (νt +ν) |∇u|

κ y
+

C1/4
µ (νt +ν) |∇u|

2κ y(ko)1/2 (kn− ko) ,

=
C1/4

µ (ko)1/2 (νt +ν) |∇u|
2κ y

+
C1/4

µ (νt +ν) |∇u|
2κ y(ko)1/2 kn .

(3.4.53)

The production term G is only present in the k equation, therefore the Equation (3.4.53), in

which Glog is function only of k, does not represent a cross-coupling term nor could it be
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implemented as an implicit sink term because the coefficient of kn is positive on the RHS of

Equation (2.3.1).

If νt in Equation (2.4.12) is substituted with Equation (2.3.11), Glog becomes function of

both k and ω , but only in case when a1ω > b1F23
√

2
∣∣∣1

2

(
∇u+(∇u)T

)∣∣∣. Since the other cases

do not contain ω , because the blending functions are treated as constants in context of lineari-

sation (see Section 3.4.2).

Glog =
C1/4

µ |∇u|
κ y

k1/2 (νt +ν)

=
C1/4

µ |∇u|
κ y

k1/2
(

k
ω

+ν

)
=

C1/4
µ |∇u|

κ y

(
k3/2

ω
+νk1/2

)
.

(3.4.54)

After linearisation as a multi variable function, the expression has the following form:

Gn
log ≈ Go

log +

(
∂Glog

∂k

)o

(kn− ko)+

(
∂Glog

∂ω

)o

(ωn−ω
o), (3.4.55)
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(3.4.56)

According to the guidelines for proper source treatment presented in Section 3.3, both terms

with implicit values, kn and ωn, in Equation (3.4.56) have unfavourable signs for implementa-

tion as implicit sink and implicit cross-coupling terms.

Furthermore, the linearisation and implicit cross-coupling potential of Equation (2.4.7) is
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investigated:

ω
n ≈ ω

o +

(
∂ω

∂k

)o

(kn− ko), (3.4.57)

ω
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√
36ν2
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(3.4.58)

Equation (3.4.58) is suitable for implicit cross-coupling, because the coefficient of the kn term

is positive on the RHS.

Overall implicit cross-coupling potential of the standard wall functions for the k−ω SST

turbulence model is partial. Linearisation of the modified production term G for the wall func-

tion cell does not give adequate terms for implicit treatment but the linearisation of the algebraic

expression, which replaces the ω equation in the wall function cells, gives a suitable implicit

cross-coupling term. This thesis does not present implementation of the implicit wall functions

for the k−ω SST turbulence model.

3.5 Closure

In this chapter, structure of the block-system was presented, furthermore problems regarding

the linearisation, stability and boundedness of the model were investigated. Also, the im-

plementation of k− ε (coupledKEpsilon) and k−ω SST (coupledKOmegaSST) turbulence

models in the block-matrix framework was described. At the end of the chapter, suggested

linearisation of the wall functions for both models were given.
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Chapter 4

Validation of Implemented Turbulence

Models

In the previous chapter, linearisation and implementation of the k− ε (coupledKEpsilon)

and k−ω SST (coupledKOmegaSST) turbulence models in the block-matrix framework was

described. In this chapter, the validation of implemented coupledKOmegaSST and

coupledKEpsilon turbulence models shall be presented.

In the first section, a separated flow past a NACA 4412 airfoil at maximum lift is investi-

gated. In this case a low Reynolds turbulence modelling approach is adopted, therefore only

the coupledKOmegaSST is taken into account.

In the second section, an incompressible turbulent flow over a backward facing step is

investigated. In this case a high Reynolds turbulence modelling approach is adopted, therefore

both the coupledKOmegaSST and the coupledKEpsilon are taken into account.

4.1 NACA 4412

The first test case for the validation of the implemented coupledKOmegaSST is the separated

flow past a NACA 4412 airfoil at maximum lift. The experimental data is available at the NASA

Turbulence Modeling Resource web-page [30] but the particular data originates from the ex-

periments performed by Coles and Wadcock [31]. Table 4.1.1 presents the selected: Reynolds

number (for airfoil chord length), angle of incidence, freestream velocity value, airfoil chord

length and the molecular kinematic viscosity.
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Rec [−] α [◦] Uin f [m/s] c [m] ν
[
m2/s

]
1.52×106 13.87 27.13 0.9012 1.61×10−5

Table 4.1.1: Geometry and flow parameters for the NACA 4412 case according to [31, 30].

4.1.1 Case set-up

The grid used in the simulation is available at the CFD support page [32] and was scaled to

the chosen chord length. The domain size and the grid density are shown in Figure 4.1.1. The

simulation is set up as a steady-state two-dimensional simulation, however OpenFOAM always

operates in three dimensions, therefore, an empty boundary condition needs to be specified on

the boundaries normal to the third dimension. In this thesis, these boundaries (patches) are

named FrontAndBack. The names of the solution domain boundaries are shown in Figure 4.1.2.

The presented problem was solved using the pUCoupledFoam [33] solver and the

coupledKOmegaSST turbulence model with the following boundary conditions and numerical

schemes.

(a) Domain size. (b) Refinement near the NACA airfoil.

Figure 4.1.1: NACA 4412: Computational domain.
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Inlet Outlet
SolidWall

FrontAndBack

Figure 4.1.2: NACA 4412: Patch names.

Boundary and initial conditions

• Inlet

– Velocity: inletOutlet with inletValue uniform (26.34 6.50 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: inletOutlet with inletValue uniform 0.00082

– Turbulence dissipation: inletOutlet with inletValue uniform 33.81

• Outlet

– Velocity: inletOutlet with inletValue uniform (0 0 0)

– Pressure: fixedValue with value uniform 0

– Turbulence kinetic energy: inletOutlet with inletValue uniform 0.00082

– Turbulence dissipation: inletOutlet with inletValue uniform 33.81

• SolidWall
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– Velocity: fixedValue with value uniform (0 0 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: kqRWallFunction

– Turbulence dissipation: omegaWallFunction

• FrontAndBack: type empty for all fields

• Initialisation

– Velocity: uniform (26.34 6.50 0)

– Pressure: uniform 0

– Turbulence kinetic energy: uniform 0.00082

– Turbulence dissipation: uniform 33.81

The selected numerical schemes are shown in Table 4.1.2.

Detailed overview of the basic numerical schemes is presented in [34] and a comprehensive

analysis of the Gamma differencing scheme is presented by Jasak et al. [35].

Additionally, simulations were performed using the following combinations of solvers and

turbulence models:

• pUCoupledFoam and coupledkOmegaSST,

• pUCoupledFoam and kOmegaSST,

• simpleFoam and coupledKOmegaSST,

• simpleFoam and kOmegaSST,

and the results were identical to those shown below.
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Time schemes

default steadyState

Gradient schemes

default Gauss linear

Divergence schemes

default Gauss linear

div(phi,U) Gauss GammaV 1

div(phi,k) Gauss upwind

div(phi,omega) Gauss upwind

Laplacian schemes

default Gauss midPoint limited 0.5

Interpolation schemes

default linear

Surface normal gradient schemes

default limited 0.5

Table 4.1.2: NACA 4412: Numerical schemes.
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4.1.2 Results

Figure 4.1.3 illustrates the calculated y+ distribution over of the NACA airfoil, where the values

are considerably below 5, hence the assumption of the low Reynolds turbulence modelling

approach is applicable.

Figure 4.1.3: NACA 4412: Normalised distance to the wall.

The plot of the normalised velocity magnitude is shown in Figure 4.1.4, where the normali-

sation is carried out with respect to the freestream velocity value Uin f . The pressure coefficient

plot, which is calculated according to Equation (4.1.1), around the NACA 4412 airfoil is shown

in Figure 4.1.5.

Cp =
p− pin f

1

2
U2

in f

. (4.1.1)

In Equation (4.1.1), the freestream kinematic pressure value pin f is defined by the pressure

boundary condition at the Outlet patch.
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Figure 4.1.4: NACA 4412: Normalised velocity magnitude plot.

Figure 4.1.5: NACA 4412: Pressure coefficient plot.
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The experimental results from [31] are nondimensionalised with respect to a non-traditional

velocity value Ure f , at a location only about one chord length below and behind the airfoil,

which is different from a traditional freestream value. In order to make the traditionally nor-

malised velocity CFD results comparable to the normalised experimental data, the CFD data

needs to be divided by 0.93. In case of the chordwise velocity normalisation, the correction

looks like:

u

Ure f
=

u

0.93Uin f
. (4.1.2)

In Figure 4.1.6 a comparison of constant normalised chordwise velocity contour lines is

shown, where the contour lines from the CFD simulation (coloured red) were drawn over the

figure from [31].

Figure 4.1.6: NACA 4412: Comparison of the constant normalised chordwise velocity contour

lines.

The comparison of the surface pressure coefficient distribution, is shown in Figure 4.1.7,

but the surface pressure coefficients from the experiment [31] were not corrected, and therefore

should only be viewed in a qualitative sense [30]. As the Figure 4.1.7 illustrates, the calculated

pressure coefficient distribution trend is in very good agreement with the experiment.

NASA [30] also provides the experimental data [31] for the normalised velocity profiles

along the six lines near the trailing edge of the NACA 4412 airfoil, whose locations are shown in

Figure 4.1.8. Likewise, the CFD data was interpolated along the same lines for the comparison,

which is shown in Figure 4.1.9.
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0 0.2 0.4 0.6 0.8 1
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coupled k - ω SST

experiment (Coles & Wadcock)

NACA 4412
Surface Pressure Coefficient

Figure 4.1.7: NACA 4412: Comparison of the surface pressure coefficient distribution.

x/c = 0.6753 0.7308
0.7863 0.8418 0.8973

0.9528

Figure 4.1.8: NACA 4412: Location of the lines along which experimental data was extracted.
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(f) x/c = 0.9528.

Figure 4.1.9: NACA 4412: Comparison of the normalised chordwise velocity profiles.
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The comparison given in Figure 4.1.9, shows a very good agreement between the computed

normalised chordwise velocity profiles and the experimental data.

4.2 Backward Facing Step

In the second validation test case, an incompressible turbulent flow over a backward facing step

is investigated. The experimental data is available at the NASA Turbulence Modeling Resource

page [36] but the particular data originates from the experiments performed by Driver and

Seegmiller [37]. The Reynolds number (based on height of the step), freestream velocity value,

step height and molecular kinematic viscosity were chosen according to [38] and are presented

in Table 4.2.1.

ReH [−] Uin f [m/s] H [m] ν
[
m2/s

]
36×103 44.32 1 1.23×10−3

Table 4.2.1: Geometry and flow parameters for the BFS case. [38]

4.2.1 Case set-up

The computational grid, which is shown in Figure 4.2.1 is generated using the blockMesh

utility. The selected near-wall refinement (the height of cells next to the wall were chosen for

y+ values between 30 and 40) is suitable for the high Reynolds turbulence modelling approach,

therefore both the coupledKEpsilon and the coupledKOmegaSST can be validated with this

test case. Figure 4.2.1 also illustrates the selected domain size and the near-wall refinement.

The simulation is set up as a steady-state two-dimensional case, where the boundaries nor-

mal to the third dimension are named FrontAndBack and are specified with the empty bound-

ary condition. The names of the solution domain boundaries are shown in Figure 4.2.2. The

presented problem was solved using the simpleFoam solver and both coupledKEpsilon and

coupledKOmegaSST as turbulence models with the following boundary conditions and numer-

ical schemes.

Faculty of Mechanical Engineering and Naval Architecture 44



Robert Keser Master’s Thesis

(a) Domain size (not to scale).

(b) Computational grid.

(c) Refinement near the step.

Figure 4.2.1: BFS: Computational domain.

Figure 4.2.2: BFS: Patch names.
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Boundary and initial conditions

• Inlet

– Velocity: fixedValue with value uniform (44.32 0 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: fixedValue with value uniform 0.295

– Turbulence dissipation:

∗ epsilon: fixedValue with value uniform 0.08

∗ omega: fixedValue with value uniform 97.37

• Outlet

– Velocity: inletOutlet with inletValue uniform (0 0 0)

– Pressure: outletInlet with outletValue uniform 0

– Turbulence kinetic energy: zeroGradient

– Turbulence dissipation:

∗ epsilon: zeroGradient

∗ omega: zeroGradient

• LowerWall

– Velocity: fixedValue with value uniform (0 0 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: kqRWallFunction

– Turbulence dissipation:

∗ epsilon: epsilonWallFunction

∗ omega: omegaWallFunction

• UpperWall

– Velocity: fixedValue with value uniform (0 0 0)
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– Pressure: zeroGradient

– Turbulence kinetic energy: kqRWallFunction

– Turbulence dissipation:

∗ epsilon: epsilonWallFunction

∗ omega: omegaWallFunction

• Symmetry: type symmetryPlane for all fields

• FrontAndBack: type empty for all fields

• Initialisation

– Velocity: uniform (44.32 0 0)

– Pressure: uniform 0

– Turbulence kinetic energy: uniform 0.295

– Turbulence dissipation: uniform 97.37

∗ epsilon: uniform 0.08

∗ omega: uniform 97.37

The selected numerical schemes are shown in Table 4.2.2
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Time schemes

default steadyState

Gradient schemes

default Gauss linear

Divergence schemes

default Gauss linear

div(phi,U) Gauss linearUpwind

div(phi,k) Gauss upwind

div(phi,epsilon) Gauss upwind

div(phi,omega) Gauss upwind

Laplacian schemes

default Gauss linear uncorrected

Interpolation schemes

default linear

Surface normal gradient schemes

default uncorrected

Table 4.2.2: BFS: Numerical schemes.
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Additionally, simulations were performed using the implemented coupledKOmegaSST and

coupledKEpsilon and the corresponding segregated models, kOmegaSST and kEpsilon. The

implicitly coupled models and their segregated counterparts produced the same results.

4.2.2 Results

Figure 4.2.3 illustrates the calculated y+ distribution along the LowerWall, which is very sim-

ilar to the desired values, hence the assumption of the high Reynolds turbulence modelling

approach is applicable.

The plot of the normalised velocity magnitude, for both turbulence models, is shown in

Figure 4.2.4, where the normalisation is carried out with respect to the freestream velocity

value Uin f .

-60 -40 -20 0 20 40

x/H

0

10

20

30

40

50

y
+

BFS
Normalised Distance to the Wall (along the LowerWall)

Figure 4.2.3: BFS: Normalised distance to the wall along the LowerWall.
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(a) coupledKOmegaSST.

(b) coupledKEpsilon.

Figure 4.2.4: BFS: Normalised velocity magnitude plot.

For incompressible flows, the skin friction coefficient is defined by:

C f =
τw

1

2
U2

re f

, (4.2.1)

where τw is the wall shear stress and Ure f is the reference velocity at the channel centre near
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x/H =−4 [36]. Similarly, the pressure coefficient is calculated according to Equation (4.2.2):

Cp =
p− pre f

1

2
U2

re f

, (4.2.2)

where pre f is the reference kinematic pressure near the same location. However, NASA [36]

mentions that the experimental pressure coefficient data have been shifted uniformly so that

Cp has a zero value near the position x/H = 40, therefore it can be assumed that pre f ≈ pin f

which is defined by the pressure boundary condition at the Outlet patch. Furthermore, after the

comparison of velocity field data, a simple correlation between the Ure f and the Uin f can be

introduced, Ure f /Uin f ≈ 1.05.

The comparison of the calculated wall pressure coefficient distribution along the LowerWall,

for both models with the experimental data, is presented in Figure 4.2.5.

In Figure 4.2.6, a comparison of the wall skin friction coefficient distribution along the

LowerWall is given.
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Figure 4.2.5: BFS: Comparison of the wall pressure coefficient distribution along the

LowerWall.
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Figure 4.2.6: BFS: Comparison of the wall skin friction coefficient distribution along the

LowerWall.

As shown in Figure 4.2.5, both models give a similar prediction of the pressure distribution

which is in fair agreement with the experimental data. A significant pressure value discrepancy

is visible in the 0 < x/H < 2 region, but despite the deviation, the pressure distribution trend is

still compatible with the experimental data. Similarly, Figure 4.2.6 also shows fair agreement of

the computed skin friction distributions with the experimental data, especially in the upstream

region of the step. In the downstream region, both models under predict the reattachment

location, but the coupledKOmegaSST is slightly more accurate. In both cases, the deviations in

the recirculation region are due to inadequate y+ values, i.e. the first cells next to the wall are

in the buffer layer, which can not be adequately modelled by the wall functions.
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NASA [36] also provided the experimental data [37] for the normalised velocity profiles

along five lines, whose locations are shown in Figure 4.2.7. Likewise, the CFD data was inter-

polated along the same lines for the comparison, which is shown in Figure 4.2.8.

Figure 4.2.7: BFS: Location of the lines along which experimental data was extracted.
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Figure 4.2.8: BFS: Comparison of the normalised velocities profiles in x direction.
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As Figure 4.2.8 illustrates, both models give very similar results to each other, which are

consistent with the experimental velocity profiles. The only considerable discrepancy is visible

along the line located at x/H = 1. As mentioned before, this error is due to inadequate y+

values is the recirculation region. It is exceptionally hard to achieve desired y+ values in the

whole domain, especially when recirculation or stagnation points are present and when the wall

functions are used.

In this chapter, validation of implemented coupledKOmegaSST and coupledKEpsilon tur-

bulence models were performed. The comparison of the numerical results from both models

with the experimental data were presented and described. In the following chapter, benchmark-

ing of the implemented turbulence models will be presented.
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Chapter 5

Benchmarking of Coupled vs. Segregated

Model Performance

In the previous chapter, validation of implemented coupledKOmegaSST and coupledKEpsilon

turbulence models has been performed. In this chapter, performance of the implemented turbu-

lence models shall be compared with the existing segregated models.

In the first section, benchmarking of both implemented turbulence models on the backward

facing step case is presented. In the second section, benchmarking of coupledKOmegaSST

turbulence model on NACA 4412 case is shown. In all benchmarking cases, pUCoupledFoam

(with identical linear solver controls) is used for implicit pressure-velocity coupling.

5.1 Backward Facing Step

To qualify the performance improvement of the implemented coupledKOmegaSST and

coupledKEpsilon turbulence models, following items are compared to the existing segregated

models:

• Convergence rates for all equations,

• Convergence of field values in specific coordinates,

• Convergence of minimal and maximal field values.

The convergence of field values is monitored with probes whose location in the domain is

shown in Figure 5.1.1. The first probe is located at the recirculation boarder, the second is in
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the recirculation zone and the third is in the outer zone. Minimal and maximal field values are

reported by an existing function object minMaxField.

Figure 5.1.1: BFS: Probe locations.

For consistent comparison of residuals, field solutions from the implicitly coupled turbu-

lence models (block-matrices) are placed in the corresponding segregated equations for the

evaluation of initial residuals, which are later compared with residuals from the segregated

turbulence models.

5.1.1 Solution and algorithm control

Table 5.1.1 specifies linear-solvers that are used for each discretised equation, with correspond-

ing parameters. kEpsilon is the solver name for implicitly coupled k−ε equations, kOmega is

the solver name for implicitly coupled k−ω equations, k is the solver name for segregated k

equation, epsilon is the solver name for segregated ε equation and omega is the solver name

for segregated ω equation.
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Linear solver control

Solver and parameters
Equation

kEpsilon kOmega k epsilon omega

Solver BiCGStab BiCGStab BiCGStab BiCGStab BiCGStab

Preconditioner Cholesky Cholesky DILU DILU DILU

Tolerance 1e-09 1e-09 1e-09 1e-09 1e-09

Relative tolerance 0.01 0.01 0.01 0.01 0.01

Minimum number of iterations 1 1 1 1 1

Maximum number of iterations 100 100 100 100 100

Table 5.1.1: BFS: Linear solver controls.
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Table 5.1.2 presents the selected under-relaxation parameters.

Solution under-relaxation

k 0.99 (0.98) ∗

epsilon 0.99 (0.98) ∗

omega 0.99

Table 5.1.2: BFS: Solution under-relaxation.

5.1.2 Results

Figure 5.1.2 illustrates the comparison of Ux, Uy, p and νt values, obtained by monitoring

probes for the coupledKEpsilon and kEpsilon turbulence models. The results show faster

convergence of the field values calculated by the coupledKEpsilon in comparison with the

kEpsilon model, the enhanced convergence also affects the pressure-velocity system. It is

also visible that the implicitly coupled model often prevents overshoots and undershoots of the

calculated field values during the calculation. Despite the slightly lower under-relaxation factor,

the segregated kEpsilon turbulence model experiences minor instabilities at the beginning of

the calculation.

Comparison of the residual convergence profiles are shown in Figure 5.1.3. At first, the

coupledKEpsilon model shows a moderate increase in the convergence rates compared to

the kEpsilon model. As the iterations advance, convergence rates of the coupledKEpsilon

model decrease below the kEpsilon model.

∗ under-relaxation factor 0.98 is used for kEpsilon turbulence model, since it was not stable with 0.99
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Figure 5.1.2: BFS: Field value convergence for coupled and segregated k− ε turbulence mod-

els.
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Figure 5.1.3: BFS: Convergence of residuals for coupled and segregated k− ε turbulence

models.
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In Figure 5.1.4 the convergence of the filed values of 3 probes for the coupledKOmegaSST

and the kOmegaSST turbulence models is shown. The results show slightly faster convergence of

all (including the pressure-velocity system) field values calculated by the coupledKOmegaSST

in comparison with the kOmegaSST model. It is also visible that the implicitly coupled model

often prevents overshoots and undershoots of the calculated field values during the simulation.

Comparison of the residual convergence profiles are shown in Figure 5.1.5. The implicitly

coupled model shows a moderate increase in the convergence rates compared to the kOmegaSST

model.
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Figure 5.1.4: BFS: Field value convergence for k−ω SST turbulence models.
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Figure 5.1.5: BFS: Convergence of residuals for coupled and segregated k−ω SST turbulence

models.
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Figure 5.1.6 illustrates the convergence of minimal and maximal field values for both im-

plicit turbulence models and their corresponding segregated versions. As mentioned before,

implicitly coupled turbulence models show faster convergence of the minimal and maximal

field values and often prevent overshoots and undershoots of the calculated field values in com-

parison with the segregated versions.
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Figure 5.1.6: BFS: Maximum/minimum field value comparison.
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5.2 NACA 4412

To qualify the performance improvement of the implemented coupledKOmegaSST turbulence

models as a low Reynolds model, following items are compared to the existing segregated

model:

• Convergence rates for all equations,

• Convergence of force coefficients (drag Cd and lift Cl),

• Convergence of minimal and maximal field values.

Note that the simulation presented in this section uses a coarser grid in comparison with the

grid used in the Section 4.1.

Minimal and maximal field values are monitored with the minMaxField function object

and the convergence of force coefficients is monitored with forceCoeffs function object.

5.2.1 Solution and algorithm control

Table 5.2.1 presents the selected linear-solvers with corresponding parameters, while Table 5.2.2

introduces the selected under-relaxation parameters.

Linear solver control

Solver and parameters
Equation

kOmega k omega

Solver BiCGStab BiCGStab BiCGStab

Preconditioner Cholesky DILU DILU

Tolerance 1e-09 1e-09 1e-09

Relative tolerance 0.01 0.01 0.01

Minimum number of iterations 1 1 1

Maximum number of iterations 100 100 100

Table 5.2.1: NACA 4412: Linear solver controls.
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Solution under-relaxation

k 0.99

omega 0.99

Table 5.2.2: NACA 4412: Solution under-relaxation.

5.2.2 Results

Figure 5.2.1 illustrates the convergence of drag Cd and lift Cl coefficient throughout the iter-

ations. The results show faster convergence of the force coefficient values calculated by the

coupledKOmegaSST in comparison with the kOmegaSST model. It is also visible that the seg-

regated model experiences larger amplitudes and oscillations during the simulation.

Comparison of the residual convergence profiles are shown in Figure 5.2.2. The imple-

mented coupledKOmegaSST model shows a moderate increase in the convergence rates com-

pared to the kOmegaSST model, where the improved convergence also influences the pressure-

velocity system.

Furthermore, the implicitly coupled model is superior in preserving the boundedness of the

turbulence variables than the segregated version.
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Figure 5.2.1: NACA: Force coefficients convergence per iteration.
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Figure 5.2.2: NACA: Convergence of residuals for coupled and segregated k−ω SST turbu-

lence models.
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Figure 5.2.3 illustrates the comparison of minimal and maximal field values convergence

for the coupledKOmegaSST and kOmegaSST turbulence models. As mentioned earlier, the

implicitly coupled turbulence model shows faster and smoother convergence of the minimal

and maximal field values and often prevent overshoots and undershoots of the calculated field

values in comparison with the segregated version.
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Figure 5.2.3: NACA: Maximum/minimum field value comparison.

Figure 5.2.4 presents the comparison of the force coefficient convergence per elapsed CPU

time. The implicitly coupled model coupledKOmegaSST achieved convergence of the force

coefficients in approximately 20% less CPU time, furthermore, the convergence process of the

coupled model is significantly more damped than the segregated.
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Figure 5.2.4: NACA: Force coefficients convergence per CPU time.
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Chapter 6

Conclusion

Block-coupled solution algorithms for incompressible two-equation turbulence models, k− ε

and k−ω SST, are presented in this thesis.

Prior to implementation of the turbulence models in the block-matrix framework, lineari-

sation of the non-linear source terms was investigated in detail. Furthermore, investigation of

the stability and boundedness of the linearised model was performed. The derived implicitly

coupled turbulence models, coupledKEpsilon and coupledKOmegaSST, were implemented

in foam-extend (the community-driven fork of the OpenFOAM) software.

Two validation cases were presented, a separated flow past a NACA 4412 airfoil at maxi-

mum lift and an incompressible turbulent flow over a backward facing step (BFS). The NACA

4412 case was set up for the validation of turbulence models with low Reynolds approach and

the BFS case was intended for the validation of high Reynolds models. The k− ε turbulence

model is implemented only as a high Reynolds version, therefore, validation was performed

only for the BFS case. The k−ω SST turbulence model can blend between the high and low

Reynolds formulation consequently, validation was performed for both cases. In the NACA

4412 validation case, the numerical results from the implemented coupledKOmegaSST turbu-

lence model were compared with the experimental data and an overall good agreement was

obtained. In the BFS case, the numerical results from both implemented turbulence models

were compared with the experimental data and an overall good agreement was obtained as

well.

Furthermore, performance of the implemented turbulence models was compared with the

existing segregated models. Benchmarking was performed on the two validation cases, where
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pUCoupledFoam was the selected incompressible pressure-velocity solver. Similarly as for

the validation, both implemented turbulence models were benchmarked on the BFS case and

only coupledKOmegaSST was benchmarked on the NACA 4412 case. Overall, implicit cross-

coupling of two-equation turbulence models accelerates convergence of field values, exhibits

smoother convergence compared to segregated turbulence models and often prevents over-

shoots and undershoots of the calculated field values during the simulation. The implemented

coupledKOmegaSST model achieved convergence of the force coefficients in approximately

20% less CPU time than the segregated model. Additionally, the implicitly coupled models

are found to be superior in preserving the boundedness of the turbulence variables than the

segregated versions.
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