Učinkovitost različitih izvora svjetlosti

Bošnjak, Petar

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:620335

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-06

Repository / Repozitorij:

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
UČINKOVITOST RAZLIČITIH IZVORA SVJETLOSTI

Završni rad

Petar Bošnjak

Osijek, 2016.
Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom sveučilišnom studiju
Osijek, 03.10.2016.

<table>
<thead>
<tr>
<th>Prijedlog ocjene završnog rada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ime i prezime studenta:</td>
</tr>
<tr>
<td>Studij, smjer:</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
</tr>
<tr>
<td>OIB studenta:</td>
</tr>
<tr>
<td>Mentor:</td>
</tr>
<tr>
<td>Sumentor:</td>
</tr>
<tr>
<td>Naslov završnog rada:</td>
</tr>
<tr>
<td>Znanstvena grana rada:</td>
</tr>
<tr>
<td>Predložena ocjena završnog rada:</td>
</tr>
</tbody>
</table>
| Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova: | Primjena znanja stečenih na fakultetu: 3
Postignuti rezultati u odnosu na složenost zadatka: 2
Jasnoća pismenog izražavanja: 3
Razina samostalnosti: 3 |
| Datum prijedloga ocjene mentora:| 03.10.2016. |
| Datum potvrde ocjene Odbora: | 05.10.2016. |
| Potpis mentora za predaju konačne verzije rada u Studentsku službu pri završetku studija: | Potpis: |
| | Datum: |
IZJAVA O ORIGINALNOSTI RADA

Osijek, 05.10.2016.

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Petar Bošnjak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij:</td>
<td>Preddiplomski sveučilišni studij Računarstvo</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>2888, 17.10.2014.</td>
</tr>
<tr>
<td>Ephorus podudaranje [%]:</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Ovom izjavom izjavljujem da je rad pod nazivom: **Učinkovitost različitih izvora svjetlosti**

izrađen pod vodstvom mentora Doc.dr.sc. Zvonimir Klaić

i sumentora

moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:
Sadržaj

1. UVOD .. 1

2. NORMATIVI I DIZAJN UČIONICE .. 2
 2.1. Projektiranje učionice unutar programskog paketa Relax 3

3. IZVORI SVJETLA ... 7
 3.1. Svjetiljka sa žaruljom sa žarnom niti ... 7
 3.2. Halogena svjetiljka .. 8
 3.3. Svjetiljka sa štednom žaruljom .. 9
 3.4. LED svjetiljke .. 10

4. SVJETLOTEHNIČKI IZRAČUN ... 12
 4.1. Svjetiljka sa žaruljom sa žarnom niti ... 12
 4.2. Halogena svjetiljka .. 14
 4.3. Svjetiljka sa štednom žaruljom ... 15
 4.4. LED svjetiljka 7 W ... 18
 4.5. LED svjetiljka 10 W ... 20

5. USPOREDBA REZULTATA .. 22
 5.1. Tablična usporedba rezultata ... 22
 5.2. Grafička usporedba rezultata ... 24

6. ZAKLJUČAK .. 26

LITERATURA ... 27

SAŽETAK ... 28

SUMMARY .. 29

ŽIVOTOPIŠ .. 30
1. UVOD

Ovaj rad služi za konkretnu usporedbu različitih izvora svjetlosti i njihove isplative primjene. Uzimale su se u obzir 5 najčešće korištenih svjetiljki te njihova prosječna potrošnja i cijena u Republici Hrvatskoj.

Sam izračun i projektiranje izvodit će se u programskom sučelju Relux, točnije, njegovom podprogramu ReluxPro.

Izvedba ovog rada provodi se na primjeru učionice do 36 učenika. Takav primjer nam omogućuje optimalan prostor za točno mjerenje rasvjetljenosti prostora, te dobar omjer količine potrebnih žarulja i dnevnu potrošnju.

Cilj ovog rada jest ustanoviti koji je izvor najisplativiji ukoliko se koristi veliki broj žarulja kroz dugi period vremena.
2. NORMATIVI I DIZAJN UČIONICE

Prije projektiranja prostorije za svjetlo-tehnički izračun, moramo se upoznati sa određenim zahtjevima za projektiranje unutarnje rasvjete. Trenutno je u Hrvatskoj prihvaćena norma HRN EN 12464-1 koja se odnosi na rasvjetu unutarnjih prostora.

Podaci se mogu iščitati iz slike 2.1. Kao što se vidi, potrebna razina rasvjetljenosti (E_m) u prostorijama za obuku jest 300 lx.

![Informacije o namjeni prostorije](image)

Sl. 2.1. HRN EN 12464-1 norme [1].
Razina rasvijetljenosti predstavlja omjer minimalne i prosječne razine rasvijetljenosti.

Kako bi se postigao što reprezentativniji rezultat pri izračunu isplativosti određenog izvora svjetlosti odabrana je učionica srednje veličine, primjerena srednjim i osnovnoškolskim ustanovama, kapaciteta do 36 učenika. Prema članku 21, pravilnika o pristupačnosti građevina osobama s invaliditetom i smanjenom pokretljivosti, potrebno je osigurati minimalno 150 cm prostora između stupaca klupa i 120 cm između svakoga reda [2].

![Diagram učionice za osobe s posebnim potrebama](image)

Sl. 2.2. Dimenzije učionice za osobe s posebnim potrebama [3].

Kada se uračuna širina i dužina osamnaest učeničkih i jedne profesorske klupe, te uzmemo u obzir 0,5 m okolne površine gdje koeficijent jednolike rasvijetljenosti ne prelazi omjer 0,7, dimenzije učionice su 16x9 metara.

2.1. Projektiranje učionice unutar programskog paketa *Relux*

Nakon što je pokrenut programski paket *Relux* bit će ponuđeno otvaranje novog projekta, pri čemu se bira *Unutrašnjost*. Nakon što budu uneseni neki osnovni podaci o samom projektu otvorit će se
prozor gdje trebaju biti uneseni podaci o dimenzijama prostora, području vrednovanja te materijalima.

Sl. 2.3. Podaci o unutrašnjosti prostora u programu Relux

Za visinu referentne površine, tj. površine na kojoj se mjeri rasvjetljenost sustava, stavlja se visina radnog stola, odnosno 0,8 m. Radi optimalnosti, kao materijal za zidove i strop, odabire se bijela
boja, dok se za pod odabire parket *Herringbone 02*, naj bliži standarnom parketu koji se koristi u praksi, čiju teksturu možemo vidjeti na slici 2.4 [4].

![Select materials](image)

Sl. 2.4. Tekstura parketa u Relux programu.

Pritiskom na *U redu* dolazi se do gotovog tlocrta sobe u kojem se trebaju postaviti vrata, prozori te 3D objekti. Odabirom opcije *Dodaj/Elementi prostora/Vrata...* dodaju se vrata za zid 4, dok se na zid 2 postavljaju 3 prozora dimenzija 3,5x1,5 m. Ostale karakteristike se zadržavaju i ne mijenjaju. Nakon toga potrebno je postaviti stolice i stolove odabirom *Dodaj/3D objekti / namještaj/table ili chair*. Konačni izgleda učionice izgleda kao na slici 2.5.
Sl. 2.5. Tlocrt učionice u *Relux* programu

Referentna površina udaljena 0,5 m od zida označena je crvenim pravokutnikom. Potrebno je sve površine koje je potrebno rasvijetliti postaviti unutar te površine.
3. IZVORI SVJETLA

Za izvore svjetla u učionici odabrano je pet različitih svjetiljki:

- Svjetiljka sa žaruljom sa žarnom niti
- Halogena svjetiljka
- Svjetiljka sa štednom žaruljom
- LED svjetiljka (7W)
- LED svjetiljka (10W)

3.1. Svjetiljka sa žaruljom sa žarnom niti

Žarulja sa žarnom niti jedan je od važnijih izuma u ljudskoj povijesti. Radi na principu zagrijavanja žarne niti, najčešće izrađene od volframa zbog njegovog visokog tališta, pretvarajući električnu energiju u toplinsku.

Manjim se dijelom električna energija emitira u vidljivu svjetlost, dok većim (85% do 95%) u toplinu te infracrveno i ultraljubičasto zračenje [5].

U ovom radu korištena je svjetiljka Ridi HRL 300 SM/150-E27 koja sadrži žarulju sa žarnom niti snage 60 W i svjetlosnog toka 610 lm [6]. Svjetiljka je viseća te se montira na visinu od 2,3 m.
3.2. Halogena svjetiljka

Halogena žarulja je napredniji oblik žarulje sa žarnom niti. Žarulja se puni plinovitim halogenom koji omogućuje volfram u isparenom iz žarne niti da se vraća na nit i ne zadržava na stijenci što omogućuje veću trajnost žarulje [5].

Visoka temperatura isijavanja daje sjajno bijelo svjetlo, a svjetlosna iskoristivost je do 25 lm/W. Oko 10% električne energije pretvara se u svjetlost. Vijek trajanja žarulje je do 4000 h [7].

U ovom radu korištena je Occhio Piu piano halogen svjetiljka snage 48 W i svjetlosnog toka 740 lm. Svjetiljka se montira na strop i može se vidjeti na slici 3.2. [8].
3.3. Svjetiljka sa štednom žaruljom

Fluorescentne žarulje pripadaju grupi niskotlačnih izvora na izboj. Svjetlost se generira izbojem u živim parama visoke luminoznosti pri čemu se stvara uglavnom ultraljubičasto zračenje koje se fosfornim slojem na unutrašnjoj stijenki cijevi pretvara u vidljivo svjetlo [9].

Štedne žarulje (fluokompaktne žarulje) su zapravo savinute niskotlačne fluorescentne cijevi u kojima se svjetlost generira principom fotoluminiscencije.

Temperatura boje svjetla je kao i kod fluorescentnih cijevi moguće kontrolirati fosfornim omotačem. Proizvode se u snagama 3-70 W. Svjetlosna iskoristivost je velika (70-100 lm/W), kao i vijek trajanja (do 15000 h). Stoga je njihova uporaba raširena.

Gotovo 80% manja potrošnja energije nego kod standardnih žarulja (štedne žarulje)

U ovom radu korištena je Regiolux DESD 195+DES-BR TC-DEL svjetiljka snage 13 W i 900 lm toka [10].
3.4. LED svjetiljke

LED dioda je glavni elektronički element LED žarulja. Služi pretvaranju električnog signala u optički. LED žarulje imaju do 85% veću učinkovitost od žarulja sa žarnom niti, te ne emitiraju toliko topline. Isto tako ne sadrže opasne materijale, poput žive u fluorescentnoj rasvjeti. U pravilu im je životni vijek do 50 puta veći od obične žarulje, što ih čini puno isplativijim izvorom svjetlosti.

U ovom radu korištene su dvije vrste LED svjetiljki:

- Brumberg 12106 10 W/ 783 lm [12]
Sl. 3.5. Svjetiljka Brumberg 12106 10 W/ 783 lm.
4. SVJETLOTEHNIČKI IZRAČUN

Odabirom opcije EasyLux postupak sa alatne trake započinje se sa svjetlo-tehničkim izračunom. Za potrebe ovoga rada, iz padajućeg izbornika za faktor održavanja odabire se Čist prostor, 3-godišnji interval održavanja, pri čemu se sam faktor održavanja korigira na vrijednost 0,67. Način montaže ovisit će o samom izgledu svjetiljke. Kako je u normativu navedeno, potrebna razina rasvjetljenosti \(E_m\), koju je potrebno postići izračunom, iznosi 300 lx.

4.1. Svjetiljka sa žaruljom sa žarnom niti

Na slici 4.1. može se vidjeti EULUMDAT dijagram koji pokazuje širenje intenziteta svjetlosti kod pojedine svjetiljke [13].

![Sl. 4.1. Svjetlo-tehnički izračun svjetiljke sa žarnom niti.](image-url)
Nakon što se brzi izračun rasvjetljenošti pokrene, treba pričekati nekoliko minuta za rezultate. Iz rezultata možemo isčitati da nam je bilo potrebno 90 svjetiljki kako bi postigli željenu rasvjetljenoš prostora.

![Diagram rasvjetljenoši prostora](image)

Sl. 4.2. Rezultati izračuna svjetiljke sa žarnom niti.
Prema slici 4.2. vidimo da nam konačni rezultat ne dostiže željenih 300 lx, tek 263 lx srednje vrijednosti, što nije dovoljno dobar rezultat.

4.2. Halogena svjetiljka

Kod halogene svjetiljke potrebno je 156 svjetiljki kako bi dosegli željene rezultate. Po slici 4.4. može se vidjeti da je rezultat zadovoljavajući, sa 292 lx srednje vrijednosti.

![EasyLux izračun halogene svjetiljke](image.png)

Sl. 4.3. Svjetlotehnički izračun halogene svjetiljke.
4.3. Svetiljka sa štednom žaruljom

Sa 81 svjetiljkom sa štednom žaruljom dobiven je zadovoljavajući rezultat. Uzimajući u obzir činjenicu da je iskorišteno samo 1134 W snage, potrošnja je višestruko puta manja.

Sl. 4.4. Rezultati izračuna halogene svjetiljke.
Sl. 4.5. Svjetlo-tehnički izračun svjetiljke sa štednom žaruljom.
Sl. 4.6. Rezultati izračuna svjetiljke sa štednom žaruljom.
4.4. LED svjetiljka 7 W

Uz očekivanu manju instalirana snagu nego štedne žarulje i 121 svjetiljku dobiveni su prosječni rezultati rasvijetljenosti kod LED žarulje od 7 W.

Sl. 4.7. Svjetlotehnički izračun LED svjetiljke (7 W).
Sl. 4.8. Rezultati izračuna LED svjetiljke (7 W).
4.5. LED svjetiljka 10 W

Uz vrlo malu količinu instalirane snage i osjetno manju količinu svjetiljki dobiven je neobično ispodprosječan rezultat rasvijetljenosti koji se može vidjeti na slici 4.10.

![Sl. 4.9. Svjetlotehnički izračun LED svjetiljke (10 W).](image-url)
Sl. 4.10. Rezultati izračuna LED svjetiljke (10 W).
5. USPOREDBA REZULTATA

5.1. Tablična usporedba rezultata

Usporedba rezultata prikazana je u tablici 5.1. Stupci u tablici su sljedeći:

- Ukupna potrošnja (izražena u kWh):
 \[E_{(\text{kWh})} = \frac{P_{(W)} \cdot t_{(h)}}{1000} \]
- Instalirana snaga (izražena u W)
- Očekivani vijek trajanja (izražen u h)
- Broj komada svjetiljki
- Prosječna cijena u Republici Hrvatskoj
- Kvaliteta rasvijetljenosti: na ljestvici od 1 do 5, gdje je 1 vrlo loše osvijetljeno, a 5 savršeno osvijetljeno.
Tab. 5.1. Tablična usporedba rezultata

<table>
<thead>
<tr>
<th>Naziv</th>
<th>Instalirana snaga (W)</th>
<th>Očekivani vijek trajanja (h)</th>
<th>Kvaliteta rasvijetljenosti</th>
<th>Broj komada</th>
<th>Prosječna cijena (kn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svjetiljka sa žarnom niti</td>
<td>9000</td>
<td>1000</td>
<td>2</td>
<td>90</td>
<td>7</td>
</tr>
<tr>
<td>Halogena svjetiljka</td>
<td>7488</td>
<td>3000</td>
<td>4</td>
<td>156</td>
<td>17</td>
</tr>
<tr>
<td>Štedna svjetiljka</td>
<td>1134</td>
<td>10000</td>
<td>4</td>
<td>81</td>
<td>32</td>
</tr>
<tr>
<td>LED svjetiljka 7 W</td>
<td>847</td>
<td>45000</td>
<td>3</td>
<td>121</td>
<td>20</td>
</tr>
<tr>
<td>LED svjetiljka 10 W</td>
<td>640</td>
<td>25000</td>
<td>3</td>
<td>64</td>
<td>30</td>
</tr>
</tbody>
</table>
5.2. Grafička usporedba rezultata

Smisao grafičke usporede rezultata jest usporedba različitih izvora svjetlosti kroz različite vremenske intervale. S obzirom na veliku razliku u očekivanom vijeku trajanja pojedinih svjetiljki te količinu potrošnje cilj nam je vidjeti kolika je razlika u troškovima nakon dugog perioda vremena.

Razmatrani periodi vremena prikazani su na grafikonu 5.1. na osi X, dok je potrošnja prikazana na osi Y.

Korištena formula kojom se došlo do rezultata glasi:

\[C_t = E \cdot C_{hep} + m \cdot n \cdot C_s \]

(5-2)

Gdje su:
- \(C_t \) – Potrošnja u određenom intervalu vremen
- \(E \) – Ukupna potrošnja u kWh
- \(C_{hep} \) - Cijena tarifnog modela u HEP-u, koja iznosi 0,575 kn/kWh [14]
- \(m \) – Koliko su puta svjetiljke morale biti zamijenjene
- \(n \) – Broj svjetiljki
- \(C_s \) - Prosječna cijena svjetiljke

Ukoliko se u jednadžbu (5-2) uvrsti jednadžba (5-1) dobije se:

\[C_t = \left(P \cdot \frac{t}{1000} \right) \cdot C_{hep} + m \cdot n \cdot C_s \]

(5-3)

Nadalje, za halogenu svjetiljku nakon perioda od 20000 h morali bi investirati:

\[C_t = \left(7488 \cdot \frac{20000}{1000} \right) \cdot 0.575 + 7 \cdot 156 \cdot 17 = 104676 \text{ kn} \]
Tab. 5.2. Tablična usporedba cijene ovisno o vremenu

<table>
<thead>
<tr>
<th>Naziv / Vrijeme (h)</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
<th>30000</th>
<th>50000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svjetiljska sa žarnom niti</td>
<td>5805</td>
<td>11610</td>
<td>17415</td>
<td>29025</td>
<td>58050</td>
<td>116100</td>
<td>174150</td>
<td>290250</td>
</tr>
<tr>
<td>Halogena svjetiljska</td>
<td>6957,6</td>
<td>11263,2</td>
<td>15568,8</td>
<td>26832</td>
<td>53664</td>
<td>104676</td>
<td>155688</td>
<td>260364</td>
</tr>
<tr>
<td>Štedna svjetiljska</td>
<td>3244,05</td>
<td>3896,1</td>
<td>4548,15</td>
<td>5852,25</td>
<td>9112,5</td>
<td>18225</td>
<td>27337,5</td>
<td>45562,5</td>
</tr>
<tr>
<td>LED svjetiljska 7 W</td>
<td>2907,025</td>
<td>3394,05</td>
<td>3881,075</td>
<td>4855,125</td>
<td>7290,25</td>
<td>12160,5</td>
<td>17030,75</td>
<td>29191,25</td>
</tr>
<tr>
<td>LED svjetiljska 10 W</td>
<td>2288</td>
<td>2656</td>
<td>3024</td>
<td>3760</td>
<td>5600</td>
<td>9280</td>
<td>14880</td>
<td>22240</td>
</tr>
</tbody>
</table>

U tablici 5.2. je cjelovit prikaz cijene C_i za sve svjetiljke u svim odabranim vremenskim intervalima. Cijene su izražene u kunama.

Graf. 5.1. Grafička usporedba rezultata
6. ZAKLJUČAK

Cilj ovoga rada bio je napraviti usporedni test različitih izvora svjetlosti te na temelju toga zaključiti o tome koji je najisplativiji za širu primjenu. Uspoređeni su u odnosu na prosječnu cijenu, instaliranu snagu, očekivani vijek trajanja, kvalitetu rasvijetljenosti i cijenu kroz određene vremenske intervale.

Što se tiče prosječne cijene žarulja, žarulja sa žarnom niti je još uvijek najjeftinija, no pad cijene LED žarulja u proteklih par godina sve više ide u korist LED žaruljama, uzimajući u obzir njihov višestuko duži vijek trajanja i iznimno nižu potrošnju, posebice u odnosu na halogenu žarulju i žarulju sa žarnom niti.

Halogena žarulja, s druge strane, često je dobivala najbolje rezultate u kvaliteti rasvijetljenosti prostora. Bolji rezultati kod ostalih svjetiljki mogu se dobiti postavljanjem više granice za rasvijetljenost (500 lx).

Osvrčući se na tablicu 5.2. i grafikon 5.1. jasno je vidljivo kako su LED svjetiljke najisplativiji izvor svjetlosti trenutno. Pogotovo kada se uzima u obzir vremenski interval od 20000, 30000 h i više. Štedne svjetiljke su jedine koje im mogu parirati, što cijenom, što potrošnjom. U testovima je često dobivana nešto bolja razina rasvijetljenosti kod štednih svejtiljki u odnosu na LED. Ali uzimajući u obzir njihovu moguću štetu prema okolišu LED svjetiljke opet izlaze kao pobjednik.
LITERATURA

[10] https://reluxnet.relux.com/en/search/luminaires/regiolux/rgl__desd_195_des-br_d1ca3af3c51275ea/HR/#art=rgl__1x18w_evgy_vw_36_6e165702f0a60a0c&var=1&lamp=5-700-18-1200--10000-nw4000k-&config=1000283 (pristupio 14.6.2016)

SAŽETAK

Cilj ovoga rada bio je napraviti usporedni test različitih izvora svjetlosti te na temelju toga zaključiti o tome koji je najisplativiji za širu primjenu. Za potrebe ovoga rada korišten je programski paket Relux koji na vrlo jednostavan i intuitivan način pruža mogućnosti za svjetlotehnički izračun bilo kakvog prostora. Pri odabiru prostorije bilo je bitno odabrati dovoljno veliku prostoriju kako bi količina korištenih svjetiljki bila dovoljno velika za prikazati razliku u isplativosti. Korišteno je 5 različitih vrsta izvora, svjetiljke sa žarnom niti, halogene, štedne i LED svjetiljke od 7 i 10 W. Niska potrošnja, dugi vijek trajanja i sve manja cijena razlog su zašto su LED svjetiljke trenutno najisplativiji izvor svjetlosti.
SUMMARY

Effectiveness of various light sources

The aim of this study was to make a comparative test of different light sources, and based on that to conclude which one is the most profitable for wider application. For the purpose of this study software package Relux was used, a program that, in a very simple and intuitive way, provides the means for light planning and light building. It was important to choose a sufficiently large area for this project, so that the amount of lamps used was large enough to show the difference in cost-effectiveness. 5 different types of sources were used, incandescent lamps, halogen, energy saving and LED 7 W and 10 W lamps. Low power consumption, long service life and decreasing prices are the reason why LED lamps are currently the most cost effective source of light.
ŽIVOTOPIS