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Summary 
 

The main purpose of this thesis is to explore the use of computational 

techniques such as machine learning and genetic algorithms in peptide 

design. Peptides, short amino acid chains, have a wide variety of biomedical 

applications. They are used in drug design and as drug delivery systems. 

Peptide design is an expensive and time-consuming process because it 

requires high-throughput screenings together with experimental validation, 

which require a lot of time and resources. Machine learning and genetic 

algorithms, which will be reviewed in this thesis, can be used to design 

peptides faster and cheaper by programming the computer to do the work 

of designing for us. In addition, peptide properties that are important for 

their function will be reviewed. Basic physico-chemical properties are being 

used by computer algorithms to predict and/or optimise a peptide with a 

wanted trait. Some of these traits are antimicrobial or antiviral activity and 

can be used in applications such as the design of a new type drug based on 

peptides. Peptide design with computational techniques is a newly emerging 

field of study and most of the examples considered are of newer date. For 

this reason, this thesis aims to spread the knowledge about peptides and 

peptide design.  
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Sažetak 
 

Glavna svrha ovog završnog rada je istražiti uporabu računalnih tehnika 

poput strojnog učenja i genetskog algoritma u dizajnu peptida. Peptidi, 

kratki lanci aminokiselina, imaju raznolike primjene u polju biomedicine. 

Koriste se u dizajnu lijekova i kao nosači lijekova. Dizajn peptida je skup i 

dugotrajan proces jer istraživači provode visoko-protočni probir zajedno 

sa eksperimentalnom validacijom koji zahtijevaju puno vremena i 

sredstava. Strojno učenje i genetski algoritmi mogu biti korišteni da 

dizajniramo peptide brže i jeftinije programiranjem računala da radi 

proces dizajniranja za nas. Svojstva peptida koja su važna za njihove 

funkcije će biti objašnjena. Ta fizikalno-kemijska svojstva koriste računalni 

algoritmi da predviđaju i/ili optimiziraju peptid sa željenom funkcijom. 

Funkcije, poput antimikrobnog i antiviralnog djelovanja, se mogu 

primijeniti u dizajnu novih vrsta lijekova baziranih na peptidima. Dizajn 

peptida uz pomoć računalnih tehnika je novo područje i većina 

razmotrenih studija su novijeg datuma. Zbog toga, ovaj rad ima za 

namjeru širenje znanja o peptidima i dizajnu peptida. 

 

 

 

 

 

 

Ključne riječi: Strojno učenje, genetski algoritam, peptid, dizajn peptida 
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1. Introduction 
 

Peptides, coming from Greek language peptós – digested, are short amino 

acid chains with lengths between two and fifty amino acids connected by 

peptide bonds. Amino acids are organic molecules that contain two 

functional groups, amine (-NH2) and carbonyl (-COOH) along with a side 

chain. There are twenty amino acids that are used as building blocks for 

proteins, called proteinogenic amino acids, and they are encoded in the 

human genetic code. The fact that there are twenty different amino acids 

means that the number of combinatorially different peptides increases by 

20 times for each amino acid added to the peptide chain. For instance, a 

peptide with a sequence containing only 6 amino acids can be built in a 

20^6 different i.e. 64 million ways. Peptides with different amino acid 

composition have different physical and chemical properties. Therefore, it 

is possible to create peptides with a vast array of different properties and 

applications.  

Almost all drugs currently in use are either small molecules or proteins. In 

between two sizes lie peptides, which are currently being under-explored in 

drug discovery.1 Some of the possible applications of peptides are in 

antimicrobial drugs, drug delivery systems and tissue engineering.2 

Peptides have been explored as potential drugs that can help us treat 

diseases, improve our immune function and even slow down the aging 

process.3 Because of their natural biocompatibility, peptides are non-toxic 

to living tissues, making them a useful asset in biological applications.4 

There are natural and synthetic peptides. Natural peptides can be found in 

all domains of life and can be a part of the natural immunity that helps us 

fight off microbial infections or have a function as hormones and signal 

molecules.5 Another approach for the discovery of new peptides is by 

synthesizing them. Since the invention of solid phase synthesis by Robert 

Bruce Merrifield, for which he won the Nobel Prize in Chemistry in 1984, 

peptides and peptide based materials have been increasingly used for a 
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variety of applications in biomedicine such as drug delivery and 

regenerative medicine.6 In addition, it is possible to conduct high-

throughput screening to find out which peptides exert sought function and 

which peptides do not, for example discovering antimicrobial peptides. 

Computational techniques developed with the increasing computerization of 

society can be used as a valuable tool in predicting and optimising peptides. 

Several decades ago, before the advent of cheminformatics, two ways of 

isolating peptides existed. The first one is related to isolation of peptides 

from natural sources, such as plants or animals, while the second one 

consisted in synthesizing peptides in the laboratory.7  

The field of computational chemistry has brought together biochemistry, 

physical chemistry, and computer sciences. Consequently, researches from 

different scientific disciplines are working together to more efficiently use 

computer power to generate valuable scientific data.7 Genetic algorithms 

and machine learning, both widely explored in computer science for a 

variety of applications, remain underused in the field of peptide chemistry.  

Machine learning (ML) is one of the fastest growing fields of computer 

science. It has gained increased attention in recent years, with the advent 

of self-driving cars and the Internet. Machine learning algorithms are 

computer algorithms that are improving automatically with experience. 

They are used to predict and perform decisions without being explicitly 

programmed to do so.8 The algorithms are first trained using a set of 

training data to create a mathematical model used for predictions. These 

algorithms can be used in interpretation and integration of high-throughput 

data.9 Machine learning is a more economical and faster way of gathering 

data than unguided experimental evaluation.10 For example, algorithms can 

be used to predict if a peptide from a population exhibits certain traits that 

we are trying to find (e.g. antimicrobial activity) and which physical and 

chemical properties of that peptide are responsible for that trait.  

On the other hand, genetic algorithms (GA) are used to optimise a property 

(called fitness function) from a population of potential solutions.11 The 
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solution in this study is a peptide with a highly optimised property, for 

instance, a peptide with a better antiviral activity, calculated by a lower 

minimal inhibitory concentration (MIC). This algorithm reflects the law of 

natural selection where the most adaptable individual survives and passes 

on its genes to the next generation. Each individual is characterised with a 

set of traits called fitness functions, and each generation has their fitness 

function graded through fitness score. The individual with the best fitness 

score, for example a peptide with a better trait than other peptides in the 

population, gets mutated randomly by crossover and is used to make a new 

population of peptides. Several iterations are used to make the best 

optimisation of fitness functions. Fitness functions are used to guide the 

algorithm towards an optimal solution. Genetic algorithms are useful in 

peptide design because they can be used to optimise and consequently 

improve a peptide trait of interest.  

Most of the publications regarding the theme of peptide design using 

machine learning and/or genetic algorithms are of newer date and indicate 

the recent progress in the field of peptide design and optimization. The 

application of machine learning and genetic algorithms in peptide design is 

a new area that is gaining interest because of numerous possible 

applications of peptides. In addition, peptide design has become more 

reliable. This is due to the fact that we now have an increased understanding 

of the rules that govern the assembly of proteins and peptides.4 This results 

in faster and more accurate strategies for peptide design that could lead to 

sequences with higher performance in vitro and in vivo. However, peptides 

are still not used as much as they could be. Especially, the use of 

optimisation and prediction techniques, described in this thesis, remains 

unexplored. There are thousands of studies performed on the theme of in 

vitro antimicrobial peptides, with only a few of those about the application 

of machine learning or genetic algorithm techniques on peptide design.  

Rational design, including biological, structural and physico-chemical 

descriptors, is important for the discovery of biologically active peptides.7 
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In this work, examples reported in literature will be listed and elucidated to 

better understand the principle behind algorithms used in peptide design 

and the potential applications of peptides. 
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2. Purpose of the thesis 
 

The main focus of this thesis is the application of machine learning and 

genetic algorithms in peptide design. The objective is to explore the 

possibility of improving peptide research, making it cheaper, more efficient, 

and faster. Can machine learning and genetic algorithms be used to identify, 

create, and/or optimize antimicrobial peptides with potential to become 

medicines? If the next pandemic comes, could optimisation and prediction 

techniques be used to gather faster and more accurate data and possibly 

discover a cure to a new disease? These are the questions that we will aim 

to answer by reviewing the existing knowledge in this interdisciplinary field.   
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3. Peptide properties and their importance in peptide 

design 
 

In this chapter, fundamental peptide properties such as hydrophobicity and 

net charge and how they influence peptide function will be assessed. 

Algorithms often use these physico-chemical properties to help us find 

optimal peptides. For instance, a genetic algorithm that is programmed to 

optimise a natural antimicrobial peptide, in order to obtain a more potent 

peptide, is going to generate more positively charged sequences with a 

higher hydrophobic moment.   

 

3.1. Net charge 
 

Net charge is the total electric charge of a molecule. Peptides can contain 

neutral, positively, and negatively charged amino acid residues. By 

summing these charges, we calculate the net charge. The charge depends 

on the pH of the solution in which the peptide resides. The higher the 

isoelectric point of a peptide, the higher must be the pH of the solution for 

that peptide to have a neutral net charge. At physiological pH of 7.4 there 

are three positively charged and two negatively charged amino acids that 

are used to form peptides. Positive amino acids are arginine (Arg), histidine 

(His) and Lysine (Lys) and negative are aspartic acid (Asp) and glutamic 

acid (Glu). Net charge is an important parameter when designing 

antimicrobial peptides because of negatively charged bacterial membranes.     

 

3.2. Hydrophobicity  
 

Water, being a polar molecule, attracts other polar molecules. Amino acid 

hydrophobicity is a degree of affinity between water and amino acid side 
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chain residues. The more hydrophobic a molecule is, the less it attracts 

water molecules. Amino acids with non-polar side chains are more 

hydrophobic than amino acids with polar side chains.12 In water solutions, 

peptides and proteins are taking a conformation in which hydrophilic amino 

acid residues are residing at the layer closest to the water molecules, and 

hydrophobic amino acid residues reside inside of formed structures. 

Hydrophobicity is another parameter used in prediction and optimisation of 

antimicrobial peptides7,11,13 because hydrophobic peptide side chains are 

more effectively attached and inserted into bacterial membranes.13  

 

3.3. Secondary structures and the importance of alpha helix 
 

Secondary structures are formed by hydrogen bonds between amino and 

carbonyl groups of different residues within the same polypeptide molecule. 

Those bonds can cause the peptide to form two most common distinctive 

structures: alpha helices and beta sheets. Alpha helix is a right hand-helix 

conformation in which backbone N-H and C=0 groups form hydrogen bonds 

between every fourth amino acid. This causes the peptide to curl into a rod-

like structure whose inner section consists of a straight coiled main chain 

with the side chain extending outward.14 In beta sheet secondary 

structures, chains line up in parallel one next to the other, and these beta 

strands connect by several hydrogen bonds from amino acid residues. In 

this thesis, focus will be put on alpha helical structures rather than beta 

sheets because there are more examples in the literature that describe 

them. In a work by Yoshida and co-workers, optimised peptides had their 

conformation changed from random coil to an alpha helical form which 

increased their antimicrobial activity.13 The peptide in an α-helix 

conformation must have a minimum length of 20 amino acids to span the 

phospholipid bilayer (∼30 Å thick),15 which disrupts bacterial membranes 

and is an important mechanism of action. Amphipathic helical structures 

facilitate the attachment and insertion into bacterial membranes.16 
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4. Application of machine learning and genetic 

algorithms in peptide design  
 

In this section, the application of ML and GA for the design of 

antimicrobial, antiviral, anticancer, anti-inflammatory and self-assembling 

peptides will be reviewed as summarized in table 1.  Some studies did not 

specify the algorithm used in their research, which could hinder the ability 

of researchers in replicating those studies. 

 

TABLE 1. APPROACHES, ALGORITHMS AND 
FUNCTIONS IN PEPTIDE DESIGN 

APPROACH 
MACHINE LEARNING 

Algorithm 
Peptide 
function 

Random 
forest 

Antiviral17 

Support 
vector 
machine, 
random 
forest, 
instance-
based 
classifier 
and k-star 

Antiviral18 

Counter-
propagation 
artificial 
neural 
network 

Anticancer19 

Random 
forest, 
gradient 
boosting 
and logistic 
regression 

Self-
assembling2 

Multiple 
linear 
regression 

Self-
assembling20 

Random 
forest 

Anti-
inflammatory21 

GENETIC 
ALGORITHM 

Custom 
genetic 
algorithm 

Antimicrobial11 



11 
 

COMBINED 
APPROACH (ML+GA) 

Unspecified Antimicrobial13 

COMBINED 
APPROACH 
(ML+EVOLUTIONARY 
ALGORITHM) 

Machine 
learning: 
support 
vector 
machine, 
Optimised 
by 
evolutionary 
algorithm: 
simulated 
molecular 
evolution 

Anticancer22 

 

 

4.1. Antimicrobial peptides 
 

With the rising threat of antibiotic resistant bacteria, there is now an 

underlying need to develop effective and cheap medication to combat 

bacterial infections.7 The widespread use of antibiotics in 20th Century 

helped to increase our global life expectancy and quality, but the misuse of 

antibiotics in humans and animals is accelerating the development of 

antibiotic resistance. This leads to higher medical costs and increased 

mortality rates.23  

There are several methods alternative to the use of conventional antibiotics 

that can be used to treat microbial infections. Phage therapy, treatment of 

bacterial infections with the use of bacteriophages, is an example.24 Another 

method for treating microbial infections are antimicrobial peptides (AMPs). 

Antimicrobial peptides act through a diverse set of mechanisms such as  

membrane destabilization (barrel stave, wormhole and carpet mechanisms) 

and inhibition of intracellular components.25 By using a combination of 

peptides together with antibiotics we may be able to enhance antibiotic 

activity against multi-drug resistant bacteria.7 For example, synthetic 

peptides DJK-6 (VQWRRIRVWVIR-NH2) and DJK-5 (VQWRAIRVRVIR-NH2) 

in combination with β-lactams, such as meropenem, led to a 16-fold 
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decrease in antibiotic concentration needed to kill a multidrug resistant 

carbapenemase-producing K. pneumoniae.26  

Several computer techniques have been developed to make the design 

process of antimicrobial peptides cheaper and faster in order to obtain a 

second generation of selective antimicrobials through physico-chemically 

guided peptide design.7 The next-generation of antimicrobials should be 

designed to result in higher selectivity towards pathogens.7 

Despite AMPs tend to present different lengths and secondary structures 

in hydrophobic environments, most of them share amphipathic and 

cationic character at neutral pH.27 Several studies have implemented 

genetic algorithms to increase the antimicrobial activity of peptides found 

in nature (e.g. guavanin).11,13 The use of computational approaches in 

manipulation of natural AMP sequences could lead to the discovery of 

AMPs with distinct mechanisms of action.11  

An example is presented by Porto et al. in a study published in 2018 that 

constructed a custom genetic algorithm to optimise a plant based guava 

peptide.11 The authors used an initial population of glycine rich guava 

peptide fragments from peptide Pg-AMP1 as a template for the creation of 

guavanins, synthetic antimicrobial peptides. Fitness functions were used to 

optimise peptide properties such as hydrophobic moment and alpha helix 

propensity. Two kinds of amino acids got preferentially selected in the 

optimisation process: the positively charged arginine and the hydrophobic 

residues, leucine and isoleucine. The sequences with the best fitness score 

got subjected to a Basic Local Alignment Search Tool (BLAST) search, which 

locates similarities between regions in biological sequences,28 against a 

CAMP database29 to measure their antimicrobial activity. CAMP database is 

a collection of sequences and structures of antimicrobial peptides which is 

available online.29 Random mutations were performed on the template 

guavanin peptide and subsequent best peptides per population (calculated 

with fitness score).11 The best peptide was used in the next process of 

mutation. Every 50 iterations, peptides had their antimicrobial activity 
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measured and more peptide hits got acquired at higher iterations. The 

resulting guavanin peptides had their antimicrobial activity increased with 

their lower MIC value and toxicity reduced, as well as having different 

sequences than those in AMP database. Alpha helical structure was found 

in guavanins and they had more positive net charge as well as being more 

hydrophobic. Guavanin 2, the most potent guavanin peptide from the 

optimisation process, has a mechanism of action that involves disruption 

and hyperpolarization of membranes in bacterial cells (tested against E. coli 

cells).11 

Another example was presented by Yoshida et al. in 2018, that consisted in 

the optimization of  an amphibian peptide Temporin-Ali13 isolated from a 

frog.30 Frog skin is one of the richest natural sources of AMPs.31 Yoshida et 

al. developed a new approach to AMP design, combining machine learning 

prediction, genetic algorithm optimisation with in vitro bacterial assays, 

which more efficiently provided predictions when generating next 

generations.13 Machine learning and genetic algorithms used in this study 

were not clearly specified. Their method differs from other methods that 

combine machine learning and evolutionary algorithm by the following: 

previous algorithms perform virtual screening of potential candidates using 

an existing database or knowledge (for instance, structure-activity 

relationship). On the other hand, their custom combination of algorithms 

optimises a desired feature from a set of targets, in this instance peptides, 

even with no database or information previously available. This is because 

evolutionary algorithm constructs its own database as it performs iterations 

from a starting population, and Yoshida et. al successfully guided those 

optimisations with predictions by machine learning that allowed them to 

navigate such a large peptide space. From a starting 13 residue peptide 

Temporin-Ali which was used as a starting wild type (WT) peptide, a library 

of 93 sequences was created using Position-Specific-Iterative-BLAST (PSI-

BLAST), which iteratively searches for sequences in databases.28 The 

peptide library was used as a starting population for the iteration process 
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of new peptide generation through random amino acid mutations, and after 

only three iterations a 162-fold increased antimicrobial activity was 

achieved.13 The most potent peptides were tested in vitro in bacterial assays 

with E. coli and 44 out of 96 had 20 times lower IC50 values than the WT 

peptide. Net charge and hydrophobic moment were shown to have a high 

correlation with IC50 values and were increased through optimisation 

process. More positive net charge suggests that the peptide better binds to 

negatively charged bacterial membrane, and higher hydrophobic moment 

suggests that the peptides in the optimised generation formed aliphatic 

helical structures with hydrophilic and hydrophobic amino acid residues at 

each side of the helix.32 All the peptides in the third generation were also 

predicted to be non-toxic partly because they originated from a natural 

peptide.30 Combining in silico algorithms with experimental validation 

enabled them to rapidly optimise antimicrobial features of a peptide, and a 

normally high cost of experimental validation got mitigated by the 

predicting power of machine learning.13  

 

4.2. Antiviral peptides  
 

Viruses are sub-microscopic pathogens that replicate inside living cells. 

They are not metabolically active and do not present a cell structure, which 

is generally considered to be a criteria necessary for life. History has shown 

that viral infections can be fatal for our species, and nowadays is not an 

exception. The novel Coronavirus (SARS-CoV-2), that causes the COVID-

19 disease, has marked our species with its high death toll and a negative 

economic impact. Currently, a high amount of resources is being used to 

try and find a cure for this new infection. Vaccines would be the best solution 

for long-term immunity against viruses and would constitute an effective 

shield against coronavirus rapid transmission. Drugs, such as antibodies, 

are also being developed that could cure the viral infection and decrease 

the symptoms. A possible approach to treat viral infections are antiviral 
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peptides (AVPs).17 Those peptides can be found in nature or artificially 

synthesised.33 A list of peptides known to have antiviral activity has been 

compiled into an online database AVPpred.34 For instance, lactoferrin is an 

iron-binding glycoprotein that shows major antiviral activity against viruses 

as an immunity enhancer.35 The glycoprotein contains various antimicrobial 

peptides that are released after hydrolysis by proteases.36 The first AVP 

approved by the FDA in 2003 against HIV is called Enfuvirtide (Fuzeon, T-

20),37 and it was a reason for a significant increase of life quality in patients 

affected with AIDS.38 Antiviral peptides have several mechanisms in their 

fight against viruses.17 They are known to interrupt the signaling process of 

viruses, block the fusion of viruses to host membranes and inhibit 

replication in host cells which may involve integrase, DNA polymerase, 

reverse transcriptase or protease.39  

Several studies have been made on the theme of optimization and 

prediction of antiviral peptides. The goal of studies conducted by Chang 

and Yang in 201317 and Qureshi et al. published in 201518 was to predict 

antiviral peptides and peptide antiviral activity using machine learning.  

Chang and Yang predicted the features of highly effective antiviral peptides 

based on the random forest machine learning algorithm.17 In this study, 

random forest model that was based on physico-chemical properties of 

peptides was useful in predicting AVPs. The physico-chemical properties 

were hydrophobicity, secondary structure, instability, net charge, size, 

amino acid composition and aliphacity17 (calculated as aliphatic index, 

relative volume that is occupied by polypeptide side chains).40 AVPs had a 

higher abundance of lysine compared to random peptides, and lysine is also 

an important amino acid in distinguishing AMPs.17 In addition to a different 

amino acid composition, AVPs had a higher tendency to aggregate in vivo 

and had an abundance of alpha helix secondary structures.17 Aggregation 

has been suggested to also be an important feature of AMPs, because 

peptides might have a higher availability while being clumped together.41 It 

is not yet clear in which way the alpha helix conformations interact with the 
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virus. It has been  suggested that alpha helical structure could interact with 

enzymes important for virus replication or have another similar impact on 

host cell membranes.17  

In another work by Qureshi et al., multiple machine learning techniques 

predicted peptide antiviral activity.18 Their algorithm, AVP-IC50Pred, is a 

regression-based algorithm that predicts IC50 values of antiviral peptides. 

Four different machine learning techniques were used to develop their 

regression based algorithm using experimentally proven datasets: support 

vector machine, random forest, instance-based classifier and k-star of 

which random forest and support vector machine were proven to be most 

effective. Peptide features used in model development are amino acid 

composition, physico-chemical properties, solvent accessibility, secondary 

structure, binary profiles and their hybrids for model development.18 

Predicted peptides were not tested in any biological assay so it is possible 

that not all peptides predicted exert antiviral features. 

There has currently not been any research on the topic of computational 

optimisation or genetic algorithm in AVP design. 

 

4.3. Anticancer peptides 
 

Cancer is a disease that is able to change normal cell function and growth 

with a possibility to spread to other tissues in the organism. It affects almost 

all animal species and has been decreasing human life quality through our 

entire history. Cancer is one of the leading causes of death globally, and 

massive effort is being conducted to improve cancer diagnosis, treatment, 

and prevention. The conventional therapy involves chemotherapy and 

radiotherapy, which often have serious side effects and can make patients 

feel even weaker than without medication. The mechanism of some of the 

common anticancer drugs involves the inhibition of mitosis (cell division) or 

induction of DNA damage. These mechanisms can be fatal to humans if 
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agents are not specific to cancer cells. The other problem that common 

chemotherapeutics and receptor-targeted anticancer agents face is the 

problem of resistance22. Several cell resistance mechanisms have been 

identified, such as DNA damage repair, signalling cascade alteration, drug 

inactivation or efflux and target protein alteration.42 Receptor independent 

mechanism of anticancer peptides (ACPs) may hinder the development of 

resistance in cancer cells.43 There are not many  known ACPs, and therefore 

new methods to discover efficient ACPs are needed. High throughput 

screening of potential peptides together with experimental validation is 

expensive and time consuming. Because of that, computer techniques are 

a clever way to bypass those obstacles in the design of ACPs.   

Anticancer peptides have properties that have a large impact on their 

potency, and those are: amphipathicity, positive net charge and moderate 

overall hydrophobicity.22 The cationic nature of ACPs is thought to be the 

reason of their selectivity towards cancer cells, which often have higher 

negative membrane surface charge compared to non-transformed cells.19 

These properties are used to predict ACPs from a vast data set or to optimise 

a starting peptide. 

Several machine learning techniques have been applied in ACP design, 

being k-nearest neighbor, support vector machine, random forest and 

generalized/probabilistic neural network.19 Small training sizes and lack of 

experimental validation prevented validity checks of those studies. A recent 

study by Grisoni et al. published in 2019, developed a counter-propagation 

artificial neural network (CPANN) machine learning algorithm that was used 

to design experimentally validated and potent ACPs.19 The algorithm was 

trained on two manually assembled databases of peptides with known 

activities against lung and breast cancer taken from CancerPPD.44 The 

descriptors used for the prediction were encoded as peptides’ side-chain 

functionalities, giving each amino acid residue a pharmacophore label 

(aromatic, lipophilic, hydrogen-bond donor/acceptor and 

positively/negatively charged).19 They calibrated four CPANN models on 
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different peptides, architecture and descriptors. Peptides were given 

ensemble scores to measure their anticancer abilities, and out of 21 chosen 

peptides (15 positive, 3 negative and 3 random) 5 were active both against 

MCF7 and A549 in experimental evaluation.19 This proved that machine 

learning can be used in anticancer peptide design, and that the predicted 

peptides were more likely to have anticancer capabilities than randomly 

selected or high-throughput screened peptides.  

A study by Gabernet et al. published in 2019 developed a machine learning 

model that predicted ACPs and then utilised an evolutionary molecular 

design algorithm to optimise the selectivity of predicted peptides towards 

cancer cells.22 Support vector machine algorithm (SVM) was used as a 

predictive machine learning algorithm that was trained on positive (alpha-

helical ACPs from CancerPPD database)44 and negative (non-ACPs from 

non-transmembrane proteins in PDB database).45 A library of ACPs was 

created with their SVM model and peptides had a higher SVM score than 

randomly generated peptides, meaning that the algorithm enriched the 

libraries with potentially active anticancer peptides.22 Four peptides were 

correctly predicted by testing on cancer cells, and one peptide, AmphiArc2 

(KIFKKFKTIIKKVWRIFGRF), was used as a parent peptide in the process of 

further optimisation. The model used for optimisation was simulated 

molecular evolution (SME), a class belonging to evolutionary algorithms, 

which genetic algorithm is also a part of. After three iterations, the activity 

of peptides towards noncancer cells was decreased by 20 times, while 

having reduced anticancer potency. This result suggests that the 

optimisation of peptide selectivity towards noncancer cell types results in 

the reduction of peptide potency. More work is required to further prove 

this hypothesis and this study is a basis for future research.22 
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4.4. Self-assembling peptides 
 

Self-assembling peptides are a class of peptides that spontaneously 

assemble into nanostructures. Governed by physico-chemical 

characteristics, these peptides can form various structures such as nano 

fibers, tubes, particles, vesicles, micelles, suspensions and hydrogels.46 The 

assembly can be controlled by properties, such as pH, salt concentration 

and primary structure.20 These structures have attracted interest in the field 

of nanotechnology, and when assembled, can be used as vehicles for drug 

delivery, scaffolds for cell and tissue regeneration and as means of reducing 

side effects of cytotoxic drugs.47 The more expensive production of longer, 

helical peptides also turned interest towards shorter self-assembling 

peptides. They are designed to resemble natural lipids, with an extended 

uncharged “tail” with several neutral amino acids and one or two charged 

amino acids at the C-terminus of the peptide which are resembling lipid 

headgroups.4  

Machine learning has been applied in the design of self-assembling 

peptides. A study presented by Li et al. published in 2019 applied machine 

learning to the design of self-assembling hydrogels.2 Hydrogels are 

networks of hydrophilic polymer chains which can maintain large amounts 

of water, similar to natural tissues. As such, hydrogels have a great 

potential for biomedical applications and because of their biocompatibility 

can be used in cell encapsulation, drug delivery and tissue engineering. Li 

et al. successfully utilized a combinatorial approach to create a peptide 

library and screen for peptides with hydrogel assembling function. Machine 

learning algorithms: random forest, gradient boosting and logistic 

regression were selected from an extensive list of linear and nonlinear 

classification algorithms because they have shown best prediction abilities. 

Algorithms studied the correlation between the ability to form hydrogels 

and chemical features of peptides. The results showed that the quantum 

chemistry based descriptors SpMax1_Bh (largest absolute of Burden 
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modified eigen-value), SpMin1_Bhi (smallest absolute of Burden modified 

eigen-value) and monomer1 (Fmoc-amino acids) showed the highest 

correlation with gel forming behaviour and peptide features. To test the 

ability of peptides in hydrogel assembling, two peptides with predicted 

hydrogel-forming ability were tested on TM4 cells. Both hydrogels 

supported the proliferation of TM4 mouse cells, which indicates that 

predicted peptides are biocompatible and can be used in cell cultures.2 This 

is the first study that has applied machine learning techniques in peptide 

hydrogel design, and further research could increase our understanding of 

hydrogel design. 

Another recent study by Thurston and Ferguson published in 2018 applied 

machine learning techniques in designing self-assembling π-conjugated 

oligopeptides.20 These oligopeptides can be used as a biocompatible 

supramolecular optoelectronic material. To endorse these self-assembled 

peptides with photophysical and optoelectronic activity, synthetic 

oligopeptides can be inserted with polymeric π-conjugated inserts in 

addition to standard amino acids. Π-inserts are conjugated aromatic cores 

that promote hydrophobic stacking and delocalisation of electrons within 

the nanostructure. In this work, a perylenediimide (PDI) and 

naphthalenediimide (NDI) conjugated core were used. The machine 

learning algorithm, multiple linear regression, was used to train a 

quantitative structure-activity relationship model (QSPR) over training data. 

Dimerisation and trimerization free energies were the key physico-chemical 

determinants of trained QSPR model, and they were used in prediction of 

π-conjugated oligopeptides with the best oligomerisation 

thermodynamics.20  

Overall, there are not many studies about self-assembling peptides and the 

application of machine learning or genetic algorithms in their design. To my 

knowledge, there are currently no applications of optimisation or genetic 

algorithms in their design. They can have many applications, and more 

research is needed to have a better understanding of these nanomaterials. 
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4.5. Anti-inflammatory peptides 
 

Inflammation is a natural biological response to harmful agents. The signs 

of inflammation: swelling, pain, loss of function, increased heat and redness 

can leave a larger impact on one’s health than an infection. The current way 

of treating inflammation involves the use of non-specific nonsteroidal or 

steroidal anti-inflammatory drugs, and those can potentially have side 

effects such as a higher risk of infectious diseases.   

In one of the studies of machine learning in anti-inflammatory peptides 

(AIPs) design by Manavalan et al. published in 2018, random forest was 

used in sequence-based prediction.21 Four different machine learning 

algorithms were explored (random forest, extremely randomised tree, 

support vector machine and k-nearest neighbour) including the 

compositional features: amino acid index, amino acid composition, 

dipeptide composition, chain-transition-composition and physico-chemical 

properties for predicting AIPs and non-AIPs. Random forest algorithm with 

dipeptide composition based model had the best performance among other 

combinations of algorithms and features. Feature selection protocol on 

dipeptide composition was used in prediction. The protocol excluded most 

of Met, Cys and Trp containing dipeptides which indicates that the 

arrangement of local dipeptides is an important feature in classification of 

AIPs and non-AIPs. The proposed predictor has been shown as promising 

and it is available at a web server. Compared to experimental approaches 

and other available tools, it provides a cost-effective and reliable approach 

in AIP prediction.21 

To my knowledge, there have currently been no applications of genetic 

algorithms or optimisation techniques in AIP design. 
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4.6. Other applications of peptides  
 

Peptides can be used as biosensors, where the affinity of AMPs is used to 

detect microbials. For example, a nanostructured biosensor with AMP 

clavanin A was used to detect Gram-negative bacteria.48 Peptides can be 

predicted to have high selectivity towards certain bacteria, which could be 

useful in areas such as hospitals, where peptides could possibly detect 

Staphylococcus aureus in the environment before the infection occurs. 

Additionally, self-assembling peptides have been shown to have a useful 

application in tissue regeneration, but peptide aggregates ability of drug 

delivery has not been fully researched, especially regarding the use of 

computer techniques in their design. Another application of peptides are 

immunomodulatory peptides, where an engineered immunomodulatory 

peptide clavanin-MO modulated innate immunity by means of producing 

immune mediators and recruitment of leukocytes to the infection site.49  
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5. Conclusion 
 

The versatility of peptides makes them attractive for potential antibacterial, 

antiviral, anticancer, anti-inflammatory, and optoelectrical/tissue 

engineering candidates, and other applications. Computer processing power 

is greatly increasing year after year, and different types of algorithms are 

becoming more efficient at performing complex tasks. Computational 

chemistry and its use in chemical design (example being peptide design) is 

being improved on daily basis. I believe that we will see more peptides in 

various medical applications. Peptides are still far from being widely used in 

medicine, but the new rise of antibiotic resistant bacteria and virus 

infections prove that a new type of medicine that is not based only on classic 

antibiotics is needed. Certain peptides, such as the antiviral peptide 

Enfuvirtide (AIDS treatment)37, have already found their uses outside 

clinical trials. Future approaches in drug design will probably see greater 

implementation of computational techniques, which will more easily connect 

researches from various parts of the globe into a single network to make 

researching more efficient. All the possible applications of peptides would 

hardly fit in a short thesis, and more research should be conducted to better 

our understanding of these small amino acid chains. 
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