Ciklički gvanidini kao kokatalizatori u aldolnoj reakciji

Marijanović, Monika

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:588401

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu Dosl ovno matematički fak

PRIRODOSLOVNO-MATEMATIČKI FAKULTET Kemijski odsjek

Monika Marijanović

CIKLIČKI GVANIDINI KAO KOKATALIZATORI U ALDOLNOJ REAKCIJI

Diplomski rad

predložen Kemijskom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog zvanja magistre kemije

Zagreb, 2023. godina

Ovaj diplomski rad izrađen je u Laboratoriju za fizikalno-organsku kemiju Zavoda za organsku kemiju i biokemiju Instituta Ruđer Bošković u Zagrebu pod mentorstvom dr. sc. Zorana Glasovca. Nastavnica imenovana od strane Kemijskog odsjeka je prof. dr. sc. Ines Primožič.

Zahvale

Zahvaljujem svome mentoru dr. sc. Zoranu Glasovcu na pruženoj prilici i prenesenom znanju tijekom izrade diplomskog rada. Hvala na svakom savjetu i odgovorenom pitanju, a posebno na pomoći u laboratorijskom radu koja mi je puno značila. Hvala prof. dr. sc. Ines Primožič na ukazanom povjerenju i velikoj pomoći. Hvala cijelom Laboratoriju fizikalno-organske kemije na ugodnoj atmosferi i što ste me prihvatili kao ravnopravnog člana. Hvala Luki, Petru i Matei s kojima su laboratorijske brige bile lakše. Martini na svakom: Možemo mi to! i Antoneli na vječnoj podršci. Posebno hvala mojim roditeljima, sestrama i bratu koji me prate kroz cijelo putovanje. I mom Bruni koji je uvijek tu za sve.

Sadržaj

SAŽ	ETAK	V
ABS	STRACT	VI
§ 1.	UVOD	1
§ 2.	LITERATURNI PREGLED	
2.1.	Gvanidin	3
2.2.	Gvanidini kao katalizatori	5
2.3.	Katalitičko djelovanje L-prolina i utjecaj kokatalizatora	8
2.4.	Mjerenje p <i>K</i> _a vrijednosti	
2.5.	Kinetička metoda (praćenje omjera grananja)	
§ 3.	EKSPERIMENTALNI DIO	
3.1.	Materijali	
3.2.	Spektroskopske metode	15
3.3.	Sinteza amina	16
3.4.	Sinteza gvanidinijevih jodida	
3.5.	Kokataliza	21
§ 4.	REZULTATI I RASPRAVA	
4.1.	Sinteza gvanidinijevih jodida	22
4.2.	Dijastereomerni omjer produkata aldolne reakcije	25
4.3.	$\mathbf{p}K_{\mathbf{a}}$ vrijednosti gvanidinijevih soli	
4.4.	IR spektri gvanidinijevih jodida	
4.5.	MS/MS analiza	
§ 5.	ZAKLJUČAK	
§ 6.	POPIS OZNAKA, KRATICA I SIMBOLA	
§ 7.	LITERATURNI IZVORI	
§ 8.	DODATAK	XV
§ 9.	ŽIVOTOPIS	XLIV

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Kemijski odsjek

SAŽETAK

CIKLIČKI GVANIDINI KAO KOKATALIZATORI U ALDOLNOJ REAKCIJI

Monika Marijanović

U ovom radu pripravljene su jodidne soli gvanidina u svrhu ispitivanja njihove kokatalitičke aktivnosti u reakciji aldolne kondenzacije cikloheksanona i 4-klorbenzaldehida uz katalizator L-prolin. Odabrani aciklički i ciklički gvanidinski derivati razlikuju se prema usmjerenosti NH veza, steričkim utjecajima i supstituentima. Dobivenim su spojevima ispitana kiselobazna svojstva u acetonitrilu uz referentni spoj poznate bazičnosti UV titracijom i NMR spektroskopijom. Spektrometrijom masa provedeno je kinetičko mjerenje relativnih afiniteta vezanja jodida fragmentacijom jodidom premoštenog dimera ispitivanog i referentnog gvanidina. Omjer dijastereomera produkata aldolne kondenzacije nastalog kao rezultat kokatalitičke aktivnosti gvanidina praćen je HPLC i NMR tehnikom. Pokazano je da dijastereomerni omjer produkata ovisi o kiselo-baznim svojstvima gvanidina, usmjerenosti NH veza i stvaranju međumolekulske i unutarmolekulske vodikove veze. Navedeni čimbenici utječu na stabilnost katalitičkog kompleksa među gvanidinom, supstratom i L-prolinom te time imaju izravan utjecaj na konačan ishod reakcije.

(47 stranica, 23 slike, 5 tablica, 89 literaturnih navoda, jezik izvornika: hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Horvatovac 102a, Zagreb i Repozitoriju Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu.

Ključne riječi: aldolna kondenzacija, dijastere
omerni omjer, gvanidin, kokatalizator, p K_a , sinteza

Mentor: dr. sc. Zoran Glasovac Nastavnik: prof. dr. sc. Ines Primožič

Ocjenitelji:

prof. dr. sc. Ines Primožič
 prof. dr. sc. Iva Juranović Cindrić
 prof. dr. sc. Željka Soldin
 Zamjena: doc. dr. sc. Željka Car

Datum diplomskog ispita: 14. veljače 2023.

Diplomski rad

Diploma Thesis

University of Zagreb Faculty of Science Department of Chemistry

ABSTRACT

CYCLIC GUANIDINES AS COCATALYSTS IN ALDOL CONDENSATION

Monika Marijanović

In this master thesis, iodide salts of guanidine were prepared for the purpose of testing their cocatalytic activity in the aldol condensation of cyclohexanone and 4-chlorobenzaldehyde with L-proline as catalyst. Acyclic and cyclic guanidine derivatives differ by the orientation of NH bonds, steric effect and substituents. Acid-base properties of the obtained compounds were determined in acetonitrile with a reference compound of known basicity using UV titration and NMR spectroscopy. Mass spectrometry was used to measure the relative affinity of iodide binding by fragmentation of the iodide-bound dimer of the tested and reference guanidine. Diastereomeric ratio of the aldol condensation products, as a result of cocatalytic activity of guanidines, was monitored by HPLC and NMR techniques. It was shown that the diastereomeric ratio of the products depends on the acid-base properties, orientation of NH bonds in guanidine and formation of intramolecular and intermolecular hydrogen bonds. The mentioned factors influence the stability of the catalytic complex between guanidine, substrate and L-proline and thus have a direct effect on the final outcome of the reaction.

(47 pages, 23 figures, 5 tables, 89 references, original in Croatian)

Thesis deposited in Central Chemical Library, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia and in Repository of the Faculty of Science, University of Zagreb

Keywords: aldol condensation, cocatalyst, diastereomeric ratio, guanidine, pK_a , synthesis

Mentor: Dr. Zoran Glasovac, Senior Research Associate Supervisor: Dr. Ines Primožič, Professor

Reviewers:

Dr. Ines Primožič, Professor
 Dr. Iva Juranović Cindrić, Professor
 Dr. Željka Soldin, Professor
 Substitute: Dr. Željka Car, Assistant Professor

Date of exam: 14 February 2023

Monika Marijanović

§ 1. UVOD

Gvanidini su spojevi koji sadrže ugljik povezan s tri atoma dušika, od čega dva dušika imaju karakter amina, a jedan imina.¹ Gvanidinska je jedinica dio različitih biomolekula, a zbog mogućih primjena u medicini, supramolekulskoj kemiji i asimetričnoj sintezi sintetizirana je široka lepeza gvanidinskih derivata.² Strukturne karakteristike gvanidina, tj. geometrija molekule i utjecaj različitih supstituenata definiraju kiselo-bazna svojstva gvanidina, kao i njihovu sklonost stvaranju vodikovih veza. Općenito, gvanidini pripadaju skupini organskih superbaza, spojeva s većom bazičnosti od 1,8-bis(dimetilamino)-naftalena (DMAN).³ U neutralnoj formi dušikov atom s karakterom imina je najbazičniji te će se protoniranje gvanidina događati upravo na njegovoj poziciji.¹ Pored vezanja protona, imino dušikov atom ima visok afinitet i prema vezanju drugih elektrofila, kao što su metalni kationi, te su gvanidini korišteni i kao ligandi u klasterima različitih tipova.⁴ Visoka bazičnost gvanidina prvenstveno je posljedica stabilnosti gvanidinijevog iona nastalog protoniranjem, što je rezultat efikasne Y-kroskonjugacije šest π elektrona u gotovo planarnom C_{3d} simetričnom heterosustavu. Pored toga, vodikove veze sa supstratom bit će dodatno ojačane uslijed protoniranja zbog stvaranja vodikovih veza potpomognutih nabojem (engl. "charge assisted hvdrogen bonds", CAHB).⁵ Karakteristična bazična svojstva i mogućnost stvaranja vodikovih veza rezultirala su širokom primjenom gvanidina i njegovih derivata, posebno zbog utjecaja gvanidina na biološku aktivnost brojnih enzima te u području katalize.^{2,6} Struktura molekule gvanidina i različiti supstituenti imaju značajan utjecaj na kiselo-bazna svojstva gvanidina i na ostvarivanje interakcija vodikovim vezama pa su gvanidini dobri organokatalizatori i poželjne podjedinice u supramolekulskoj kemiji.^{7,8}

Organokatalizatori imaju prednost pred biokatalizatorima/enzimima i kompleksima prijelaznih metala zbog niže cijene, okolišne prihvatljivosti i manje toksičnosti. U pravilu su nešto manje aktivni u odnosu na metalne katalizatore, a povećanje aktivnosti moguće je postići dodatkom lako dostupnih spojeva.⁹ Među velikim brojem do sada primjenjivanih organokatalizatora posebno je interesantan L-prolin. L-prolin pripada skupini bifunkcionalnih organokatalizatora, a najčešće se koristi za aktivaciju karbonilnih spojeva u aldolnoj kondenzaciji i sličnim reakcijama.^{10,11} Dodatno poboljšanje aktivnosti L-prolina u reakciji aldolne kondenzacije postignuto je primjenom u kombinaciji s gvanidinijevom soli kao

kokatalizatorom.^{12,13} Poboljšane rezultate organokatalitičkog djelovanja autori su pripisali nastajanju supramolekulskog kompleksa gvanidina (TBD) s L-prolinom putem vodikovih veza (slika 1.), a zanimljivo je da dodatan utjecaj na selektivnost reakcije pokazuju različiti anioni kao protuioni u gvanidinijevim solima.⁹

U sintezi gvanidinijevih soli kao protuion odabran je jodidni anion te je praćena promjena omjera *anti* i *syn* produkta u reakciji aldolne kondenzacije, ovisno o promjeni strukture kokatalizatora.

Slika 1. Struktura pretpostavljenog katalitičkog kompleksa između gvanidinske baze TBD i Lprolina

Tema ovog rada jest priprava jodidnih soli gvanidina te ispitivanje njihove kokatalitičke aktivnosti u reakciji aldolne kondenzacije cikloheksanona i 4-klorbenzaldehida uz katalizator L-prolin. Odabrani su ciklički i aciklički derivati s različitim supstituentima, steričkim utjecajem i usmjerenosti NH veza kako bi se odredio utjecaj strukture na kiselobazna svojstva i kokatalitičku aktivnost. Pretpostavljajući nastajanje katalitičkog kompleksa prikazanog na slici 1. kao ključnog koraka koji povećava selektivnost reakcije, logično je očekivati da će kiselobazna svojstva gvanidinijevog kationa, usmjerenost NH veza, kao i kompeticija između međumolekulske i unutarmolekulske vodikove veze bitno utjecati na stabilnost spomenutog kompleksa te njegovu katalitičku aktivnost. U tu svrhu provedena su mjerenja p K_a gvanidinijevih soli UV titracijom i NMR spektroskopijom. Spektrometrijom masa određena im je relativna sklonost vezanju jodida fragmentacijom jodidom premoštenog dimera ispitivanog i referentnog gvanidina. Na temelju dobivenih eksperimentalnih podataka interpretirani su rezultati kokatalitičkog djelovanja u vidu utjecaja gvanidina na dijastereomerni omjer produkata.

§ 2. LITERATURNI PREGLED

2.1. Gvanidin

Gvanidin je organska baza usporedive bazičnosti s hidroksilnim ionom.¹⁴ Jača je baza od većine organskih baza koje sadrže dušik u svojoj strukturi te se naziva organskom superbazom.⁶ Gvanidinska jezgra (slika 2.), opće formule (R¹R²N)(R³R⁴N)C=N-R⁵, dio je strukture brojnih spojeva prisutnih u prirodi (arginin, gvanin, streptomicin, kreatin). Izvor gvanidina mogu biti mikroorganizmi (cijanobakterije), biljke i životinje, a nalaze se u strukturi različitih alkaloida, peptida, terpena, poliketida i derivata šikiminske kiseline.¹⁵ Zbog značajne biološke aktivnosti, posebnih farmakoloških svojstava i hidrofilne prirode gvanidini se koriste u razvoju lijekova za razne bolesti.^{15,16} Uz široku medicinsku primjenu^{17,} gvanidini se koriste i kao anionski receptori¹⁸, a u koordinacijskoj su kemiji prisutni kao ligandi⁴. Daju organometalne komplekse različitih koordinacija, pri čemu mogu biti prisutni u obliku aniona (monoanionski ili dianionski oblik) ili kao neutralni ligandi.¹⁹ Važno područje razvoja gvanidina i njegovih derivata je organokataliza.²⁰

Slika 2. a) opća formula gvanidina i b) aminokiselina arginin

Shema 1. Rezonantne strukture gvanidinijevog kationa

Za visoku bazičnost zaslužna je rezonantno stabilizirana konjugirana kiselina nastala protoniranjem gvanidina (shema 1.), simetrija molekule, stabilizacija vodikovim vezama, ali i induktivni efekt supstituenata.^{1,21} Y-delokalizacija šest π -elektrona (dva amino dušika i jedan imino dušik povezani na atom ugljika) daju povoljnu raspodjelu nastalog pozitivnog naboja zbog čega se u kontekstu gvanidina spominje Y-aromatičnost.²² Tri dušika gvanidina nisu jednako bazična zbog efekta konjugacije pa se uslijed toga prvo protonira najbazičniji imino dušik.¹ Važnost simetrične geometrije s NCN kutovima od 120° pokazana je i na seriji deformiranih derivata kod kojih je svaki oblik deformacije gvanidinskih kuteva doveo do desimetrizacije gvanidinske podjedinice, manje efikasne Y-delokalizacije i, posljedično, smanjenja bazičnosti.²³

Osim same strukture gvanidina, na njihovu bazičnost utječu i elektronska svojstva supstituenata i uključenost unutarmolekulskih vodikovih veza, a u otopini ključnu ulogu ima utjecaj otapala (solvatacija). Elektron donirajući supstituenti vezani na gvanidinsku podjedinicu sudjeluju u stabilizaciji nastalog pozitivnog naboja, stabiliziraju konjugiranu kiselinu i povećavaju bazičnost. Suprotan efekt postiže se uključivanjem elektron odvlačećih supstituenata koji induktivnim efektom još više destabiliziraju konjugiranu kiselinu gvanidina.^{1,21}

Unutarmolekulska vodikova veza (engl. "intramolecular hydrogen bond", IMHB) odavno je prepoznata kao prikladan građevni blok za povećanje bazičnosti spojeva u plinskoj fazi²⁴, a dokazan je i kumulativan učinak većeg broja IMHB-a prisutnih u jednom gvanidinskom derivatu²⁵. Općenito, stvaranje vodikovih veza između molekule i otapala povoljno djeluje na stabilizaciju naboja, a zbog sličnosti u prirodi interakcije stvaranje IMHB-a još se naziva i "interna solvatacija".²⁶ Smanjenje bazičnosti gvanidinske podjedinice može povoljno utjecati na sklonost stvaranju vodikovih veza. Naime, Gilli i suradnici pokazali su kako je za stvaranje jakih vodikovih veza ključna sličnost u p K_a vrijednostima dvaju partnera koji stvaraju vodikovu vezu.⁵ To znači da će vodikova veza s, primjerice, aminima (niži p $K_a(R_3NH^+)$ u odnosu na p $K_a(GvH^+)$) jačati smanjenjem p K_a gvanidinijevog kationa. Slično tomu, veća sklonost vezanju aniona kod tiourea u odnosu na uree najčešće je pripisivana povećanoj kiselosti tiourea.²⁷

U kontekstu katalize, i povećanje bazičnosti i njemu suprostavljena sklonost stvaranju vodikovih veza mogu pozitivno utjecati na rezultat. Visoka bazičnost dovodi do efikasnijeg deprotoniranja supstrata za nukleofilnu reakciju pa se na taj način postiže koncentracijski

efekt na ubrzavanje reakcija.²⁸ S druge strane, stvaranje katalitičkog kompleksa putem vodikovih veza između gvanidina i supstrata dovodi do bolje definicije kemijskog prostora reaktivnog centra i najčešće do bolje regioselektivnosti i stereoelektivnosti reakcije (vidi sljedeće poglavlje). Uvođenjem funkcijskih skupina koje mogu tvoriti IMHB u strukturu gvanidina povećava mu se bazičnost. Ovisno o tome koji su akceptori i donori vodikove veze prisutni, razlikovat će se i jakost IMHB-a^{29,30}, što može imati bitan utjecaj na katalizu tako što će otežati stvaranje supramolekulskog kompleksa važnog za organokatalitičko djelovanje gvanidinskih struktura. Osim navedenoga, razliku među gvanidinima u njihovim kemijskim svojstvima, a time i u katalitičkoj aktivnosti, činit će i konformacijska fleksibilnost molekule (otvoreni lanac, monociklički ili biciklički gvanidin) jer je poznato da su vodikove veze izrazito dinamičan sustav.³¹ Kombinacija svih navedenih čimbenika definirat će konačnu katalitičku aktivnost gvanidina.

2.2. Gvanidini kao katalizatori

Kako je načelno spomenuto u prethodnom poglavlju, katalitičko djelovanje gvanidina kao katalizatora povezano je s nastajanjem katalitičkog kompleksa [gvanidin-supstrat], a njihova točna uloga u organokatalizi pretpostavljena je dvama mogućim mehanizmima. Kao jaka baza, gvanidin uzrokuje deprotoniranje supstrata s kojim uspostavlja jednostruke, dvostruke (najčešće) ili višestruke vodikove veze. Prilaskom elektrofilnog supstrata dolazi do reorganizacije vodikovih veza i stvaranja kompleksa i s nukleofilom i s elektrofilom (shema 2.). Gvanidin tada djeluje kao bifunkcionalni katalizator, što mu daje prednost nad monofunkcionalnim katalizatorima.³² Strukturna definiranost konformacije kompleksa katalizator-supstrat utječe na konačni stereoselektivni i dijastereoselektivni ishod reakcije.^{33,34}

Shema 2. Uspostava vodikovih veza između supstrata i gvanidina kao monofunkcionalnog (desno) i bifunkcionalnog (lijevo) katalizatora³²

Gvanidini se kao katalizatori ili kokatalizatori upotrebljavaju u brojnim reakcijama (polimerizacija, transesterifikacija, Michaelova reakcija, Wittigova reakcija, Henryjeva reakcija itd.)³⁵⁻³⁸. Jedan je od primjera katalize superbazama, među kojima je i gvanidin, transesterifikacija biljnih ulja u svrhu dobivanja biodizela (shema 3.).³⁹ Usporedbom katalitičke aktivnosti MTBD-a i TBD-a u transesterifikaciji repinog ulja vidljiva je velika razlika u prinosima reakcije. Iako slične bazičnosti, TBD daje puno bolji rezultat (91 %) od MTBD-a (47 %) zbog slobodne NH skupine TBD-a koja olakšava prijenos protona. Osim toga, TBD je dostojna zamjena natrijevom hidroksidu kao katalizatoru zbog odsustva neželjenih nusprodukata i zadovoljavajućih prinosa.⁴⁰ Usporedbom nekoliko organskih baza različite bazičnosti utvrđeno je da bazičnost gvanidina utječe do određene mjere na katalitičku aktivnost, ali značajno veću aktivnost TBD-a u odnosu na fosfazene i ostale baze možemo priprisati isključivo kooperativnom vezanju supstrata putem dviju vodikovih veza.

Shema 3. Transesterifikacija triglicerida⁴⁰

Direktan dokaz stvaranja kompleksa [TBD-supstrat] putem dviju vodikovih veza pružili su van Aken i ostali određivanjem kristalne strukture kompleksa gvanidina s α -nitrotoluenom, tipičnim supstratom u Michaelovoj ili Henryjevoj reakciji nitroalkana s karbonilnim spojevima ili 1,3-enonima.⁴¹

Viehmann i Hecht pripravili su diazo supstituirani derivat gvanidina s ciljem fotokemijske kontrole njegove katalitičke aktivnosti putem blokiranja ili oslobađanja pristupa gvanidinskim NH vezama (shema 4.).⁴² Iako je postignuta željena fotofunkcionalnost, katalitička aktivnost ovoga spoja bila je zanemariva, što su autori pripisali smanjenoj bazičnosti u odnosu na katalitički aktivni dicikloheksilni derivat (slika 3.a)), kao i nepovoljnoj orijentaciji supstituenata. Naime, usmjerenost gvanidinskog usamljenog para i NH veze ne omogućuje bliski kontakt dvaju supstrata vezanih na njih (slika 3.b)). Za razliku od cikličkih gvanidina, ova orijentacija supstituenata tipična je za trisupstituirane i tetrasupstituirane

gvanidine i, općenito gledano, vodi stvaranju labilnijeg kompleksa (jedna vodikova veza) i nižoj katalitičkoj aktivnosti. S druge strane, ciklički gvanidini imaju dvije NH veze usmjerene u istom pravcu, prikladne za stvaranje kompleksa sa supstratom.⁴

Shema 4. Fotokemijska kontrola katalitičke aktivnosti diazo supstituiranog derivata gvanidina⁴²

Slika 3. Pretpostavljeni mehanizam polimerizacije između alkohola, laktida i a) dicikloheksilnog derivata gvanidina ili b) aromatsko supstituiranog gvanidina⁴²

Primjer uloge vodikove veze u kooperativnom djelovanju gvanidina i P2-fosfazena opisali su Terada i suradnici⁴³ (shema 5.). U ovom slučaju, nužan uvjet za aktivaciju reakcije jest visoka bazičnost P2-fosfazena, no reakcija ide uz nisku dijastereoselektivnost. Uvođenje dodatne gvanidinske skupine, koja pomaže vezanju supstrata, vodi povećanju dijastereoselektivnosti i enantioselektivnosti.

Shema 5. Novorazvijeni kiralni katalizator izgrađen od P2-fosfazena i gvanidinske jezgre⁴³

U novijoj literaturi sve je više primjera u kojima gvanidini služe kao dodatni reagens za povećanje stereoselektivnosti, čak i u slučajevima s metalnim katalizatorima.⁴⁴ Detaljan studij mehanizma ove reakcije primjenom računskih metoda⁴⁵ ukazuje na stvaranje mreže vodikovih veza prema supstratima, što je korak koji određuje stereoselektivnost reakcije. U ovom slučaju ulogu drugog donora vodikove veze preuzima amidna skupina. Za razliku od uobičajene primjene gvanidina kao katalizatora, njihova sklonost stvaranju vodikovih veza potaknula je i primjenu gvanidina kao supramolekulskih kokatalizatora.

2.3. Katalitičko djelovanje L-prolina i utjecaj kokatalizatora

Prvu međumolekulsku asimetričnu aldolnu reakciju kataliziranu prolinom napravili su List, Lerner i Barbas 2000. godine.⁴⁶ Odabir prolina kao katalizatora ima brojne prednosti – nisku cijenu, laku dostupnost, nisku toksičnost, provođenje reakcije u blagim uvjetima i na sobnoj temperaturi, topljivost u vodi, lako uklanjanje katalizatora. S druge strane, ograničavajući čimbenici prolina jesu njegova slabija topljivost i reaktivnost u organskim otapalima, slabiji prinosi u direktim aldolnim reakcijama s aromatičnim aldehidima i moguće nastajanje nusprodukata.

Organokataliza L-prolinom temelji se na aktivaciji karbonilnog supstrata koji uslijed reakcije s amino skupinom prolina tvori enamin koji zatim reagira s elektrofilom. Reakcija se odvija putem Zimmerman-Traxlerovog prijelaznog stanja (slika 4.), odnosno šesteročlanog prstena koji poprima konformaciju stolice.⁴⁷⁻⁴⁹ Orijentacija karboksilne skupine u visoko uređenom prijelaznom stanju utječe na smjer prilaska elektrofila reaktivnom centru i određuje stereoselektivnost reakcije. Osim toga, karboksilna skupina sudjeluje u aktivaciji elektrofila uspostavljanjem vodikove veze uslijed čega dolazi do povećanja negativnog naboja na karboksilnoj skupini prolina.⁵⁰ Važnost slobodne amino skupine prolina se, primjerice, očituje

u rezultatima Murphyja, Wilsona i suradnika koji su pripravili niz derivata L-prolina funkcionalizacijom karboksilne skupine aminima i gvanidinima. U svim slučajevima dušikov atom prolina je alkiliran, a postignute enantioselektivnosti u odabranim su reakcijama niske.⁵¹

Slika 4. Zimmerman-Traxlerovo prijelazno stanje kojim je objašnjen stereokemijski ishod aldolne kondenzacije¹³

Uobičajen pristup povećanju selektivnosti organokatalizatora temeljenih na prolinskoj podjedinici uključuje prevođenje u derivate karboksilnih kiselina^{52,53} Alternativno, stvaranje supramolekulskih kompleksa s donorima vodikovih veza (kokatalizatori) ne zahtijeva kemijsku derivatizaciju, a dovodi do istog željenog cilja – povećanja steričke smetnje u blizini reakcijskog centra. Uz to dolazi i do značajnog povećanja kiselosti prolina⁵⁴, što potpomaže prijenos protona na supstrat i jaču aktivaciju elektrofila.

Demir i suradnici primijenili su derivat tiouree, (3,5-bistrifluormetilfenil)tioureu, kao kokatalizator, pri čemu su postigli značajno povećanje dijastereoselektivnosti i enantioselektivnosti aldolne reakcije u odnosu na reakciju kataliziranu samim prolinom.⁵⁰ Sličan rezultat postignut je primjenom derivata gvanidina.^{12,13} Martínez-Castañeda i suradnici uspješno su proveli L-prolinom kataliziranu aldolnu reakciju gdje su soli 1,5,7-triazabiciklo[4.4.0]dec-5-ena (TBD) služile kao kokatalizatori povećavajući omjer *anti* : *syn* produkta s 69 : 31 na 84 : 16, kao i enantioselektivnost reakcije od 54 % e.e. na 98 % e.e (e.e. = enantiomerni višak).¹³ Također, primijećeno je i povećanje brzine reakcije pa je pri istim reakcijskim uvjetima povećan prinos s 81 % na 96 %. Pretpostavljeni supramolekulski kompleks uključuje nastajanje kompleksa [TBDH– L-prolin]⁺ (slika 1.) putem gvanidin-karboksilat solnog mosta čija se struktura oslanja na dvije CAHB. Slično kao i kod tiourea, predložena struktura kompleksa prostorno je puno zahtjevnija u odnosu na karboksilnu skupinu prolina i vodi do povećane selektivnosti reakcije. Autori nisu detaljnije istraživali

utjecaj strukture i kiselo/baznih svojstava gvanidina na ishod reakcije. Prihvaćajući ispravnost pretpostavke strukture katalitičkog kompleksa, ova reakcija predstavlja zanimljiv model za istraživanje utjecaja usmjerenosti gvanidinskih NH skupina, kao i IMHB-a na (ko)katalitičku aktivnost gvanidina. Autori su primijetili da dijastereoselektivnost i enentioselektivnost ovise i o tipu aniona prisutnog u reakciji. Primjerice, primjena kokatalizatora u obliku kloridne soli vodi do smanjenja prinosa i omjera dijastereomera, dok je enantioselektivnost zadržana. Primjena trifluoracetatne soli također smanjuje omjer dijastereomera, ali i enantioselektivnost, dok je zadržan visok prinos reakcije. Posebno je zanimljiv utjecaj tetrafenilboratnog aniona kod kojeg dolazi do promjene enantioselektivnosti reakcije i drastičnog smanjenja omjera dijastereomera iako navedeni anion nema tendenciju stvaranja asocijata s kationima i nije očekivana njegova interakcija niti s prolinom niti s gvanidinskom skupinom. Zanimljivo je napomenuti da primjena prostorno zahtjevnog tetracikličkog kiralnog derivata gvanidina u obliku tetrafenilboratne soli usprkos visokoj bazičnosti i dobro definiranim kiralnim centrima nije dala željeni kokatalitički efekt, što upućuje na potrebu balansiranja strukture i svojstava gvanidinskih kokatalizatora, ali i aniona.⁵⁵

2.4. Mjerenje pK_a vrijednosti

Kiselo/bazna svojstva jedna su od temeljnih svojstava svih spojeva jer uvelike određuju njihovu reaktivnost. p K_a možemo određivati direktno (uz mjerenje pH vrijednosti (u vodi)) ili mjerenjem $\Delta(pK_a)$ uz referentni spoj. U tim se slučajevima prati raspodjela dodanog protona između dviju baza sličnih bazičnosti u svakom stupnju mjerenja radi određivanja udjela protonirane i neprotonirane forme u smjesi (u daljnjem tekstu: *kompetitivna titracija*).⁵⁶ p K_a vrijednost moguće je odrediti različitim analitičkim tehnikama (potenciometrijska titracija, NMR, UV/Vis spektroskopija, kromatografija, kapilarna elektroforeza, itd.) prilikom čega temperatura, ionska jakost, sastav otapala i dielektrična konstanta otapala moraju biti konstantni i navedeni nakon svakog mjerenja zbog izravnog utjecaja na p K_a .⁵⁷

(Ko)katalitička aktivnost cikličkih i acikličkih gvanidinijevih jodida povezana je s njihovim kiselo-baznim svojstvima.³² Mjerenja p K_a gvanidina uglavnom su provedena u nevodenom mediju jer je njihova bazičnost u vodi vrlo visoka (u gornjem području skale).¹⁴ Odabir pogodnog otapala za mjerenje bazičnosti vrši se s obzirom na sljedeća svojstva: inertnost u dodiru s bazama, omogućeno mjerenje širokog raspona p K_a vrijednosti, laku dostupnost i nižu kiselost od kiselosti protoniranog gvanidina. Acetonitril je optimalno otapalo jer dobro otapa gvanidine i njihove soli, ima nisku tendenciju stvaranja ionskih parova⁵⁸ i postoji niz pouzdanih, izmjerenih vrijednosti p K_a spojeva koji mogu poslužiti kao referentne baze^{58,59}. Acetonitril, kao i druga nevodena otapala, nije prikladan za direktno mjerenje p K_a pa se određivanje p K_a provodi kompetitivnom titracijom. Najčešće primjenjivane tehnike su NMR i UV/Vis spektroskopija. One su primijenjene i u ovome radu.

U nastavku rada ukratko će biti prikazane osnove pristupa mjerenju $\Delta(pK_a)$ navedenim tehnikama:

a) <u>*NMR*:</u>

Protoni vezani na elektronegativne atome (kisik i dušik) labilni su i skloni brzoj izmjeni. To se posebice odnosi na prijenos protona između kiseline i baze. NMR je spora tehnika i zbog toga vrlo rijetko vidimo odvojene signale, a najčešće se dogodi da spektar odgovara ravnotežnom stanju s usrednjenim pomacima protona.⁶⁰ Drugim riječima, u otopini koja sadrži i neku kiselinu HA i njenu konjugiranu bazu (A⁻) kemijski pomak svakog od signala u NMR-u bit će definiran jednadžbom (1).

$$\delta_{\rm obs} = f_{\rm HA} \delta_{\rm HA} + f_{\rm A} \cdot \delta_{\rm A} \cdot \tag{1}$$

f označava udio protonirane ili deprotonirane forme u količini/koncentraciji. Kako je suma udjela protonirane i deprotonirane forme uvijek 1, vrijedi:

$$f_{\rm A} = 1 - f_{\rm HA} = [{\rm A}^-].$$
 (2)

Kombinacijom (1) i (2) vrijedi da je udio protonirane forme (f_{HA}) neovisan o pH sustavu:

$$f_{\rm HA} = (\delta_{\rm obs} - \delta_{\rm A}) / (\delta_{\rm HA} - \delta_{\rm A}) = [{\rm HA}].$$
(3)

Udio deprotonirane forme (f_A) može se izračunati prema jednadžbi (2).

Iz udjela protonirane i deprotonirane forme dobijemo konstantu ravnoteže:

$$K_a(A) = \frac{[A][H]}{[AH]}.$$
(4)

Koncentracija protona ([H]) u acetonitrilu je nepoznata pa se upotrebom dviju baza (istraživane i referentne) može dobiti $\Delta p K_a$. Prati se konstanta ravnoteže izmjene protona (K_{eq}) između istraživane (A) i referentne baze (B), a za ekvimolarne količine A i B vrijedi: [A] = [BH] i [B] = [AH].

Iz svega navedenog proizlazi:

$$K_{\text{eq}} = \frac{K_a(A)}{K_a(B)} = \frac{[A][BH]}{[AH][B]} = \frac{[A]^2}{[AH]^2} = \frac{f_A^2}{f_{AH}^2}$$
(5)

$$\Delta pK_a = pK_a(A) - pK_a(B) = -\log(\frac{K_a(A)}{K_a(B)}).$$
(6)

Navedene jednadžbe⁶¹ temelj su određivanja p K_a spojeva NMR tehnikom primijenjenom u ovome radu. Ova metoda mjerenja p K_a nije limitirana na praćenje promjena u protonskim

spektrima, a jedan od ključnih uvjeta jest postojanje dovoljno jasno definiranog signala koji se ne preklapa sa signalom nekog od ostalih atoma prisutnih u smjesi. Eventualna prisutnost nečistoća u uzorku ne mora nužno bitno utjecati na konačno određivanje p K_a vrijednosti, ali nedovoljna preciznost kemijskih pomaka i obavezno korištenje referentnog spoja mane su ove tehnike. NMR spektroskopija nije destruktivna, potrebne su male količine uzorka, a dobiveni

spektar daje informaciju u kojem dijelu molekule dolazi do protoniranja/deprotoniranja.^{57,62}

b) <u>UV/Vis spektroskopija:</u>

Drugi pristup mjerenju također se zasniva na praćenju ravnoteže raspodjele protona između istraživane i referentne baze, a određivanje omjera neutralne i protonirane forme izvodi se UV/Vis spektroskopijom. Stoga je osnovni uvjet da barem jedna od baza (istraživana ili referentna) ima karakterističan UV spektar i da je promjena tijekom protoniranja jasno vidljiva i mjerljiva. Kromofor mora biti što bliži onom dijelu molekule gdje dolazi do ionizacije da bi razlika u spektrima bila vidljiva.⁵⁷ Također, kao i kod NMR tehnike, razlika u bazičnosti između referentne i istraživane baze mora biti mala da osigura djelomično protoniranje obiju baza pri svakom dodatku alikvota titransa (jake kiseline).

Polazeći od osnovne relacije ovisnosti apsorbancije o koncentraciji:

$$A = \varepsilon bc \tag{7}$$

konstantu ravnoteže za izmjenu protona (K_{eq} , jednadžba (5)) pri svakoj pojedinoj valnoj duljini možemo napisati i u sljedećem obliku:

$$K_{\text{eq}} = \frac{[A]^2}{[AH]^2} = \left(\frac{A(A)\varepsilon b(AH)}{A(AH)\varepsilon b(A)}\right)^2.$$
(8)

U slučaju kompetitivnog protoniranja dviju baza (referentne baze \mathbf{R} i istraživane baze \mathbf{A}) određujemo razliku p K_a :

$$\Delta p K_{\rm a} = -\log(K_{\rm eq}(A)) + \log(K_{\rm eq}(R)). \tag{9}$$

I ove jednadžbe temelj su određivanja p K_a novih spojeva. Određivanje koncentracija pojedinih jedinki pri svakom alikvotu kiseline koja služi kao titrant i, u konačnici, odgovarajućih konstanti provodi se usklađivanjem spektara kompetitivne titracije s eksperimentalnim spektrima svake pojedine komponente, a u našem je slučaju u tu svrhu primijenjen program HypSpec.

2.5. Kinetička metoda (praćenje omjera grananja)

Spektrometrija masa optimalna je metoda istraživanja svojstava molekula izvan konteksta djelovanja okoline (otapala). S obzirom na to da je direktno mjerenje energije međudjelovanja dviju jedinki u plinskoj fazi izrazito problematično, najčešće se pribjegava mjerenjima razlika u afinitetima prema nekoj referentnoj vrijednosti. Jedna od takvih metoda je mjerenje "omjera grananja" (engl. branching ratio", BR) pri fragmentaciji neke veće strukture.⁶³ Metoda se zasniva na izolaciji i fragmentaciji strukture tipa $[A_1-X-A_2]^+$, pri čemu jedinke A_1 i A_2 pokazuju primjetan afinitet prema vezanju komponente X (shema 6.). Dva moguća smjera fragmentacije s različitim konstantama (k_1 i k_2) daju omjer koji je proporcionalan sklonosti vezanju A_1 ili A_2 prema jedinki u premoštenju (slika 5.). Veća sklonost vezanju pokazatelj je veće termodinamičke stabilnosti takvog kompleksa pa je i razlika u intenzitetima fragmenata više izražena.

Shema 6. Fragmentacija dimera dviju baza premoštenog s X (X = H, kation, anion)

Najpoznatiji primjer ovakvog tipa asocijata je protonom premošteni dimer dviju baza $(X = H, A_1 i A_2 dvije su baze sličnih bazičnosti) čijom fragmentacijom dobivamo uvid u relativne bazičnosti spojeva A_1 i A_2. Takav pristup mjerenju bazičnosti u plinskoj fazi naziva se kinetička metoda, a uveo ju je Cooks 1977 g.⁶⁴ Isti pristup upotrijebljen je za mjerenje afiniteta vezanja metalnih kationa <math>(X = M^+)$.⁶⁵ Gvanidini u svojem protoniranom obliku imaju visoku sklonost vezanju aniona i stvaranju asocijata tipa [A₁-X-A₂] kod kojih su A₁ i A₂ derivati gvanidinijevog kationa, a X je anion. Primjenom istog načela primijenjenog u razvoju kinetičke metode mjerenja bazičnosti, ali na kvalitativnoj razini, ispitana je sklonost vezanju jodida.

Primjenjujući istu logiku kao i pri mjerenjima protonskih afiniteta dolazimo do sljedećih općih opažanja: velike razlike u afinitetu prema jedinki u premoštenju između referentnog i ispitivanog spoja daju fragmentaciju u jednom smjeru, dok se za manje razlike računa BR prema sumi nastalih fragmenata. S obzirom na to da je kinetička metoda relativna metoda, konačan rezultat ovisit će o tome je li odabran pogodan referentni spoj.^{66,67}

Slika 5. Energijski dijagram na primjeru disocijacije protonom vezanog dimera dviju različitih baza B_1 i B_2 s različitim kritičnim energijama fragmentacije $(\epsilon_0)^{66}$

§ 3. EKSPERIMENTALNI DIO

3.1. Materijali

U postupku sinteze korišteni reagensi i kemikalije analitičke čistoće nisu prethodno pročišćivani. γ-aminomaslačna kiselina (C₄H₉NO₂) (Acros Organics), di-tert-butildikarbonat 1-(3-dimetilamino-propil)-3-etilkarbodiimid-hidroklorid $(C_{10}H_{18}O_5)$ (Alfa Aesar). (C₈H₁₇N₃xHCl) (Alfa Aesar), pirolidin (C₄H₉N) (Sigma-Aldrich), trietilamin (C₆H₁₅N) (Alfa 2-metiltio-4,5-dihidro-1*H*-imidazol-hidrojodid (C₄H₈N₂SxHI) (pripravljeno u Aesar), laboratoriju), benzilamin (C_7H_9N) (Sigma-Aldrich), 3-dimetilaminopropilamin ($C_5H_{14}N_2$) 1,1,3,3-tetrametilurea $(C_5H_{12}N_2O)$ (Fluka (Sigma-Aldrich), Chemika), 1.1.3.3tetrametilgvanidin (C5H12N3) (Sigma-Aldrich), fosforil-klorid (POCl3) (Sigma-Aldrich), panisidin (C7H9NO) (Sigma-Aldrich), 4-klorbenzaldehid (C7H5OCl) (Acros Organics), S-prolin $(C_5H_9NO_2)$ (Alfa Aesar). Korišten je i cikloheksanon $(C_6H_{10}O)$ (Sigma-Aldrich) koji je prije reakcije kokatalize predestiliran.

Tankoslojna kromatografija (TLC) na pločicama aluminija korištena je za praćenje tijeka reakcije (TLC Silicagel 60, 63 - 200 μ m, 254 nm, *Merck KG*aA) uz UV lampu za identifikaciju. Za pročišćavanje (izolaciju) pojedinih spojeva korištena je kromatografija na stupcu sa silikagelom (φ 63 - 200 μ m, *Merck KG*aA) kao stacionarnom fazom.

3.2. Spektroskopske metode

3.2.1. Nuklearna magnetska rezonancija (NMR)

¹H i ¹³C NMR spektri snimljeni su Bruker Avance uređajem na 300 ili 600 MHz. Tetrametilsilan (TMS) je korišten kao standard prema kojemu su određeni kemijski pomaci. NMR je korišten za identifikaciju produkata, određivanje *anti/syn* omjera produkta aldolne kondenzacije i p K_a vrijednosti pripravljenih gvanidinijevih jodidinih soli.

3.2.2. Tekućinska kromatografija visoke djelotvornosti (HPLC)

HPLC analiza izvedena je na uređaju Varian ProStar 230 s UV detektorom pri 220 nm sa smjesom propan-2-ol:heksan (1 : 9). Analizom sirove smjese iz reakcije kokatalize određen je njihov *anti/syn* omjer.

3.2.3. Infracrvena spektroskopija (IR)

IR spektri gvanidnijevih soli snimljeni su uređajem Perkin Elmer Spectrum two.

3.2.4. UV/VIS

UV/VIS mjerenja izvedena su na uređaju PG Instruments Ltd T80+ spektrofotometru pri valnim duljinama od 400 do 200 nm. Snimljeni su spektri gvanidinijevih jodida i njihovih neutralnih formi. Svi su spektri snimljeni u acetonitrilu u kiveti optičke duljine 1 cm. U mjerenjima p K_a korišteni su 2-(4'-metoksifenil)-1,1,3,3-tetrametilgvanidin koji je služio kao referentni spoj poznate bazičnosti te trifluormetansulfonska kiselina kao titrant. Konstante ravnoteže određene su analizom cijelog spektra pomoću programa HypSpec.

3.2.5. Spektrometrija masa (MS)

MS analiza gvanidinijevih soli izvedena je na HPLC-MS/MS uređaju (HPLC Agilent 1200 Series u sprezi sa spektrometrom mase s trostrukim kvadrupolom Agilent 6420). Analiza je izvedena u metanolu uz energiju fragmentora = 70 eV. Praćena je fragmentacija jodidom premoštenog dimera istraživanog gvanidina i 1,1,3,3-tetrametilgvanidina pri energiji kolizije u kolizijskoj ćeliji $E_{lab} = 0, 5, 10, 15, 20$ i 25 eV.

3.3. Sinteza amina

3.3.1. Sinteza Boc- γ -aminomaslačne kiseline (AM1)⁶⁸

U tikvicu (250 mL) je dodana γ -aminomaslačna kiselina (GABA) (4,12 g, 40 mmol), 80 mL dioksana, 40 mL vode i 40 ml 1 mol dm⁻³ NaOH. Otopina je miješana na magnetskoj mješalici i ohlađena u ledenoj kupelji, nakon čega je dodan Boc₂O (9,60 g, 44 mmol). Miješanje je nastavljeno na sobnoj temperaturi iduća 24 sata. Idući je dan reakcijska smjesa koncentrirana uparavanjem na oko 50 mL i ohlađena u ledenoj kupelji. Dodano je 50 mL etilacetata i razrjeđena otopina natrijeva hidrogensulfata (NaHSO₄) za postizanje pH = 2. Odvojen je sloj etil-acetata, a vodeni je sloj ekstrahiran s EtOAc (2 x 50 mL). Organski su ekstrakti spojeni, isprani vodom, sušeni s MgSO₄ i upareni. Dobiveni je produkt bilo teško u potpunosti upariti, ali je stajanjem u hladnjaku došlo do taloženja. Ponovnim uparavanjem uklonjen je ostatak otapala i dobiven je konačan produkt u obliku krutine (6,60 g, iskorištenje: 81 %).

¹**H NMR** (DMSO-d₆, δ/ppm): 1,37 (s, 9H, Boc), 1,54–1,63 (m, 2H, CH₂CH₂CH₂,), 2,17–2,21 (t, 2H, *J* = 7,4 Hz, CH₂COOH), 2,88–2,95 (m, 2H, CH₂NH), 6,79–6,82 (t, 1H, *J* = 4,6 Hz, N*H*), 12,0 (s, 1H, COO*H*) (kontaminirano s EtOAc)

¹³C NMR (DMSO-d₆, δ/ppm): 24,88; 28,22; 30,95; 40,03; 77,38; 155,58; 174,17

3.3.2. Sinteza 4-(tert-butoksikarbonil)amino-1-(pirolidin-1-il)-butan-1-ona (AM2)⁶⁹

Kroz tikvicu (100 mL) je propušten argon prije samog dodatka reaktanata. U 50 mL suhog CH_2Cl_2 dodan je pirolidin (1,630 g, 1,91 mL, 22,92 mmol) i Boc-GABA (spoj **AM1**) (5,584 g, 27,50 mmol). Reakcijska je smjesa miješana na magnetskoj mješalici te je dodan 1-(3-dimetilamino-propil)-3-etilkarbodiimid-hidroklorid (EDC) (5,272 g, 27,50 mmol) i trietilamin (2,319 g, 3,19 mL, 22,92 mmol). Miješanje je nastavljeno na sobnoj temperaturi idućih 48 sati, nakon čega je smjesa isprana s 1 mol dm⁻³ HCl (3 x 10 mL), 5 %-tnom otopinom NaHCO₃ (3 x 10 mL) i zasićenom otopinom NaCl (3 x 10 mL). Organski je sloj sušen s MgSO₄ i uparen dajući konačan produkt u obliku krutine (5,547 g, iskorištenje 94 %).

¹**H** NMR (DMSO-d₆, δ /ppm): 1,37 (s, 9H, Boc), 1,54–1,64 (qui, 2H, J = 7,2 Hz, CH₂CH₂CH₂), 1,70–1,79; 1,81–1,90 (m, 2x2H, pyrr C2 i C3), 2,18–2,22 (t, 2H, J = 7,2 Hz, CH₂CO), 2,89–2,95 (m, 2H, CH₂NH), 3,23–3,28; 3,34–3,38 (t, 2x2H, pyrr C1 i C4, J = 6,7 i 6,8), 6,78–6,81 (t, 1H, J = 4,5 Hz, NH)

¹³**C NMR** (CDCl₃, δ/ppm): 24,41; 24,90; 26,11; 28,44; 32,16; 40,45; 45,70; 46,61; 78,99; 156,14; 171,11

3.3.3. Sinteza 4-amino-1-(pirolidin-1-il)-butan-1-ona (AM3) – uklanjanje Boc skupine

Spoj **AM2** (220 mg, 0,858 mmol) otopljen je u 4 ml 1,4-dioksana u tikvici (10 mL). Otopina je miješana na magnetskoj mješalici, a potom je postupno dodana koncentrirana klorovodična kiselina (1 mL). Miješanje je nastavljeno iduća 24 sata na sobnoj temperaturi. Potom je dodana otopina Na₂CO₃ do postizanja pH = 9. Otapalo je uklonjeno uparavanjem te je dodan acetonitril (5 mL). Talog je profiltriran i ispran s još 5 mL acetonitrila, a matičnica uparena dajući amin u obliku hidratne soli (113 mg, iskorištenje 84 %).

¹**H** NMR (DMSO-d₆, δ /ppm): 1,72–1,92 (m, 6H), 2,35–2,39 (t, 2H, J = 7,1 Hz), 2,74–2,85 (m, 2H), 3,25–3,30 (t, 2H, J = 6,7 Hz), 3,35–3,40 (t, 2H, J = 6,8 Hz), 3,50 (s, 1H, OH), 8,07 (s, 3H, NH₃⁺)

¹³C NMR (DMSO-d₆, δ/ppm): 22,21; 23,91; 25,53; 30,65; 38,42; 45,23; 45,79; 169,46

3.4. Sinteza gvanidinijevih jodida

U tablici 1. prikazane su strukture gvanidinijevih soli korištenih u reakciji kokatalize. Spojevi su pripravljeni prema Aoyagi i Endo⁷⁰, spojevi **6**·HI i **2**·HPF₆ prethodno su pripravljeni u laboratoriju⁷¹, a provedena je sinteza novih spojeva **4**·HI, **5**·HI i **7**·HI.

Tablica 1. Struktura gvanidinijevih soli korištenih kao kokatalizator u reakciji kokatalize

*3.4.1. Sinteza 2-benzilamino-4,5-dihidro-1H-imidazol-hidrojodida (4·HI)*⁷⁰

U tikvicu (10 mL) prethodno propuhanu argonom dodan je 2-metiltio-4,5-dihidro-1*H*imidazol-hidrojodid (532 mg, 2,18 mmol) i 2,2 mL suhog THF-a. Dobivena je otopina promiješana na magnetskoj mješalici te je dodan benzilamin (257 mg, 262 μ L, 2,40 mmol). Na tikvicu je postavljeno zračno hladilo s lulicom na vrhu za odvođenje metil-merkaptana kroz 40 %-tnu otopinu NaOH u otvor digestora. Reakcijska smjesa grijana je na \approx 50 °C (temperatura uljne kupelji) tijekom 24 sata. U ohlađenu reakcijsku smjesu dodan je Et₂O do potpunog taloženja produkta. Dobiveni je talog profiltriran i sušen na rotavaporu. Masa iznosi 623 mg, a iskorištenje 94 %. ¹H NMR (DMSO-d₆, δ/ppm): 3,68 (s, 4H, NHC*H*₂C*H*₂NH), 4,44 (s, 2H, NHC*H*₂), 7,36–7,49 (m, 5H, Ph-5*H*), 7,6–9,0 (br s, 3H, N*H*)
¹³C NMR (DMSO-d₆, δ/ppm): 42,51; 45,40; 127,22; 127,60; 128,58; 137,02; 159,36 IR (ATR, *v*/cm⁻¹): 3211 (N-H str), 1666 (C = N str)

3.4.2. Sinteza 2-((3-(N,N-dimetilamino)propil)amino)-4,5-dihidro-1H-imidazol-hidrojodida (5·HI)⁷⁰

U tikvicu (10 mL) prethodno propuhanu argonom dodan je 2-metiltio-4,5-dihidro-1*H*imidazol-hidrojodid (532 mg, 2,18 mmol) i 2,2 mL suhog THF-a. Dobivena je otopina promiješana na magnetskoj mješalici, a zatim je dodan 3-dimetilaminopropil amin (245 mg, 302 μ L, 2,40 mmol). Na tikvicu je postavljeno zračno hladilo s lulicom na vrhu za odvođenje metil-merkaptana kroz 40 %-tnu otopinu NaOH u otvor digestora. Reakcijska je smjesa zagrijavana na \approx 50 °C (temperatura uljne kupelji) 24 sata te je zatim dodan Et₂O kako bi došlo do taloženja produkta. Dobiveni je talog profiltriran, ispran nekoliko puta dietil-eterom i sušen na visokom vakuumu. Masa iznosi 509 mg, a iskorištenje 78 %.

¹**H** NMR (DMSO-d₆, δ /ppm): 1,57–1,66 (m, 2H, CH₂CH₂CH₂), 2,13 (s, 6H, 2(CH₃)), 2,20– 2,25 (t, 2H, J = 6,8 Hz, N(CH₃)₂CH₂), 3,12–3,17 (t, 2H, J = 6,8 Hz, NHCH₂), 3,59 (s, 4H, NHCH₂CH₂NH), 7,49–8,45 (br s, 3H, NH)

¹³**C NMR** (CD₃CN, δ /ppm): 26,08; 39,63; 42,84; 43,21; 53,59; 161,39 IR (ATR, $\tilde{\nu}$ /cm⁻¹): 3171 (N-H str), 1659 (C = N str)

3.4.3. Sinteza i deprotoniranje 2-((4-okso-4-(pirolidin-1-il)butil)amino)-4,5-dihidro-1Himidazol-hidrojodida (7·HI)⁷⁰

U tikvicu (10 mL) je dodan spoj **AM3** (150 mg, 0,861 mmol), dobiven u obliku OH⁻ soli, i 2metiltio-4,5-dihidro-1*H*-imidazol-hidrojodid (191 mg, 0,783 mmol) u 3 mL acetonitrila. Zbog slabe topljivosti amina dodan je trietilamin (174 mg, 0,440 mL, 1,727 mmol). Na tikvicu je postavljen adapter za odvođenje metil-merkaptana kroz 40 %-tnu otopinu NaOH u otvor digestora. Reakcijska je smjesa grijana preko uljne kupelji na \approx 50 °C 24 sata. Propuhivanjem argona kroz tikvicu uklonjen je acetonitril i metil-merkaptan. Ostatak reakcijske smjese ispran je dietil-eterom i uparen do suha. Trietilamin-hidrojodid uklonjen je dodatkom ekvimolarne količine NaOH. Reakcijska je smjesa promiješana i uparena. Dodatkom acetonitrila istaložen je NaI koji je profiltriran preko sintera, a uparavanjem matičnice dobiven je konačan produkt koji je bio uljast zbog zaostalog metil-merkaptana. Metil-merkaptan ishlapio je stajanjem tikvice na zraku, a u tikvici je iskristalizirao konačan produkt (149 mg, 54 %).

¹**H NMR** (DMSO-d₆, δ /ppm): 1,67–1,81; 1,84–1,95 (m, 6H, 3;2p;3p), 2,26–2,30 (t, 2H, J = 7,0 Hz, 2), 3,11–3,16 (t, 2H, J = 7,0 Hz, 4), 3,26–3,40 (m, 7H, 1p; 4p; H₂O), 3,59 (s, 4H, 2i;3i), 7,07–9,14 (br s, 3H, 5;1i;4i) (kontaminiran s CH₃SH)

¹³**C NMR** (DMSO-d₆, *δ*/ppm): 22,72; 22,78; 24,40; 29,30; 40,61; 41,32; 44,16; 44,71; 158,24; 168,64

IR (ATR, \tilde{v}/cm^{-1}): 3138 (N-H str), 1662 (C = N str)

U tikvicu (10 mL) dodan je 7·HI (1 mmol), a zatim i 10 mL 40 %-tne otopine NaOH te 20 mL dietil-etera. Reakcijska je smjesa miješana 30 minuta na magnetskoj mješalici, nakon čega je sadržaj tikvice prebačen u lijevak za odijeljivanje. Odvojen je organski sloj, a vodeni je sloj ekstrahiran s 2 x 20 mL dietil-eterom. Vodeni sloj je zatim ekstrahiran s 2 x 20 mL diklormetana te su diklormetanski slojevi spojeni, sušeni s MgSO₄ i upareni. Masa neutralnog produkta iznosi 209 mg, a iskorištenje 93 %.

¹H NMR (DMSO-d₆, δ/ppm): 1,60–1,90 (m, 6H), 2,20–2,25 (t, 2H, *J* = 7,3 Hz), 2,98–3,03 (t, 2H, *J* = 6,9 Hz), 3,24–3,27 (m, 6H), 3,34–3,39 (m, 2H), 3,83–4,38 (br s, 3H)
¹³C NMR (DMSO-d₆, δ/ppm): 23,92; 24,85; 25,58; 31,27; 41,99; 45,17; 45,82; 47,62; 161,89; 170,22

3.4.4. Sinteza 2-(4'-metoksifenil)-1,1,3,3-tetrametilgvanidina i kloridne soli (8)⁷²

U tikvicu (50 mL) prethodno propuhanu argonom i opremljenu vodenim hladilom s klorkalcijevom cijevi dodano je 20 mL suhog benzena i N^l, N^l, N^3, N^3 -tetrametiluree (2,323 g, 2,4 mL, 0,02 mol). Otopina je miješana na magnetskoj mješalici pri sobnoj temperaturi. U 4 mL benzena dodan je POCl₃ (4,599 g, 2,8 mL, 0,03 mol) te je dobivena otopina kap po kap dodana otopini tetrametiluree. Sadržaj tikvice miješan je preko noći, a idući je dan dodan *p*anisidin (3,695 g, 0,03 mol), nakon čega je smjesa refluksirana 7 sati. Uljasti je sloj odvojen, dodana je voda, a pH otopine doveden je do vrijednosti 8 - 9 dodatkom 2 mol dm⁻³ NaOH. Vodena otopina ekstrahirana je benzenom (2 x 30 mL) prilikom čega je u vodenom sloju bio produkt. Daljnjim dodatkom 2 mol dm⁻³ NaOH postignut je pH = 14. Ekstrakcijom s benzenom (2 x 60 mL) odvojen je organski sloj koji je sušen s MgSO₄ i uparen. Dobiveni neutralni produkt je tekućina (1,316 g, 30 %).

¹**H** NMR (DMSO-d₆, *δ*/ppm): 2,60 (s, 12H, 4(CH₃)), 3,67 (s, 3H, OCH₃), 6,50–6,53; 6,73–6,76 (m, 4H, Ph-4*H*)

2-(4'-metoksifenil)-1,1,3,3-tetrametilgvanidin (248 mg, 1,12 mmol) otopljen je u 2 ml metanola u tikvici (10 mL) te je dodan 1 mL otopine klorovodične kiseline (c = 1 mol dm⁻³). Otopina je izmiješana i uparena, kruta sirova sol (polukruta viskozna masa) otopljena je u THF-u zagrijavanjem do vrenja. Hlađenjem je iskristaliziran produkt koji je, nakon što je profiltiran, dodatno pročišćen ispiranjem etil-acetatom. Masa dobivene soli iznosi 165 mg, a iskorištenje 57 %.

¹**H NMR** (DMSO-d₆, *δ*/ppm): 2,88 (s, 12H, 4(CH₃)), 3,76 (s, 3H, OCH₃), 6,96–7,03 (m, 4H,Ph-4H), 10,12 (s, 1H, NH)

¹³C NMR (CDCl₃, δ/ppm): 40,47; 55,53; 114,91; 122,36; 130,82; 157,22; 158,78

3.5. Kokataliza

3.5.1. Sinteza (S)-2-((R)-hidroksi(4-klorfenil)metil)cikloheksan-1-ona¹³ (Opći postupak)

U epruvetu je dodan 4-klorbenzaldehid (56,0 mg, 0,40 mmol), (*S*)-prolin (6,9 mg, 0,06 mmol) i gvanidinijeva sol (0,04 mmol) (tablica 1.). Potom je u reakcijsku smjesu dodan cikloheksanon (393,0 mg, 0,41 mL, 4,00 mmol), epruveta je zatvorena te je reakcijska smjesa miješana 48 sati na sobnoj temperaturi. Reakcija je zaustavljena dodatkom zasićene otopine NH₄Cl (10 mL), a dobivena je smjesa ekstrahirana s DCM-om (2 x 15 mL). Organski je sloj sušen s MgSO₄, a DCM i suvišak cikloheksanona uklonjeni su pri sniženom tlaku. Kromatografijom je na koloni (EtOAc:medicinski benzin = 1 : 2) uklonjen neizreagirani 4klorbenzaldehid i dobiven je čisti aldol. NMR spektri u skladu su s literaturnima.¹³

¹**H NMR** (CDCl₃, δ/ppm): 1,36–1,21 (m, 1H, C*H*), 1,82–1,50 (m, 4H, C*H*₂), 2,14–2,04 (m, 1H, C*H*), 2,60–2,29 (m, 3H, C*H* + C*H*₂), 3,98 (d, 1H, *J* = 2,8 Hz, O*H*), 4,76 (dd, 1H, *J* = 8,7 i 2,8 Hz, CHOH), 7,27–7,24 (m, 2H, Ar*H*), 7,34–7,29 (m, 2H, Ar*H*)

¹³C NMR (CDCl₃, δ/ppm): 25,1; 28,1; 31,1; 43,0; 57,7; 74,5; 128,7; 128,9; 133,9; 139; 215,6

§ 4. REZULTATI I RASPRAVA

4.1. Sinteza gvanidinijevih jodida

Kao ciljne molekule sinteze odabrane su jodidne soli cikličkih gvanidina (4·HI, 5·HI i 7·HI) (slika 6.). Ostali prikazani spojevi prethodno su sintetizirani u laboratoriju, a zatim korišteni u ovome istraživanju.⁷¹ Soli su pripravljene reakcijom gvanidilacije u jednom koraku iz 2metiltio-4,5-dihidro-1*H*-imidazol-hidrojodida i pripadajućeg amina u THF-u ili acetonitrilu (shema 7.). Takva polarna aprotična otapala ne mogu stvarati jake vodikove veze s aminom, zbog čega je očuvana njegova nukleofilnost.⁷³

Slika 6. Strukture sintetiziranih gvanidinijevih jodida (4·HI, 5·HI i 7·HI) i gvanidinijevih jodida prethodno pripravljenih u laboratoriju⁷¹ (1·HI - 3·HI i 6·HI)

Shema 7. Sinteza gvanidinijevog jodida

Prednost su ovakve sinteze blagi reakcijski uvjeti te jednostavnost izolacije konačnog produkta i provedbe reakcije (dobivanje produkta u jednom koraku). Prinosi su u slučaju sinteze spojeva 4·HI i 5·HI vrlo dobri (> 70 %). Dobivanje spoja 7·HI veći je izazov zbog potrebe za sintezom odgovarajućeg supstituiranog amina pa prinos za tu reakciju iznosi 54 %. Sinteza spoja **AM3** provedena je prema poznatim literaturnim postupcima^{68,69} u tri koraka koji su prikazani shemom 8.

Shema 8. Sinteza spoja AM3: a) uvođenje zaštitne skupine na amino skupinu γaminomaslačne kiseline b) amidiranje spoja AM1 u reakciji s pirolidinom i c) uklanjanje zaštitne Boc skupine pomoću koncentrirane klorovodične kiseline Zanimljivo je primijetiti da prilikom skidanja Boc zaštitne skupine i pokušaja deprotoniranja nastale soli nije dobiven neutralni amin, nego njegov hidrat. Dodatkom koncentrirane klorovodične kiseline i uparavanjem otapala dobivena je kloridna sol amina. Neutralizacijom natrijevim karbonatom nastaje uljasta smjesa koja dodatkom nove količine acetonitrila istaloži bijelu krutinu. ¹H NMR spektar ovoga spoja pokazuje prisustvo jednog proširenog singleta na 3,51 ppm (1H) i jednog proširenog singleta na 8,07 ppm (3H), što je karakteristično za protoniranu amino skupinu. Dodatno,¹³C NMR nije pokazao nikakvih dodatnih signala, izuzev onih koji su očekivani s obzirom na pretpostavljenu strukturu amina **AM3**. Na temelju ovih podataka utvrđeno je da se spoj **AM3** taloži kao hidrat i u ovom je obliku pročišćen od ostalih primjesa u reakcijskoj smjesi. Važno je napomenuti da je isti rezultat dobiven u slučaju kad je za deprotoniranje amina umjesto Na₂CO₃ upotrijebljena otopina NaOH. Spoj **AM3** dobiven je u obliku krutine koju je jednostavno pročistiti i s kojom je lako manipulirati te je korištena u reakciji gvanidilacije za dobivanje spoja 7·HI.

Reakcija gvanidilacije provedena je u acetonitrilu u kojem hidrat amina AM3 nije topljiv te je zbog toga bio potreban dodatak trietilamina. Na taj je način osim topljivosti povećana i reaktivnost uslijed in situ deprotoniranja amina. Spoj 7·HI uspješno je dobiven, no zbog sličnosti u svojstvima amina (odnosno njegovog hidrata), izotiouronske hidrojodidne soli i produkta, postupak pročišćavanja ciljanog gvanidina bio je izazovan. Variranjem uvjeta utvrđen je optimalan postupak u kojem je reakcija išla u približno ekvimolarnim omjerima reaktanata. Tijekom reakcije priprave gvanidinijeve soli kao glavna onečišćenja prisutni su Et₃N·HI i neizreagirani 2-metiltio-4,5-dihidro-1*H*-imidazol-hidrojodid. Deprotoniranjem sirove smjese nastaju izotiourea i Et₃N koji su, za razliku od ciljanog gvanidina 7, topljivi u dietil-eteru i uklonjeni iz smjese ekstrakcijom dietil-eterom. Izolacija neutralnog spoja 7 provedena je drugom ekstrakcijom diklormetanom, a dobiveni je produkt sušen na visokom vakuumu 3 sata uz povremeno blago zagrijavanje fenom do ≈ 50 °C. Iskorištenje reakcije od 93 % potvrđuje da je otežana izolacija glavni uzrok relativno niskog iskorištenja sinteze jodidne soli. Potvrda strukture i uspješnosti deprotoniranja prikazana je usporedbom ¹H NMR spektara snimljenih u DMSO-d₆ i CD₃CN. Naime, razlika u spektrima soli i neutralne baze je očita, a najizraženiji je pomak singleta imidazolidinskog fragmenta s 3,59 na 3,27 ppm uslijed deprotoniranja (slika 7. a) i b)). Pri pokušaju deprotoniranja soli 40 %-tnom NaOH, ¹H NMR spektar pokazuje značajnu količinu vode, ali i poziciju imidazolidinskog singleta koji odgovara protoniranoj formi (slika 7.c)). Za usporedbu s ovim spektrom prikazano je in situ deprotoniranje fosfazenskom bazom P₁Pyrr₃*t-Bu u deuteriranom acetonitrilu (slika 7.d)). U obama otapalima spektar neutralnog spoja pokazuje smještaj signala imidazolidinskih CH₂ skupina u području signala α -položaja pirolidinskog fragmenta (1p, 4p; za numeraciju vidi sliku uz postupak sinteze spoja 7·HI). Protoniranjem dolazi do značajnog pomaka ovog signala prema nižim poljima te je isti idealan pokazatelj procesa protoniranja/deprotoniranja korištenog u svrhu mjerenja p K_a .

Slika 7. NMR spektar a) spoja 7·HI (DMSO-d₆) b) spoja 7 (DMSO-d₆) c) nakon deprotoniranja spoja 7·HI 40 %-tnom NaOH_(aq) (CD₃CN) i d) spektar neutralne forme dobivene nakon dodatka ekvivalentne količine P₁Pyrr₃**t*-Bu (CD₃CN)

4.2. Dijastereomerni omjer produkata aldolne reakcije

Djelovanje pripravljenih gvanidinijevih soli kao kokatalizatora praćeno je u reakciji aldolne kondenzacije između cikloheksanona i 4-klorbenzaldehida. Kako je navedeno u literaturnom pregledu, L-prolinom katalizirane reakcije pokazuje pozitivan utjecaj TBD soli na dijastereoselektivnost i enantioselektivnost. Pretpostavljena struktura katalitičkog kompleksa prikazana je na slici 2. S ciljem usporedbe s TBD-om istražena je kokatalitička aktivnost pripravljenih gvanidinijevih soli i praćen utjecaj supstituenata. Očekivano je da mogućnost

stvaranja IMHB-a, kao i različita usmjerenost NH veza, utječe na stabilnost gvanidinkarboksilat solnog mosta, a time i na stvaranje supramolekulskog kompleksa te, posljedično, i na dijastereoselektivnost. U ovom istraživanju nismo pratili utjecaj na enantioselektivnost reakcije. Reakcije su provedene u omjeru 10 : 1 uz dodatak 15 % prolina i 10 % gvanidinijeve soli (shema 9.). U svim je reakcijama dobivena smjesa *syn* i *anti* produkta, a dijastereomerni omjer ovisi o strukturi kokatalizatora. Iskorištenja reakcije određena su nakon kromatografije kojom je uklonjen neizreagirani 4-klorbenzaldehid.

Shema 9. Aldolna reakcija cikloheksanona i 4-klorbenzaldehida u omjeru 10 : 1 uz dodatak 15 % prolina i 10 % gvanidijeve soli za praćenje kokatalitičke aktivnosti gvanidinijevih jodida

Pripravljene jodidne soli derivata gvanidina obuhvaćaju acikličke i cikličke gvanidinske podjedinice te supstituente sklone stvaranju IMHB-a (7 i 5·HI). Molekulske strukture odabranih derivata razlikuju se prema steričkim zahtjevima, napetosti cikličkog sustava i već spomenutoj usmjerenosti NH veza gvanidina. Ciklički derivati posjeduju dvije NH veze usmjerene u istom pravcu. Optimalna geometrija N,N',N''-trisupstituiranih acikličkih gvanidinijevih kationa približno je C_3 simetrije⁷⁴ te, zbog usmjerenosti NH veza u različitim smjerovima pod kutem od približno 120°, ostvaruju samo jednu vodikovu vezu prema supstratu. Kako je navedeno i u literaturnom pregledu, jednaka usmjerenost NH skupina trebala bi pokazati bolju aktivaciju supstrata jer se povećava stabilnost kompleksa organokatalizator-supstrat. Pretpostavljeni je mehanizam reakcije uspostavljanje vodikovih veza između gvanidinijeve soli i prolina (solni most) pri čemu nastaje supramolekulski kompleks koji zatim katalizira reakciju.¹³ Omjeri *anti* i *syn* produkta dobiveni su pomoću dviju različitih tehnika (NMR i HPLC), a rezultati su prikazani u tablici 2.

Kokatalizator	Anti:syn (NMR)	Anti:syn (HPLC)	Iskorištenje/%
1·HI	84:16	83,6:16,4	66
2 ·HI	89:11	80,4:19,6	72
$2 \cdot \text{HPF}_6$	92:8	91,7:8,3	65
3 ·HI	83:17	84,2:15,8	61
4·HI	85:15	89,0:11,0	66
5·HI	61:39	65,8:34,2	65
6 ·HI	88:12	85,4:14,6	75
7·HI	77:23	78,8:21,2	72

Tablica 2. Omjer *anti* i *syn* produkta i iskorištenje reakcije kokatalize (cikloheksanon, 4-klorbenzaldehid, prolin i gvanidinijeva sol bez otapala pri sobnoj temperaturi)^a

^aReakcija je provedena na sobnoj temperaturi tijekom 48 sati uz omjer reaktanata: cikloheksanon : 4klorbenzaldehid = 10 : 1 uz dodatak 15 % prolina i 10 % gvanidinskog kokatalizatora

Usporedbom NMR i HPLC rezultata stvara se dvojba oko pouzdanosti podataka dobivenih primjenom HPLC-a. To se ponajprije odnosi na podatke za katalizu sa spojevima 2·HI, 4·HI i 6·HI. Treba naglasiti da je praćenje kromatografije izvedeno na 220 nm pri čemu male nestabilnosti u sastavu mobilne faze (heksan/2-propanol), kao i prisustvo nekih onečišćenja iz reakcije mogu bitno utjecati na intenzitet signala. NMR je u tom smislu promatran kao mnogo pouzdaniji, stoga će se u nastavku rada komentirati samo rezultati dobiveni NMR-om.

Spojevi 2·HPF₆, 2·HI i 6·HI daju najveći udio *anti* produkta. Primijećena razlika u aktivnosti 2·HPF₆ i 2·HI očekivana je s obzirom na to da je trend utjecaja aniona zabilježen u literaturi.¹³ Najlošiji dijastereomerni omjer produkata izmjeren je u slučaju spoja 5·HI, a tek nešto malo bolji rezultat dobiven je za spoj 7·HI. Ovi rezultati mogu se pripisati stvaranju IMHB-a koje dovodi do blokiranja jedne od dviju mogućih pozicija vezanja karboksilatne skupine prolina. Osnovna je razlika između spojeva 5·HI i 7·HI u bazičnosti dodatne funkcijske skupine, što upućuje na njezin negativan utjecaj na dijastereoselektivnost reakcije. Stoga je bilo očekivano da će njihova kokatalitička svojstva biti slabija. Valja napomenuti da spojevi 5·HI i 7·HI mogu stvarati i vodikovu vezu s prolinskom NH skupinom i na taj način blokirati katalizator za daljnje djelovanje. Utvrđivanje modela vezanja ovih spojeva zahtijeva dodatna istraživanja. Donekle iznenađuju rezultati za acikličke gvanidine primjenom kojih su

dobiveni mnogo bolji dijastereomerni omjeri u odnosu na 5·HI i 7·HI, ali ipak nešto lošiji u odnosu na 2·HI. Dimetilni derivat (1·HI) daje gotovo isti dijastereomerni omjer kao i diizopropilni (3·HI) iako je očekivan negativan utjecaj prisustva izopropilnih skupina putem steričkog ometanja u blizini vodikovih veza i slabljenja supramolekulskog kompleksa. Rezultati upućuju na zaključak da je primarno mjesto interakcije s prolinom NH veza u

Općenito, furanski derivati pokazuju bolja kokatalitička svojstva u odnosu na aminski (5·HI) i amidni (7·HI). Furanski je kisik slabiji akceptor vodikove veze od dušika⁷⁵ pa je mala vjerojatnost stvaranja IMHB-a i ometanja interakcije s prolinom. Kokatalitička aktivnost benzilnog derivata (4·HI) usporediva je s furanskim derivatima, što ide u prilog odsustvu IMHB-a kod furanskih derivata.

4.3. pK_a vrijednosti gvanidinijevih soli

susjedstvu furfurilne skupine, a ne pored alkilnih grupa.

Iz literature je poznata povezanost kiselo-baznih svojstava molekula s njihovom sklonošću stvaranju vodikovih veza^{5,76}, stoga smo novopripravljenim derivatima odredili p K_a vrijednosti u acetonitrilu uz odabrani referentni spoj poznate bazičnosti⁵⁸. Kiselo-bazna svojstva gvanidinijevih soli određivana su NMR analizom i spektrofotometrijskom titracijom. U tu svrhu upotrijebljene su baze P1pyrr3*t-Bu, trietilamin (Et₃N) i N^l , N^3 , N^3 -tetrametilgvanidin (TMG), čije su strukture prikazane na slici 8. Modelna reakcija aldolne kondenzacije provedena je u nevodenom mediju pa se rezultati reakcije (dijastereomerni omjer produkata) mogu usporediti s p K_a vrijednostima dobivenim u acetonitrilu.

Slika 8. Struktura baza a) P₁pyrr₃*t-Bu, b) 1,1,3,3- tetrametilgvanidina i c) trietilamina korištenih za NMR i UV/Vis mjerenja

Mjerenja p K_a NMR spektroskopijom provedena su uz dodatak ekvimolarnih količina triju referentnih baza (P₁Pyrr₃**t*-Bu, Et₃N i TMG) u deuteriranom acetonitrilu. Dobiveni spektri ovih smjesa pokazuju različite kemijske pomake pojedinih signala. Do pomaka signala dolazi zbog promjene u ravnoteži kiselina-baza, tj. zbog promjene u udjelu protonirane odnosno deprotonirane forme ispitivanog gvanidina, što se može vidjeti na slici 9. Ovim postupkom određene su p K_a vrijednosti svih gvanidinijevih kationa, a postupak je detaljnije opisan na primjeru gvanidinijeve soli 1·HI. Važno je napomenuti da je zanemarena kationanion interakcija pretpostavljajući da u acetonitrilu, otapalu visoke dielektrične konstante, stvaranje ionskih parova pri ovim koncentracijama nije prisutno.

Fosfazen P₁Pyrr₃**t*-Bu (p K_a (**B**H⁺) = 28,4⁷⁷) jača je baza od istraživanog gvanidina (1) zbog čega dolazi do deprotoniranja gvanidinijevog kationa, a dobiveni spektar odgovara neutralnom gvanidinu 1. Dodatkom trietilamina u acetonitrilnu otopinu soli 1·HI ne dolazi do bitne promjene spektra gvanidinijeve soli pa ovi spektri odgovaraju protoniranom gvanidinijevom kationu. Dodatkom ekvimolarne količine TMG-a dolazi do uspostave ravnoteže neutralne i protonirane forme, a uslijed brzine izmjene protona i sporosti NMR-a kemijski pomak signala nalazi se između dviju krajnosti (spektra soli i spektra neutralnog gvanidina). Pomak u odnosu na protoniranu i neutralnu formu proporcionalan je dosegu deprotoniranja.

Za svaku je gvanidinijevu sol odabrano nekoliko signala kod kojih se jasno mogao vidjeti pomak koji se ne preklapa s drugim signalima. Kemijski pomak odgovarajućeg signala iz uzorka s P₁pyrr₃*t-Bu odgovara deprotoniranoj formi (δ_A), a iz uzorka s trietilaminom odgovara (δ_{HA}). Referentna baza TMG-a daje δ_{obs} , iz čega se izračuna f_A i f_{HA} za konačno dobivanje p K_a (A) (A = gvanidin) u odnosu na referentnu bazu. Uvrštavanjem kemijskih pomaka u formulu (vidi poglavlje 2.4.)

$$pK_a(A) = -\log\left(\frac{f_A^2}{f_{HA}^2}\right) + pK_a(B)$$
(10)

iz više odabranih signala za svaki spoj, uz poznatu p K_a vrijednost referentne baze, izračunata je srednja vrijednost. Navedena formula izvedena je kombinacijom formula navedenih u literaturnom dijelu u kojima A označava ispitivani, a B referentni spoj (TMG) čiji p K_a iznosi 23,3.⁷⁸

Primjer p K_a izračuna za spoj 1·HI na temelju signala NMR spektra (slika 9.) prikazan je u tablici 3. Podaci za ostale spojeve nalaze se u dodatku u tablici D2. Eksperimentalne
vrijednosti dobivene na ovaj način najbolje slaganje pokazuju s drugim računskim modelom ($\Delta p K_a = 0, 1-0, 7$).

Slika 9. ¹H-NMR spektar spoja 1·HI i a) P_1Pyrr_3 *t-Bu, b) Et₃N i c) 1,1,3,3-TMG dodanih u ekvimolarnoj količini s označenim signalima čiji su kemijski pomaci korišteni za izračun p K_a vrijednosti

Tablica 3. Kemijski pomaci odabranih signala NMR spektara gvanidinijevih jodida s dodatkom P₁Pyrr₃*t-Bu (δ_A), Et₃N (δ_{HA}) i TMG (δ_{obs}) te udio deprotonirane i protonirane forme (\mathbf{f}_A i \mathbf{f}_{HA}) spoja 1·HI

Gv. sol	$\delta_{ m A}$	$\delta_{ m HA}$	$\delta_{ m obs}$	$\mathbf{f}_{\mathbf{A}}$	\mathbf{f}_{HA}	рК _а	$\overline{pK_a}$
1·HI	4,116	4,438	4,311	0,395	0,605	23,7	23.6
	7,391	7,504	7,452	0,462	0,538	23,4	20,0

Odabranim gvanidinima izmjeren je i $pK_a(\mathbf{BH}^+)$ metodom kompetitivne spektrofotometrijske titracije uz referentni spoj poznate bazičnosti (spoj **8**, $pK_a(\mathbf{8H}^+) = 21,0^{79}$). Smjesi ispitivanog gvanidina i referentne baze ili gvanidinijeve soli i referentne baze u acetonitrilu dodavala se kiselina odnosno baza u jednakim obrocima sve dok se spektar više nije mijenjao. Navedena referentna baza prikladna je zbog vrijednosti $pK_a(\mathbf{8H}^+)$ koje su približne vrijednostima dobivenim NMR pristupom (unutar 2 p K_a jedinice), kao i zbog značajne promjene apsorpcije spoja **8** u području 200 - 250 nm uslijed protoniranja.⁵⁸ Istraživani gvanidini nemaju prikladan kromofor pa dolazi do vrlo male promjene spektra uslijed protoniranja. Stoga je nužno koristiti referentnu bazu s karakterističnom, jasno vidljivom promjenom spektra. Kompetitivno protoniranje spojeva **1**, **2**, **3**, **6** i **7**, uz spoj **8** kao referentni spoj, provedeno je dodavanjem trifluormetansulfonske kiseline. Na slici 10. prikazana je promjena UV spektra smjese spojeva **1** i **8** uslijed protoniranja zbog dodatka TFSA u jednakim obrocima. Udio protonirane i deprotonirane forme svake od baza prisutnih u smjesi i p K_a istraživane baze određen je usklađivanjem sa spektrima čistih komponenti u području 200 - 400 nm pomoću programa HypSpec.

Slika 10. UV spektar titracije spojeva 1 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Rezultati mjerenja p K_a prikazani su u tablici 4. i uspoređeni s podacima dobivenim računalnim metodama izvedenim u Laboratoriju za fizikalno-organsku kemiju IRB-a.

kokat.	$pK_{a,rac}(BH^+)$	р <i>К</i> _{a,eksp} (NMR)	р <i>К</i> _{a,eksp} (UV/VIS)
1·HI	23,5 (23,5)	23,6	23,4
2 ·HI	23,0 (22,0)	22,1	21,4
3 ·HI	23,2 (23,3)	23,3	22,7 (21,0) ^a
4 ·HI	22,9 (22,0)	22,1	-
5·HI	24,1 (23,8)	23,8	-
6 ·HI	23,5 (23,2)	23,9	23,3
7 ·HI	24,5 (23,4)	23,8	23,3

Tablica 4. p K_a vrijednosti gvanidinijevih soli dobivene pomoću dvaju računskih modela: B3LYP//B3LYP i MP2//B3LYP, NMR i UV/VIS analizom.

^aVrijednost u zagradi odgovara rezultatu koji je dobiven titracijom smjese $3 \cdot HCl$ i $8 \cdot HCl$ s fosfazenskom bazom P_1 pyrr₃**t*-Bu

Najniže vrijednosti p $K_a(\mathbf{B}H^+)$ izmjerene su za gvanidinske derivate B = 2 i B = 4. S obzirom na to da su ovi derivati temeljeni na imidazolidinskom prstenu, niže vrijednosti p K_a možemo pripisati povećanoj napetosti prstena putem deformacije valentnog NCN kuta gvanidinske podjedinice.²³ Niže vrijednosti p K_a sličnih cikličkih gvanidina 2aminoimidazolidinskog tipa u odnosu na acikličke i 2-aminopirimidinske derivate (spoj 6·HI) poznate su iz literature⁸⁰, stoga su naši rezultati očekivani i u skladu s literaturnim trendom. Nešto više izmjerene p K_a vrijednosti za gvanidinijeve katione 5H⁺ i 7H⁺ (usporedive s onima izmjerenima za 6H⁺) upućuju na primjetan doprinos IMHB-a. Ovdje bismo odbacili solvataciju kao mogući uzrok povećanja p $K_a(5H^+)$ i p $K_a(7H^+)$ u odnosu na p $K_a(2H^+)$ jer acetonitril stvara slabe specifične interakcije s otopljenom tvari.⁸¹ Osim toga, strukturno slični derivati gvanidina pokazali su sustavni porast pKa vrijednosti u skladu s brojem IMHB-a.²⁹ Nadalje, zanimljivo je primijetiti da se NMR rezultati izvrsno slažu s kvantnokemijskim proračunima, posebice s računskim modelom MP2. Dobivene vrijednosti pokazuju malo odstupanje od eksperimenta ($\Delta p K_a < 0.5$), izuzev vrijednosti za spoj **6**H⁺ kod kojeg odstupanje iznosi još uvijek prihvatljivih $\Delta pK_a = 0.7$. UV/Vis mjerenja rezultirala su nešto nižim vrijednostima p K_a u odnosu na NMR vrijednosti, ali trend je zadržan.

Imajući u vidu zakonitost prema kojoj je sklonost stvaranju vodikovih veza za grupu strukturno sličnih spojeva u gruboj korelaciji s $pK_a^{82,83}$, najveća stabilnost L-prolinkokatalizator kompleksa, a time i veći utjecaj na dijastereomerni omjer produkata očekuje se za spojeve 2·HI i 4·HI. Usporedbom tih rezultata s eksperimentalno utvrđenim dijastereomernim omjerima (tablica 2.) u skladu je s ovim očekivanjem, ali i ukazuje na negativan doprinos fenilne podjedinice u odnosu na furansku.

Spojevi 5·HI i 7·HI imaju slična kiselo-bazna svojstva i oba pokazuju nisku dijastereoselektivnost, što upućuje na nisku sklonost stvaranju supramolekulskog kompleksa i dodatno ide u prilog pretpostavci o postojanju IMHB-a. Međutim, njihova međusobna razlika u dobivenim dijastereomernim omjerima nije u skladu s očekivanom jakosti IMHB-a kvalitativno procijenjenom na temelju parametra $pK_{\rm HB}$ koji pokazuje sklonost spojeva stvaranju vodikove veze.⁸⁴ Za *N*,*N*-dimetilaminopropan ta vrijednost iznosi 2,17, a za pirolidinamid 2,61.⁶³ Navedeni su spojevi supstituenti koji čine glavnu razliku u strukturi spojeva 5·HI i 7·HI. Iz navedenog proizlazi da spoj 7·HI stvara čvršći IMHB. Usporedivši ih, može se zaključiti da dodatan element bazičnosti u strukturi spoja 5·HI (dimetilamino skupina) negativno pridonosi kokatalitičkoj aktivnosti u smislu dijastereoselektivnosti, a mehanizam djelovanja različit je od jednostavne kompeticije za stvaranje vodikove veze.

Pokušaj praćenja izmjene jodida s acetatom s ciljem istraživanja gvanidin-karboksilat interakcije nije uspio zbog karakterističnih spektara gvanidinijevih jodida. Svi gvanidinijevi jodidi imaju karakterističnu apsorpciju pri 246 nm, što potječe od jodida (slika 11.a)), a potvrđeno je sličnošću UV spektara neutralne baze i kloridne soli. To se može vidjeti na slici 11. b) gdje je prikazana mala promjena UV spektra spoja **3**·HCl s dodatkom P₁Pyrr₃*t-Bu.

Slika 11. a) UV spektar spoja 2 i njegove jodidne soli b) promjena UV spektra spoja 3·HCl s dodatkom P₁pyrr₃**t*-Bu (strelica označava smjer promjene)

4.4. IR spektri gvanidinijevih jodida

Svi IR spektri gvanidinijevih jodida pokazuju karakteristične vrpce u području 1580 – 1660 i 3100 - 3300 cm⁻¹ (tablica 5.). Vrpce u području 3100 - 3300 cm⁻¹ rezultat su istezanja N-H skupina, a preklapaju se s istezanjima C-H veza. Široke su i srednjeg intenziteta, osim za 2·HI i 7.HI kod kojih je taj intenzitet veći. Široke vrpce rezultat su interakcija među različitim modovima NH skupina. Vrpce u području 1580 – 1660 cm⁻¹ odgovaraju C=N istezanju i N-H savijanju.^{85,86} U području oko 1600 cm⁻¹ vidljive su dvije intenzivne vrpce kada se u strukturi nalazi $R^2 = R^3 = -(CH_2)_2$)-. Ova karakteristika IR spektara gvanidinijevih soli tipična je za monosupstituirane i disupstituirane derivate⁸⁶ i pripisana je antisimetričnom istezanju C-N veza spregnutim sa savijanjem NH₂ skupine. Iako u istraživanim spojevima nema NH₂ skupine, odnosno u svim slučajevima su trisupstituirani derivati, dolazi do pojave dviju vrpci u IR spektrima spojeva s 2-aminoimidazolidinskom podjedinicom. Nadalje, poznato je da uvođenje napetosti prstena u strukturu povećava π karakter egzocikličke veze i pomiče odgovarajuću vibraciju prema području viših energija.⁸⁷ U istraživanim spojevima prisutstvo imidazolidinskog prstena rezultira pomakom C-N vibracije za otprilike 50 cm⁻¹ prema višim valnim brojevima, dok je nova vibracija u području nižih energija, što odgovara vibraciji N-H veza smanjenog π karaktera. Pojava dviju gvanidinskih vibracija upućuje na izraženu lokalizaciju veza u gvanidinskoj podjedinici i smanjenu stabilizaciju protonirane forme, a

posljedično i na povećanu kiselost gvanidinijevog kationa. Ove su vrpce različitog intenziteta i u većini spojeva intenzivnija se vrpca nalazi pri višim valnim brojevima. Izostanak druge vrpce kod spoja 6·HI u skladu je s navedenom analizom jer kod ovoga spoja nema steričke napetosti, što pokazuju proračuni elektronske strukture serije sličnih napetih gvanidina.²³

Na položaj vrpce utječu vodikove veze, supstituenti i delokalizacija elektrona. Prisutnost vodikovih veza uzrokuje slabljenje veze NH pa se apsorpcijski maksimum pomiče prema nižim valnim brojevima (Hookeov zakon). Veza NH slabi jer dolazi do njezinog produljenja. To uzrokuje jaču polarizaciju, veću promjenu dipolnog momenta pa je vrpca većeg intenziteta. U istraživanoj seriji gvanidinijevih soli nije moguće decidirano govoriti o prisustvu ili odsustvu IMHB-a jer su spektri snimani u krutoj fazi i moguće je prisutstvo većeg broja različitih interakcija NH skupina s okolinom. Međutim, zanimljivo je primijetiti pomak NH vibracije u spoju 5·HI prema nižim energijama u odnosu na ostale spojeve, što bi bilo u skladu s pretpostavkom o prisustvu IMHB-a. Kompleksna struktura vrpci u području 2900 - 3500 cm⁻¹ IR spektra soli 7·HI onemogućuje analizu. Također, vibracijske vrpce gvanidinskog prstena preklopljene su s vrpcama amidne podjedinice pa opis IR spektra ovog spoja zahtijeva dodatna istraživanja.⁸⁸

	Valni broj/cm ⁻¹		
1·HI	3217,8	1616,6	
2 ·HI	3189,1	1660,6, 1580,1	
3 ·HI	3250,6	1605,8	
4 ·HI	3210,8	1665,5, 1595,6	
5·HI	3171,2	1659,3, 1579,6	
6·HI	3211,2	1616,4	
7·HI	3138,1	1661,7, 1595,0 ^a	

Tablica 5. Karakteristične IR vrpce gvanidinijevih jodida

a) Točna asignacija ovih vrpci zahtijeva dodatna detaljna istraživanja koja uključuju i kvantno-kemijske proračune.

4.5. MS/MS analiza

MS/MS analizom praćena je fragmentacija iona nastalog vezanjem dvaju različitih gvanidina na jodidni anion (anionom premošteni dimer). Gvanidinijeva sol u smjesi s N,N,N',N'tetrametilgvanidinom (**TMG**) stvara u plinskoj fazi jodidom premoštene dimere istraživanog gvanidina i **TMG-**a međusobno povezanih vodikovom vezom ([**B**H···I··**·TMG**H]⁺). Fragmentacija produkt iona provedena je pri različitim energijama kolizije (0 – 30 eV), prilikom čega dolazi do pucanja slabih vodikovih veza u navedenom kompleksu. Pritom se pratila relativna stabilnost iona, a ne brzina nastajanja pojedinog iona. Pri većim su energijama mogući dodatni procesi pa je pretpostavka da je pri nižim energijama kolizije i veća razlika u afinitetima. U plinskoj se fazi gvanidin nastoji okružiti nečim što će mu anulirati naboj, a u ovom je slučaju to jodidni anion. Ukupan naboj tako nastalog dimera je 1⁺, a njegova se fragmentacija kreće u dvama smjerovima (shema 10.), pri čemu nastaju ioni [**B**H]⁺ i [**TMG**H]⁺. TMG služi kao referentni spoj budući da se njegov afinitet prema jodidu ne mijenja, dok se afinitet gvanidina mijenja. Različite energije gvanidina daju trend, tj. različiti nagibi pokazuju različitu sklonost vezanju aniona, što također može utjecati na konačan ishod modelne aldolne reakcije.^{63,64}

 $[\mathbf{B}\mathbf{H}]^{+} + [\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}\cdots\mathbf{I}] \longleftarrow [\mathbf{B}\mathbf{H}\cdots\mathbf{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^{+} \longrightarrow [\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^{+} + [\mathbf{B}\mathbf{H}\cdots\mathbf{I}]$

Shema 10. Dva moguća smjera fragmentacije jodidom premoštenog dimera

U većini slučajeva fragmentacija je vodila do nastajanja jednog ili dvaju kationa koji su prepoznati kao protonirani gvanidini nastali uslijed pucanja nekovalentne interakcije s jodidom. Omjer intenziteta iona nastalih fragmentacijom (BR) uzet je kao deskriptor sklonosti gvanidina stvaranju kompleksa s jodidnim anionom. BR je dobiven iz omjera relativne zastupljenosti signala koji odgovara $[TMGH]^+$ (m/z = 116) i zbroju relativnih zastupljenosti dvaju kationa nastalih fragmentacijom heterodimera:

$$BR = \frac{\text{relativna zastupljenost[TMGH]}^{+}}{\text{relativna zastupljenost [TMGH]}^{+} + \text{relativna zastupljenost [BH]}^{+}}.$$
(11)

Izmjereni BR za šest gvanidinijevih jodida sumarno je prikazan na slici 12., a intenziteti i omjeri dobivenih iona navedeni su u Dodatku u tablici D1. Kao referentni spoj korišten je TMG te ove rezultate treba promatrati kao relativne vrijednosti. Ovdje treba naglasiti da rezultati zapravo prikazuju sklonost vezanju kompleksa [TMGH–I]⁰, a ne jodida, no

pojednostavljenja radi smatra se da će trend biti isti jer je zadržan isti tip nekovalentne interakcije.

Fragmentacija heterodimera spojeva 2·HI i 4·HI dala je samo ion (m/z = 116) koji odgovara TMGH⁺. Zbog velike razlike u afinitetima fragmentacija teče samo u jednom smjeru, tj. nema dva kompetitivna puta. Gvanidinijevi kationi spojeva 2·HI i 4·HI imaju puno veći afinitet vezanju jodida u odnosu na TMG koji izlazi kao protonirana forma. Zanimljivo je primijetiti da ta dva spoja imaju najniži izmjereni p K_a (vidi poglavlje 4.3.) te su ovi rezultati u skladu s kvalitativnim razmatranjem da spojevi nižeg p K_a rade čvršću vodikovu vezu s anionima i polarnim grupama.⁵ Kod ostalih se gvanidina pojavljuju dva fragmenta, što ukazuje na to da su afiniteti vezanja jodida za TMG i istraživani gvanidin sličniji, ali je trend ipak vidljiv.

Zaključno, ovi spojevi pokazuju sljedeći trend: $2H^+ \approx 4H^+ > = 6H^+ > 1H^+ > TMGH^+ >$ $3H^+ \approx 7H^+$. Pomalo iznenađuje relativno visoka sklonost vezanju jodida kationa $1H^+$ usprkos dosta visokoj vrijednosti p K_a i pretpostavljenom vezanju aniona putem jedne vodikove veze. S druge strane, $3H^+$ pokazuje očekivano nisku sklonost vezanju aniona, kao i amid $7H^+$. U potonjem slučaju dobiveni je rezultat posljedica prisustva IMHB-a zbog ometanja međumolekulske interakcije.

Slika 12. Branching ratio heterodimera premoštenih jodidom u ovisnosti o energiji kolizije

U slučaju spoja 5·HI uočena je drugačija fragmentacija produkt iona u odnosu na ostale spojeve. Za očekivane signale vrijedi da je $m/z = 116 (TMGH^+)$ i 171 (5H⁺) uz molekulski ion m/z = 414, ali se na slici 13. može vidjeti i nastanak iona m/z = 354. Tu ne dolazi do dvaju mogućih procesa fragmentacije cijepanjem vodikove veze koji bi govorili o relativnim energijama vezanja, nego do različite kemije koju je potrebno još istražiti.

Slika 13. MS spektar anionom premoštenog dimera spoja 5·HI pri $E_{coll} = 5$ eV sa strelicom naznačenim ionom m/z = 354

Razlika u cijepanju između dva fragmentacijska kanala proporcionalna je razlici u energiji. U plinskoj fazi nema otapala koje bi stabiliziralo ione. Naboj većeg iona bolje je stabiliziran jer ima više elektrona, a cijepanjem mu raste energija jer postaje manji. Upotrijebljeni instrument ima inicijalno visoku energiju zbog čega već pri nižim energijama kolizije dolazi do značajnog stupnja fragmentacije. Stoga je dobivene rezultate moguće iskoristiti samo za kvalitativnu interpretaciju, odnosno za dobivanje trenda koji pokazuje razlike u sklonosti gvanidina vezanju jodida.

Dobiveni kvalitativni trend afiniteta vezanja pojedinog gvanidnijevog kationa za jodidni ion odnosi se na plinsku fazu u kojoj nema utjecaja otapala. S obzirom na to da su reakcije kokatalize provedene u mediju male polarnosti (cikloheksanon, $\varepsilon = 18,20^{89}$), pretpostavljen je mali utjecaj medija na prisutnu korelaciju između afiniteta vezanja jodida i stabilnosti kompleksa kokatalizator-prolin. Iz dobivenih rezultata zaključuje se kako je

relativno visok afinitet vezanja jodida derivata $2 \cdot \text{HI}$ i $4 \cdot \text{HI}$ posljedica nižeg p K_a u odnosu na ostale spojeve. Spoj $6 \cdot \text{HI}$ daje bolji omjer *anti/syn* produkta od $1 \cdot \text{HI}$ i veću sklonost vezanju jodida iako su slične bazičnosti, ali u ovom slučaju prevladava važnost usmjerenosti NH skupina gvanidina prema prolinu. Gvanidin 7 je bazičniji u odnosu na 2 i 4, a njegova konjugirana kiselina slabije veže jodid. Oba rezultata vode očekivanom slabijem vezanju s prolinom, što je u skladu s dobivenom niskom dijastereoselektivnosti u reakciji kokatalize. $3 \cdot \text{HI}$ ima sličan branching ratio kao i $7 \cdot \text{HI}$, ali nešto bolji dijastereomerni omjer pripisujemo manjoj bazičnosti i nemogućnosti stvaranja IMHB-a. Kako je već navedeno, spojevi s 5-članim prstenom pokazuju najbolji dijastereomerni omjer, imaju niži p K_a i najbolje vežu jodid (odnosno jod-TMG kompleks). Povećanje veličine prstena u spoju $6 \cdot \text{HI}$ (6-člani prsten) dovodi do povećanja bazičnosti neutralnog gvanidina u odnosu na gvanidin 2 za oko 1 p K_a te vrlo blagog smanjenja sposobnosti vezanja aniona. Navedene promjene svojstava ne utječu bitno na dijastereomerni omjer u aldolnoj reakciji.

§ 5. ZAKLJUČAK

U ovom su istraživanju uspješno sintetizirane jodidne soli derivata gvanidina jednostavnom reakcijom izotiouronske soli i odgovarajućeg amina u visokom prinosu. Strukture ciljnih molekula odabrane su na način da obuhvaćaju cikličke i acikličke gvanidine te spojeve s dodatnim funkcijskim skupinama koje mogu sudjelovati u stvaranju IMHB-a. Dobivene gvanidinijeve soli primijenjene su kao kokatalizatori u reakciji aldolne kondenzacije uz L-prolin kao katalizator.

Na temelju dobivenih rezultata uočen je sljedeći trend aktivnosti kokatalizatora (od najboljeg *anti/syn* omjera prema lošijem): $2 \cdot \text{HPF}_6 > 2 \cdot \text{HI} \approx 6 \cdot \text{HI} > 4 \cdot \text{HI} \approx 1 \cdot \text{HI} \approx 3 \cdot \text{HI} > 7 \cdot \text{HI} > 5 \cdot \text{HI}$.

Određivanjem karakterističnih fizikalno-kemijskih svojstava istraživanih kokatalizatora dobivena je jasnija slika o utjecaju kiselo-baznih svojstava kokatalizatora, geometrijskih svojstava (usmjerenosti NH veza) i prisustva dodatnih funkcijskih skupina na dijastereomerni omjer reakcije. Iz navedenog trenda može se zaključiti da ciklički gvanidini daju viši dijastereomerni omjer od acikličkih ukoliko u strukturi nisu prisutne funkcijske skupine koje mogu formirati IMHB. Prisustvo funkcijskih skupina, akceptora vodikove veze, drastično narušava dijastereomerni omjer, što je pripisano ometanju stvaranja [L-prolin - gvanidin] kompleksa kroz kompeticiju unutarmolekulske i međumolekulske vodikove veze. Istraživanim spojevima određen je p K_a u acetonitrilu čime je potvrđen očekivani trend da spojevi temeljeni na imidazolidinskoj podjedinici (5-člani prsten) pokazuju niže vrijednosti pK_a od piperidinskog i acikličkih derivata. Prisustvo dodatnih funkcijskih skupina dovodi do porasta pKa za oko 2, što je indikator prisustva IMHB-a. Iako je primijećen grubi trend da spojevi višeg p K_a daju niži dijasteromerni omjer, rezultati za 6 HI upućuju da je dobiveni dijasteromerni omjer ponajprije posljedica cikličke strukture, odnosno usmjerenosti NH veza. Naime, povećanje p K_a za 1 (od 2·HI do 6·HI) ne utječe bitno na ostvareni dijastereomerni omjer.

Rezultati praćenja fragmentacije anionom premoštenih dimera u skladu su sa zaključkom izvedenim iz usporedbe dijastereoselektivnosti i pK_a . Gvanidinijevi kationi imidazolidinskog tipa ($2H^+$ i $4H^+$) tek nešto bolje vežu jodid (odnosno [TMGH·I]⁰ jedinku) u odnosu na $6H^+$, dok je kod acikličkih derivata vezanje bitno slabije. Očekivano,

imidazolidinski derivat koji nosi amidnu skupinu (7 H^+) stvara labilnije komplekse. Navedeni rezultati dodatno govore u prilog činjenici da je p K_a gvanidinijevog kationa (odnosno soli) najmanje bitno svojstvo i da su rezultati kokatalize ponajprije posljedica geometrije gvanidinske podjedinice te kompeticije između unutarmolekulske i međumolekulske vodikove veze.

U IR spektrima gvanidinijevih soli primijećene su karakteristične vrpce asimetričnog istezanja gvanidinske podjedinice. Rezultati su očekivani te derivati imidazolidinskog tipa pokazuju dvije jasno razdvojene vrpce, dok aciklički, kao i ciklički derivat pirimidinskog tipa imaju samo jednu vrpcu. Iz snimljenih spektara nije bilo moguće donijeti jasan stav o postojanju IMHB-a.

Dobiveni rezultati istraživanja prirođenih svojstava i svojstava u otopini pružaju nove informacije o odnosu strukture i kokatalitičke aktivnosti gvanidina. Ova saznanja također upućuju na smjer u dizajnu novih gvanidinskih kokatalizatora koji će biti optimalne strukture, bazičnosti i odgovarajuće sklonosti vezanju supstrata vodikovom vezom. To se u prvom redu odnosi na optimizaciju utjecaja ostalih dijelova molekule koji mogu kooperativnim utjecajem pojačati ili ometati nastajanje supramolekulskog kompleksa. Nadalje, s obzirom na prirodu [gvanidin-prolin] kompleksa, nužno je istražiti dinamiku cijelog procesa, varijacije u svojstvima otapala, temperature itd. Utvrđivanje optimalnog balansa među svim navedenim čimbenicima predstavlja dugoročan cilj daljnjih istraživanja.

§ 6. POPIS OZNAKA, KRATICA I SIMBOLA

BR	omjer grananja (engl. branching ratio)
DCM	diklormetan
DMAN	1,8-bis(dimetilamino)-naftalen
DMSO	dimetil-sulfoksid
EDC	1-(3-dimetilamino-propil)-3-etilkarbodiimid-hidroklorid
e.e.	enantiomerni višak
GABA	γ-aminomaslačna kiselina
IMHB	unutarmolekulska vodikova veza
MTBD	7-metil-1,5,7-triazabiciklo[4.4.0]dec-1-en
TBD	1,5,7-triazabiciklo[4.4.0]dec-1-en
TFSA	trifluormetansulfonska kiselina
THF	tetrahidrofuran
TMG	$N^{I}, N^{J}, N^{3}, N^{3}$ -tetrametilgvanidin

§ 7. LITERATURNI IZVORI

¹ E. D. Raczyńska, M. K. Cyrański, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska, K. Duczmal, *J. Phys. Org. Chem.* **16** (2003) 91–106.

² D. Castagnolo, S. Schenone, M. Botta, *Chem. Rev.* **111** (2011) 5247–5300.

³ Y.-H. Wang, Z.-Y. Cao, Q.-H. Li, G.-Q. Lin, J. Zhou, P. Tian, *Angew. Chem. Int. Ed.* **59** (2020) 8004–8014.

⁴ M. P. Coles, *Chem. Commun.* **25** (2009) 3659–3676.

⁵ P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Acc. Chem. Res. 42 (2009) 33-44.

⁶ T. Ishikawa, *Superbases for Organic Synthesis*. John Wiley and Sons Ltd., Chichester, West Sussex, PO19 8SQ, UK, 2009, str. 24–25, 93–143.

⁷ Z. Glasovac, M. Eckert-Maksić, I. Kaljurand, J. Saame, I. Leito, *Int. J. Mass Spectrom.* **435** (2019) 61–68.

⁸ F. V. Drozdov, V. M. Kotov, INEOS OPEN **3** (2020) 200–213.

⁹ P. Selig, (ur.) *Guanidines as Reagents and Catalysts II. Topics in Heterocyclic Chemistry*, Vol 51, Springer International Publishing, Cham, 2015, str. 1–26.

¹⁰ T.-P. Loh, L.-C. Feng, H.-Y. Yang, J.-Y. Yang, *Tetrahedron Lett.* **43** (2002) 8741–8743.

¹¹ Y. Hayashi, J. Yamaguchi, T. Sumiya, M. Shoji, *Angew. Chem., Int. Ed. Engl.* **43** (2004) 1112–1115.

¹² J. Martín, I. Merino, N. Fanjul-Mosteirín, R. Mendoza-Meroño, S. García-Granda, C. Concellón, V. del Amo, *Eur. J. Org. Chem.* **2019** (2019) 188–198.

¹³ A. Martínez-Castañeda, B. Poladura, H. Rodríguez-Solla, C. Concellon, V. del Amo, *Org. Lett.* **13** (2011) 3032–3035.

¹⁴ E. D. Raczyńska, P.-C. Maria, J.-F. Gal, M. Decouzon, J. Phys. Org. Chem. 7 (1994) 7 725–733.

¹⁵ R. G. S. Berlinck, A. F. Bertonha, M. Takaki, J. P. G. Rodriguez, *Nat. Prod. Rep.* **34** (2017) 1264–1301

¹⁶ F. Saczewski, Ł.Balewski, Expert Opin. Ther. Patents. 19 (2009) 1417–1448.

¹⁷ J. V. Greenhill, P. Lue, Prog. Med. Chem. **30** (1993) 203–326.

¹⁸ K. A. Schug, W. Lindner, *Chem. Rev.* **105** (2005) 67–113.

¹⁹ P. J. Bailey, S. Pace, Coord. Chem. Rev. **214** (2001) 91–141.

- ²⁰ J. E. Taylor, S. D. Bulla, J. M. J. Williamsa, Chem. Soc. Rev. 41 (2012) 2109–2121.
- ²¹ J. Clayden, N. Greeves, S. Warren, P. Wothers, *Organic Chemistry*, Oxford University Press Inc., New York, 2001, str. 181–207.
- ²² P. Gund, J. Chem. Educ. 49 (1972) 100-103.
- ²³ A. Briš, Z. Glasovac, D. Margetić, *New J. Chem.* **45** (2021) 2384–2392.
- ²⁴ E.D. Raczyńska, M. Decouzon, J.-F. Gal, P.-C. Maria, G. Gelbard, F. Vielfaure-Joly, J. Phys. Org. Chem. 14 (2001) 25–34.
- ²⁵ D. Barić, I. Dragičević, B. Kovačević, J. Org. Chem. 78 (2013) 4075–4082.
- ²⁶ M. Meot-Ner, P. Hamlet, E. P. Hunter, F. H. Field, J. Am. Chem. Soc. **102** (1980) 6393–6399.
- ²⁷ D. Esteban Gómez, L. Fabrizzi, M. Licchelli, E. Monzani, Org. Biomol. Chem. **3** (2005) 1495–1500.
- ²⁸ J. Clayden, N. Greeves, S. Warren, P. Wothers, *Organic Chemistry*, Oxford University Press Inc., New York, 2001, str. 147.
- ²⁹ Z. Glasovac, V. Štrukil, M. Eckert-Maksić, D.Schröder, M. Kaczorowska, H. Schwarz, *Int. J. Mass Spectrom.* **270** (2008) 39–46.
- ³⁰ Z. Glasovac, M. Eckert-Maksić, Aust. J. Chem. **67** (2014) 1056–1062.
- ³¹ P. Selig, *Synth.* **45** (2013) 703–718.
- ³² X. Fu, C.-H. Tan, *Chem. Commun.* **47** (2011) 8210–8222.
- ³³ P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 40 (2001) 3726–3748.
- ³⁴ T. Kita, A. Georgieva, Y. Hashimoto, T. Nakata, K. Nagasawa, *Angew. Chem. Int. Ed.* **41** (2002) 2832–2834.
- ³⁵ M. K. Kiesewetter, M. D. Scholten, N. Kirn, R. L. Weber, J. L. Hedrick, R. M. Waymouth, *J. Org. Chem.* **74** (2009) 9490–9496.
- ³⁶ T. Ishikawa, Y. Araki, T. Kumamoto, H. Seki, K. Fukuda, T. Isobe, *Chem. Commun.* **37** (2001), 245–246.
- ³⁷ D. Simoni, R. Rondanin, M. Morini, R. Baruchello, F.P. Invidiata, *Tetrahedron Lett.* **41** (2000) 1607–1610.
- ³⁸ D. Simoni, M. Rossi, R. Rondanin, A. Mazzali, R. Baruchello, C. Malagutti, M. Roberti, F.P. Invidiata, *Org. Lett.* **2** (2000) 3765–3768.
- ³⁹ G. Gelbard, F. Vieffaure-Joly, *Tetrahedron Lett.* **39** (1998) 2743–2746.
- ⁴⁰ U. Schuchardt, R. Sercheli, R. M.Vargas, J. Braz. Chem. Soc. 9 (1998) 199-210.

⁴¹ E. van Aken, H. Wynberg, F. van Bolhuis, *J. Chem. Soc., Chem. Commun.* **8** (1992) 629–630.

- ⁴² P. Viehmann, S. Hecht, Beilstein, J. Org. Chem. 8 (2012) 1825–1830.
- ⁴³ A. Kondoh, M. Oishi, H. Tezuka, M. Terad, Angew. Chem. Int. Ed. 132 (2020) 7542–7547.
- ⁴⁴ F. Tan, X. Liu, X. Hao, Y. Tang, L. Lin, X. Feng, ACS Catal. 6 (2016) 6930–6934.
- ⁴⁵ J. Li, X. Meng, C. Hu, Z. Su, J. Org. Chem. 84 (2019) 15020–15031.
- ⁴⁶ B. List, A. R. Lerner, C.F. Barbas, J. Am. Chem. Soc. **122** (2000) 2395–2396.
- ⁴⁷ A. G. Doyle, E. N. Jacobsen, *Chem. Rev.* **107** (2007) 5713–5743.
- ⁴⁸ H. E. Zimmerman, M. D. Traxler, J. Am. Chem. Soc. 79 (1957) 1920–1923.
- ⁴⁹ S. Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am. Chem. Soc. **125** (2003) 2475–2479.
- ⁵⁰ Ö. Reis, S. Eymur, B. Reis, A. S. Demir, Chem. Commun. 9 (2009) 1088–1090.
- ⁵¹ Z. S. Al-Taie, S. R. Anetts, J. Christensen, S. J. Coles, P. N. Horton, D. M. Evans, L. F.

Jones, F. F. J. de Kleijne, S. M. Ledbetter, Y. T. H. Mehdar, P. J. Murphy, J.A. Wilson, *RSC Adv.* **10** (2020) 22397–22416.

- ⁵² M. L. Clarke, J. A. Fuentes, Angew. Chem. Int. Ed. 46 (2007) 930–933.
- ⁵³ B. S. Vachan, M. Karuppasamy, P. Vinoth, S. Vivek Kumar, S. Perumal, V. Sridharana, J.
 C. Menéndez. *Adv. Svnth. Cat.* **362** (2020) 87–110.
- ⁵⁴ X.-S. Xue, C. Yang, X. Li, J.-P. Cheng, J. Org. Chem. 79 (2014) 1166–1173.
- ⁵⁵ M. T. Allingham, E. L. Bennett, D. H. Davies, P. M. Harper, A. Howard-Jones, Y. T.H. Mehdar, P. J. Murphy, D. A. Thomas, P. W. R. Caulkett, D. Potter, C. M. Lam, A. C. O'Donoghue, *Tetrahedron*. **72** (2016) 496–503.
- ⁵⁶ L. Sooväli, I. Kaljurand, A. Kütt, I. Leito, Anal. Chim. Acta. 566 (2006) 290-303.
- ⁵⁷ J. Reijenga, A. van Hoof, A. van Loon, B. Teunissen, Anal. Chem. Insights. 8 (2013) 53-71.
- ⁵⁸ I. Kaljurand, T. Rodima, I. Leito, I. A. Koppel, R. Schwesinger, *J. Org. Chem.* **65** (2000) 6202–6208.
- ⁵⁹ I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito, I. A. Koppel, *J. Org. Chem.* **70** (2005) 1019–1028.
- ⁶⁰ C. S. Handloser, M. R. Chakrabarty, M. W. Mosher, J. Chem. Educ. 50 (1973) 510–511.

⁶¹ <u>https://www.andrew.cmu.edu/user/rule/bc_oli/Pset/PS02/nmrtit.html</u> (datum pristupa 9. kolovoza 2022.)

⁶² J. Bezençon, M. B. Wittwer, B. Cutting, M. Smiesko, B. Wagner, M. Kansy, B.Ernst, J. Pharm. Biomed. **93** (2014) 147–155.

- ⁶³ C. Laurence, J.-F. Gal, *Lewis basicity and affinity scales. Data and measurements*, John Wiley and Sons Ltd., Chichester, West Sussex, PO19 8SQ, UK, 2010, str. 337–338.
- ⁶⁴ R.G. Cooks, T.L. Kruger, J. Am. Chem. Soc. 99 (1977) 1279.
- ⁶⁵ P. S.H. Wong, S. Ma, F. Wang, R. G. Cooks, J. Organomet. Chem. **539** (1997) 131–139.
- ⁶⁶ R. G. Cooks, P. S. H. Wong, Acc. Chem. Res. **31** (1998) 379–386.
- ⁶⁷S. L. Craig, M. Zhong, B. Choo, J. I. Brauman, J. Phys. Chem. A. 101 (1997) 19–24.
- ⁶⁸ S. K. Maji, R. Banerjee, D. Velmurugan, A. Razak, H. K. Fun, A. Banerjee, *J. Org. Chem.* **67** (2002) 633–639.
- ⁶⁹ A. Rephaeli, I. Gil-Ad, A. Aharoni, I. Tarasenko, N. Tarasenko, Y. Geffen, E. Halbfinger,
- Y. Nisemblat, A. Weizman, A. Nudelman, J. Med. Chem. 52 (2009) 3010-3017.
- ⁷⁰ N. Aoyagi, T. Endo, Synth. Commun. 47 (2017) 442-448.
- ⁷¹ L. Barešić, D. Margetić, Z. Glasovac, Int. J. Mol. Sci. 23 (2022) 16036.
- ⁷² K. T. Leffek, P. Pruszynski, K. Thanapaalasingham, Can. J. Chem. 67 (1989) 590-595.
- ⁷³ J. Gorzynski Smith, *Organic Chemistry*, McGraw-Hill Companies Inc., New York, 2011, str. 241.
- ⁷⁴ Z. Glasovac, B. Kovačević, E. Meštrović, M. Eckert-Maksić, *Tetrahedron Lett.*46 (2005)
 8733–8736.
- ⁷⁵ H.-J. Böhm, S. Brode, U. Hesse, G. Klebe, *Chem. Eur. J.* **2** (1996) 1509–1513.
- ⁷⁶ A. Shokri, A. Abedin, A. Fattahi, S. R. Kass, J. Am. Chem. Soc. 134 (2012) 10646–10650.
- ⁷⁷ S. Tshepelevitsh, A. Kütt, M. Lõkov, I. Kaljurand, J. Saame, A. Heering, P. G. Plieger, R.Vianello, I. Leito, *Eur. J. Org. Chem.* **40** (2019) 6735–6748.
- ⁷⁸ I. M. Kolthoff, M. K. Chantooni, S. Bhowmik, J. Am. Chem. Soc. **90** (1968) 23–28.
- ⁷⁹ H. Jawale, S. Mistry, C. Conder, P. G. Wenthold, J. Org. Chem. 87 (2022) 985–992.
- ⁸⁰ C. Ghobril, P. Hammar, S. Kodepelly, B. Spiess, A. Wagner, F. Himo, R. Baati, *Chem. Cat. Chem.* **2** (2010) 1573–1581.
- ⁸¹ J. R. Reimers, L. E. Hall, J. Am. Chem. Soc. 121 (1999) 3730-3744.
- ⁸² D. Esteban Gómez, L. Fabrizzi, M. Licchelli, E. Monzani, Org. Biomol. Chem. **3** (2005) 1495–1500.
- ⁸³ K. Haav, S. A. Kadam, L. Toom, P. A. Gale, N. Busschaert, M. Wenzel, J. R. Hiscock, I. L. Kirby, T. Haljasorg, M. Lõkov, I. Leito, *J. Org. Chem.*, **78** (2013) 7796–7808.
- ⁸⁴ R. W. Taft, D. Gurka, L. Joris, P. von R. Schleyer, J. W. Rakshys, *J. Am. Chem. Soc.* **91** (1969) 4801–4808.

- ⁸⁵ W. J. Jones, *Trans. Faraday Soc.* **55** (1959) 524–531.
- ⁸⁶ T. Goto, K. Nakanishi, M. Ohashi, Bull. Chem. Soc. Jpn. **30** (1957) 723–725
- ⁸⁷ B. Galabov, D. Simov, L. Krustev, J. Mol. Struct. **34** (1976) 235–244.
- ⁸⁸ N. Verma, Y. Tao, B. L. Marcial, E. Kraka, J. Mol. Model. 25 (2019) 48.
- ⁸⁹ T. W. Richards, J. W. Shipley, J. Am. Chem. Soc. **41** (1919) 2002–2012.

§8. DODATAK

- D1. ¹H-NMR spektar spoja AM1
- Slika D2. ¹³C-NMR spektar spoja AM1
- Slika D3. ¹H-NMR spektar spoja AM2
- Slika D4. ¹³C-NMR spektar spoja AM2
- Slika D5. ¹H-NMR spektar spoja AM3
- Slika D6. ¹³C-NMR spektar spoja AM3
- Slika D7. ¹H-NMR spektar spoja 4·HI
- Slika D8. ¹³C-NMR spektar spoja 4·HI
- Slika D9. ¹H-NMR spektar spoja 5·HI
- Slika D10. ¹³C-NMR spektar spoja 5·HI
- Slika D11. ¹H-NMR spektar spoja 7·HI
- Slika D12. ¹³C-NMR spektar spoja 7·HI
- Slika D13. ¹H-NMR spektar spoja 7
- Slika D14. ¹³C-NMR spektar spoja 7
- Slika D15. ¹H-NMR spektar spoja 8
- Slika D16. ¹H-NMR spektar spoja 8·HCl
- Slika D17. ¹³C-NMR spektar spoja 8·HCl
- Slika D18. ¹H-NMR spektar spoja 2·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini
- Slika D19. ¹H-NMR spektar spoja **3**·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini
- Slika D20. ¹H-NMR spektar spoja 4·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini
- Slika D21. ¹H-NMR spektar spoja 5·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini
- Slika D22. ¹H-NMR spektar spoja 6·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini
- Slika D23. ¹H-NMR spektar spoja 7·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini

- Slika D24. IR spektar spoja 1.HI
- Slika D25. IR spektar spoja 2·HI
- Slika D26. IR spektar spoja 3·HI
- Slika D27. IR spektar spoja 4·HI
- Slika D28. IR spektar spoja 5·HI
- Slika D29. IR spektar spoja 6·HI
- Slika D30. IR spektar spoja 7·HI

Slika D31. Kromatogram reakcijske smjese nakon provedene kokatalize s 1·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D32. Kromatogram reakcijske smjese nakon provedene kokatalize s 2·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D33. Kromatogram reakcijske smjese nakon provedene kokatalize s **3**·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D34. Kromatogram reakcijske smjese nakon provedene kokatalize s 4·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D35. Kromatogram reakcijske smjese nakon provedene kokatalize s 5·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D36. Kromatogram reakcijske smjese nakon provedene kokatalize s 6·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D37. Kromatogram reakcijske smjese nakon provedene kokatalize s 2·HPF₆ snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D38. Kromatogram reakcijske smjese nakon provedene kokatalize s 7·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D39. UV spektar titracije spojeva 2 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D40. UV spektar titracije spojeva **3** i **8** s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D41. UV spektar titracije spojeva 6 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D42. UV spektar titracije spojeva 7 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D43. Krivulje UV/Vis titracije spojeva 1 i 8 s TFSA u acetonitrilu u programu HypSpec

Slika D44. Krivulje UV/Vis titracije spojeva **2** i **8** s TFSA u acetonitrilu u programu HypSpec Slika D45. Krivulje UV/Vis titracije spojeva **3** i **8** s TFSA u acetonitrilu u programu HypSpec Slika D46. Krivulje UV/Vis titracije spojeva **6** i **8** s TFSA u acetonitrilu u programu HypSpec Slika D47. Krivulje UV/Vis titracije spojeva **7** i **8** s TFSA u acetonitrilu u programu HypSpec Slika D48. Krivulje UV/Vis titracije spojeva **3**·HCl i **8**·HCl s P₁Pyrr₃*t-Bu u acetonitrilu u programu HypSpec

Slika D2. ¹³C-NMR spektar spoja AM1

xviii

Slika D8. ¹³C-NMR spektar spoja 4·HI

Slika D12. ¹³C-NMR spektar spoja 7·HI

xxiii

Monika Marijanović

Slika D15. ¹H-NMR spektar spoja 8

Slika D18. ¹H-NMR spektar spoja **2**·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini

Slika D22. ¹H-NMR spektar spoja 6·HI i a) P₁pyrr₃*t-Bu, b) Et₃N i c) TMG u ekvimolarnoj količini

xxviii

Slika D24. IR spektar spoja 1·HI

Slika D25. IR spektar spoja 2·HI

Slika D26. IR spektar spoja 3·HI

Slika D28. IR spektar spoja 5·HI

cm-1

2500

2000

1500

1000

3500

3000

450

Slika D30. IR spektar spoja 7·HI

Slika D31. Kromatogram reakcijske smjese nakon provedene kokatalize s 1·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D32. Kromatogram reakcijske smjese nakon provedene kokatalize s **2**·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D33. Kromatogram reakcijske smjese nakon provedene kokatalize s **3**·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D34. Kromatogram reakcijske smjese nakon provedene kokatalize s 4·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D35. Kromatogram reakcijske smjese nakon provedene kokatalize s 5·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D36. Kromatogram reakcijske smjese nakon provedene kokatalize s **6**·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D37. Kromatogram reakcijske smjese nakon provedene kokatalize s **2**·HPF₆ snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D38. Kromatogram reakcijske smjese nakon provedene kokatalize s 7·HI snimljen u propan-2-ol:heksan (1:9) HPLC tehnikom

Slika D39.UV spektar titracije spojeva 2 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D40.UV spektar titracije spojeva 3 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D41.UV spektar titracije spojeva 6 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D42. UV spektar titracije spojeva 7 i 8 s TFSA u acetonitrilu (strelice označavaju smjer promjene)

Slika D43. Krivulje UV/Vis titracije spojeva 1 i 8 s TFSA u acetonitrilu u programu HypSpec

Slika D44. Krivulje UV/Vis titracije spojeva 2 i 8 s TFSA u acetonitrilu u programu HypSpec

Slika D45. Krivulje UV/Vis titracije spojeva 3 i 8 s TFSA u acetonitrilu u programu HypSpec

Slika D46. Krivulje UV/Vis titracije spojeva 6 i 8 s TFSA u acetonitrilu u programu HypSpec

Slika D47. Krivulje UV/Vis titracije spojeva 7 i 8 s TFSA u acetonitrilu u programu HypSpec

D48. Krivulje UV/Vis titracije spojeva **3**·HCl i **8**·HCl s P₁Pyrr₃*t-Bu u acetonitrilu u programu HypSpec

Tablica D1. Relativne zastupljenosti i branching ratio iona nastalih fragmentacijom jodidom premoštenog dimera spojeva 1·HI, 2·HI, 3·HI, 4·HI, 5·HI, 6·HI i 7·HI tehnikom HPLC-

1·HI	Relativna zastupljenost				
Energija kolizijske ćelije/eV	$[\mathbf{B}\mathbf{H}\cdots\mathbf{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^{+}$ $[\mathbf{B}\mathbf{H}]^{+}$ $[\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^{+}$		branching ratio		
0	68015	11233	67355	0,857064692	
5	3453	22190	137392	0,86094923	
10	0	22033	131384	0,856384886	
15	0	25447	129330	0,835589267	
2 ·HI	Relativna za	stupljeno	st		
Energija kolizijske ćelije/eV	$[\mathbf{B}\mathrm{H}\cdots\mathrm{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathrm{H}]^+$	$[\mathbf{B}\mathrm{H}]^+$	$[\mathbf{TMGH}]^+$	branching ratio	
0	29550	0	41950	1	
5	3213	0	68587	1	
10	1555	0	70296	1	
15	884	0	63741	1	
20	0	0	61396	1	
25	0	0	56498	1	
3 ·HI	Relativna zastupljenost				
Energija kolizijske ćelije/eV	$[\mathbf{B}\mathbf{H}\cdots\mathbf{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^+$ $[\mathbf{B}\mathbf{H}]^+$ $[\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^+$		branching ratio		
0	52720	25727	15465	0,375436978	
5	5162	63902	35602	0,357794662	
10	0	68108	36442	0,348560497	
15	0 60679 32748		0,350519657		
4 ·HI	Relativna zastupljenost				
Energija kolizijske ćelije/eV	$[\mathbf{B}\mathbf{H}\cdots\mathbf{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^+$ $[\mathbf{B}\mathbf{H}]^+$ $[\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^+$		$[\mathbf{TMGH}]^+$	branching ratio	
0	36058	0	53126	1	
5	1082	0	89304	1	
10	0	0	87765	1	
15	0	0	84505	1	
20	0	0	85129	1	
5·HI	Relativna zastupljenost				
Energija kolizijske ćelije/eV	$[\mathbf{B}H\cdots I\cdots \mathbf{T}\mathbf{M}\mathbf{G}H]^+$	$[\mathbf{B}H]^+$	$[\mathbf{TMGH}]^+$	m/z = 354	
0	54	0	0	30	
5	65	0	25	17	
10	4	3	267	0	
15	6	90	324	0	
20	0	890	3953	0	
6·HI	Relativna zastuplienost				

MS/MS uz primjenu različitih energija kolizijske ćelije (0 - 25 eV)

Energija kolizijske	e $[\mathbf{B}\mathbf{H}\cdots\mathbf{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^+$ $[\mathbf{B}$		$[\mathbf{TMGH}]^+$	branching
	44000	(11	46000	1410
0	44890	641	46889	0,986513781
5	3391	1930	88192	0,978584585
10	0	1979	101422	0,98086092
15	0	4038	107269	0,963721958
20	0	4504	93326	0,953960953
25	0	4836	97616	0,952797408
7·HI	Relativna zastupljenost			
Energija kolizijske ćelije/eV	$[\mathbf{B}\mathbf{H}\cdots\mathbf{I}\cdots\mathbf{T}\mathbf{M}\mathbf{G}\mathbf{H}]^{+}$	$[\mathbf{B}H]^+$	$[\mathbf{TMGH}]^+$	branching ratio
0	6555	1982	1316	0,399029715
5	755	3995	2366	0,371954095
10	0	4777	2531	0,346332786
15	0	4383	2447	0,358272328
20	0	3914	2230	0,362955729
25	0	2982	2149	0,418826739

Tablica D2. Kemijski pomaci odabranih signala NMR spektara gvanidinijevih jodida s dodatkom P₁Pyrr₃*t-Bu (δ_A), Et₃N (δ_{HA}) i TMG (δ_{obs}) te udio deprotonirane i protonirane

ľ _A 1	f _{HA})
	ľ _A 1	f _A 1 f _{HA})

kokat.	$\delta_{ m A}$	$\delta_{ m HA}$	$\delta_{ m obs}$	f _A	f _{HA}	<i>pK</i> _a	$\overline{pK_a}$
2 ·HI	4,249	4,410	4,283	0,787	0,214	22,2	22.1
	7,409	7,505	7,427	0,815	0,185	22,0	22,1
3 ·HI	4,120	4,491	4,306	0,499	0,501	23,3	23.3
5 111	7,386	7,507	7,445	0,517	0,484	23,2	20,0
4 ·HI	4,306	4,432	4,331	0,797	0,203	22,1	22,1
	2,161	2,220	2,199	0,356	0,644	23,8	
5·HI	2,267	2,346	2,318	0,358	0,642	23,8	23,8
	3,126	3,261	3,214	0,350	0,650	23,8	-
6 ∙HI	4,186	4,355	4,302	0,314	0,687	24,0	23.9
0 111	7,395	7,502	7,460	0,393	0,607	23,7	23,7
7·HI	3,369	3,694	3,590	0,319	0,681	24,0	
	3,107	3,197	3,161	0,402	0,598	23,6	23,8
	2,288	2,360	2,332	0,393	0,608	23,7	

xliii

§ 9. ŽIVOTOPIS

Osobni podatci

Ime i prezime: Monika Marijanović Datum rođenja: 8. listopada 1998. Mjesto rođenja: Vinkovci

Obrazovanje

2005. – 2009.	Osnovna škola Josipa Kozarca, Vrbica
2009. – 2013.	Osnovna škola Stjepana Cvrkovića, Stari Mikanovci
2013. – 2017.	Gimnazija Matije Antuna Reljkovića, Vinkovci
2017. – 2020.	Preddiplomski studij kemije, Odjel za kemiju, Sveučilište Josipa Jurja
	Strossmayera, Osijek
2020. –	Diplomski sveučilišni studij kemije, Kemijski odsjek, Prirodoslovno-
	matematički fakultet, Zagreb

Nagrade i priznanja

2018.	Pročelnikova nagrada
2019.	Pročelnikova nagrada
2022.	Medalja Kemijskog odsjeka za izvrstan uspjeh

Sudjelovanja u popularizaciji znanosti

2019.	radionica Odjela za kemiju za 23. Smotru Sveučilišta J. J. S	trossmayera
-------	--	-------------

2019. Advent kreativnosti, Osijek