Izrada i analiza rada jednofaznog neopravljivog naponskog izmjenjivača u mosnom spoju upravljanog s pomoću integriranog kruga 4047; 12V/230V, 50Hz-60Hz, 100VA

Jeftimir, Stanko

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:200:425806

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-03-06
IZRADA I ANALIZA RADA JEDNOFAZNOG NEUPRAVLJIVOG NAPONSKOG IZMJEŇIVAČA U MOSNOM SPOJU UPRAVLJANOG S POMOĆU INTEGRIRANOG KRUGA 4047; 12V/230V, 50Hz-60Hz, 100VA

Završni rad

Stanko Jeftimir

Osijek, 2016.
Sadržaj:

1. Uvod .. 1
 1.1. Zadatak rada ... 1
2. Izrada izmjenjivača i komponente .. 2
 2.1. Izrada tiskane pločice .. 3
 2.2. Komponente izmjenjivača ... 5
3. Podsustavi izmjenjivača ... 6
 3.1. Upravljački podsustav .. 6
 3.2. Energetska podsustav .. 7
4. Analiza rada izmjenjivača ... 8
 4.1. Analiza rada djelatno opterećenog izmjenjivača 8
 4.2. Analiza rada djelatno-induktivno opterećenog izmjenjivača 13
 4.3. Upravljanje MOSFET-ima .. 15
5. Mjerenja na izmjenjivaču ... 17
 5.1. Mjerenja i snimanja valnih oblika za djelatno opterećen izmjenjivač ... 17
 5.2. Mjerenja i snimanja valnih oblika za djelatno-induktivno opterećen izmjenjivač 25
6. Zaključak ... 29

Literatura ... 30
Sažetak .. 31
Abstract ... 32
Životopis .. 33

Prilog 1- Podatkovna tablica za CMOS 4047 .. 34
Prilog 2- Podatkovna tablica za MOSFET IRF 9540 .. 36
Prilog 3- Podatkovna tablica za MOSFET IRF 540 ... 37
Obrazac Z1P - Obrazac za ocjenu završnog rada na preddiplomskom studiju

Osijek,

Odboru za završne i diplomske ispite

Prijedlog ocjene završnog rada

<table>
<thead>
<tr>
<th>Ime i prezime studenta:</th>
<th>Stanko Jeftimir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studij, smjer:</td>
<td>Preddiplomski studij elektrotehnika, smjer energetika</td>
</tr>
<tr>
<td>Mat. br. studenta, godina upisa:</td>
<td>3749, 2013. godina</td>
</tr>
<tr>
<td>Mentor:</td>
<td>Izv.prof.dr.sc. Denis Pelin</td>
</tr>
<tr>
<td>Sumentor:</td>
<td>Ivan Biondić</td>
</tr>
<tr>
<td>Naslov završnog rada:</td>
<td>Izrada i analiza rada jednofaznog neupravljivog naponskog izmjenivača u mosnom spoju upravljanog s pomoću integriranog kruga 4047; 12V/230V, 50Hz-60Hz, 100VA</td>
</tr>
<tr>
<td>Primarna znanstvena grana rada:</td>
<td></td>
</tr>
<tr>
<td>Sekundarna znanstvena grana (ili polje) rada:</td>
<td></td>
</tr>
<tr>
<td>Predložena ocjena završnog rada:</td>
<td></td>
</tr>
<tr>
<td>Kratko obrazloženje ocjene prema Kriterijima za ocjenjivanje završnih i diplomskih radova:</td>
<td>Primjena znanja stečenih na fakultetu: Postignuti rezultati u odnosu na složenost zadatka: Jasnoca pismenog izražavanja: Razina samostalnosti:</td>
</tr>
<tr>
<td>Potpis sumentora:</td>
<td></td>
</tr>
<tr>
<td>Potpis mentora:</td>
<td></td>
</tr>
</tbody>
</table>

Dostaviti:

1. Studentska služba

Potpis predsjednika Odbora:

Dostaviti:

1. Studentska služba
IZJAVA O ORIGINALNOSTI RADA

Osijek,

Ime i prezime studenta: Stanko Jeftimir

Studij: Preddiplomski studij elektrotehnika, smjer energetika

Mat. br. studenta, godina upisa: 3749, 2013. godina

Ovom izjavom izjavljujem da je rad pod nazivom: Izrada i analiza rada jednofaznog neupravljivog naponskog izmjnjivača u mosnom spoju upravljenog s pomoću integriranog kruga 4047; 12V/230V, 50Hz-60Hz, 100VA, izrađen pod vodstvom mentora Izv.prof.dr.sc. Denis Pelin i sumentora Ivan Biondić.

Moj vlastiti rad i prema mom najboljem znanju ne sadrži prethodno objavljene ili neobjavljene pisane materijale drugih osoba, osim onih koji su izričito priznati navođenjem literature i drugih izvora informacija. Izjavljujem da je intelektualni sadržaj navedenog rada proizvod mog vlastitog rada, osim u onom dijelu za koji mi je bila potrebna pomoć mentora, sumentora i drugih osoba, a što je izričito navedeno u radu.

Potpis studenta:
1. UVOD

Za završni rad izrađena je maketa jednofaznog neupravljivog naponskog izmjenjivača u mosnom spoju upravljanog s pomoću integriranog kruga 4047. Shema makete je pronađena na internetu, te uz male izmjene je složena krajnja shema [1]. Komponente koje su korištene za izradu makete bile su lako nabavljeve. Maketa je izrađena na bakrenoj pločici na kojoj je korišten foto postupak za izradu same pločice.

1.1. Zadatak rada

Zadatak završnog rada je izrada makete jednofaznog neupravljivog naponskog izmjenjivača u mosnom spoju upravljanog s pomoću integriranog kruga 4047, te analiza rada energetskog dijela kao i mjerenje valnih oblika napona i struje opterećenog žaruljom od 25 W (djelatno trošilo), te opterećenog brijačim aparatom (djelatno-induktivno trošilo). Dobivene valne oblike nadalje treba usporediti s onima dobivenim analizom rada izmjenjivača.
2. IZRADA IZMJENJIVAČA I KOMPONENTE

Shema jednofaznog neupravljenog naponskog izmjenjivača pronađena je na internetu [1]. Na slici 2.1. prikazana je prvobitna shema na kojoj su napravljene male promjene. Osigurač POJ1 (8A) zamijenjen je osiguračem od (5A) zbog ograničenja struje na ulazu. Izbačen je osigurač POJ2 (0.5A) te otpornik R3 (150Ω) i tinjalica DT1 koja pokazuje da izmjenjivač radi tj. da ima izlazni napon na sekundarnim stezaljkama transformatora. U upravljački strujni krug integriranog kruga dodan je potenciometar kako bi se mogla uraditi fina regulacija frekvencije.

Slika 2.1. Shema autonomnog naponskog neupravljenog izmjenjivača preuzeta iz [1].

Slika 2.2. Promijenjena shema autonomnog naponskog neupravljenog izmjenjivača.
2.1. Izrada tiskane pločice

Za izradu bakrenih pločica postoji više metoda, u ovom slučaju izabran je foto postupak. Za foto postupak potrebni su: fotooslojna pločica, prozirni A4 papir za grafoskop, 50 grama granula natrijevog hidroksida (NaOH), pola litre solne kiseline (HCl, 19 %), pola litre hidrogena (H2O2, 3 %), te aceton.

Kako bi se mogla načiniti pločica, primarno je potrebno u nekom programu nacrtati izgled tiskane pločice. Pri tome je korišten program pod imenom "PCB Wizard 3.50 Pro Unlimited". Nacrtanu shemu tiskane pločice potrebno je ispisati laserskim pisačem na prozirni A4 papir koji će poslužiti za osvjetljivanje pločice. Pločica je u programu zrcaljena kao što se može vidjeti na slici 2.3. Po mogućnosti je dobro ispisati uzorke na 2 lista papira, te zalijepiti jedan preko drugoga kako ne bi došlo do oštećenja vodova pri osvjetljivanju pločice.

Potrebno je izrezati fotooslojnu pločicu na istu veličinu kao što je na isписаном papиру tiskana pločica. S fotooslojne pločice skida se zaštitna folija, te preko nje stavlja ispiseni prozirni papir i staklo kako ne bi dolazilo do pomicanja tijekom osvjetljivanja. Osvjetljivanje se vrši pomoću žarulje jakosti 125-250 W. Korišten je grafoskop koji ima žarulju jakosti 250 W. Osvjetljivanje se provodi 10 minuta. Nakon osvjetljivanja, na pločici se mora vidjeti kako je svjetlost "skinula" lak koji nije bio zaštićen. Vodovi će biti vidljivi žutom bojom.

Slika 2.3. Izgled tiskane pločice u PCB Wizard programu
Sljedeći postupak je razvijanje pločice. Razvijanje pločice se radi tako da se u litru mlake vode stavi 50 grama natrijevog hidroksida, te dobro promiješa otopinu. U otopinu se stavlja pločica i lagano preko nje prelazi četkicom kako bi se skinuo fotooslojni lak. Nakon skidanja laka na pločici će biti dobro vidljivi zaštićeni vodovi. Nakon razvijanja pločice slijedi nagrizanje pločice. Nagrizanje pločice se radi tako da se u jednu posudu pomiješa 500ml solne kiseline koja je 19 %-tna, te 500ml hidrogena koji je 3 %-tni. U posudu se stavi pločica koju treba pomicati cijelo vrijeme u posudi kako bi se bakar skinuo. Potrebno je koristiti zaštitne rukavice zato što je otopina opasna za čovjekovu kožu.

Slika 2.4. Izgled tiskane pločice tijekom osvjetljivanja.

Slika 2.5. Izgled tiskane pločice nakon skidanja bakra.
Nakon skidanja bakra s pločice potrebno je acetonom skinuti lak s zaštićenih vodova. Zatim je potrebno izbušiti rupe na pločici. Bušenje rupa se radi malom bušilicom koja ima svrdlo 0.5 mm. Na kraju je potrebno zalemiti komponente na pločicu.

Slika 2.6. Izgled konačne tiskane pločice

2.2. Komponente izmjenjivača

Komponente izmjenjivača su:

- Osigurač (5A) - Služi za ograničavanje ulazne struje.
- Kondenzator (C1=10nF) - Služi za regulaciju vremena vođenja MOSFET-a.
- Kondenzator (C2) - Služi za peglanje ulaznog napona (nije spojen na pločici jer koristimo regulacijski naponski izvor na kojemu je napon ispeglan).
- Otpornici (R1=345 kΩ i R2=82 kΩ) - Služe za regulaciju vremena vođenja MOSFET-a.
- Integrirani krug (CMOS 4047) - Služi za upravljanje MOSFET-a.
- MOSFET-i (2xIRF9540 i 2xIRF540) - Služe za stvaranje izmjeničnog napona na transformatoru.
- Transformator - Služi za povećanje napona s 12 V na 230 V.
- Promjenjivi otpornik 50 kΩ - Služi za finu regulaciju frekvencije.
3. PODUSTAVI IZMJENJIVAČA

Postoje dva podsustava izmjenjivača: upravljački i energetski. Energetski podsustav se sastoji od različitih poluvodičkih ventila (dioda, tiristora, bipolarnih tranzistora, IGBT tranzistora, MOS tranzistora...), RLC komponenata, tranzistora. Upravljači podsustav se sastoji od pasivnih komponenata za upravljanje poluvodičkih ventila kao što je integrirani krug i ostale pasivne komponente. Pomoću upravljačkog sustava upravlja se brzina, odnosno frekvencija sklapanja poluvodičkih ventila.

![Diagram](image)

Slika 3.1. Podsustavi autonomnog naponskog neupravlјivog ispravlјačа

Na slici 3.1. plavom bojom je označen upravljački podsustav, a crvenom bojom je označen energetski podsustav.

3.1. Upravljački podsustav

Upravljački podsustav makete se sastoji od: integriranog kruga CMOS 4047, kondenzatora C2 i C1, otpornika R1 i R2, promjenjivog otpornika, te sklopke koja mijenja frekvenciju s 50Hz na 60Hz. Integrirani krug služi za upravljanje MOSFET-a. On upravlja s MOSFET-ima tako što za jednu poluperiodu na izlazu 10 pušta pozitivan napon a na izlazu 11 je napon 0, a za drugu poluperiodu obrnuto. Dok je pušten pozitivan napon na izlazu 10 vodit će MOSFET Q3 jer je on N-tipa pa mu treba pozitivan napon uGS kako bi proveo, a na izlazu 11 je napon 0 te će voditi
MOSFET Q2 jer je on P-tipa pa mu treba negativni napon na \(u_{GS} \) da bi proveo. MOSFET-i Q2 i Q3 te Q4 i Q1 rade u paru. Upravljanje frekvencije sklapanja i uklapanja MOSFETA može se regulirati otpornicima R1,R2, potenciometrom, i kondenzatorom C1. Frekvencija se upravlja pomoću sljedeće formule:

\[
f = \frac{1}{4.40 \cdot R \cdot C}. \tag{3-1}
\]

Potenciometar je podešen tako da je njegov otpor 372kΩ. Kada je sklopka otvorena frekvencija sklapanja ventila je

\[
f = \frac{1}{4.40 \cdot (372kΩ + 82kΩ) \cdot 10nF} = 50.06Hz ,
\]

a kada je sklopka zatvorena frekvencija sklapanja je

\[
f = \frac{1}{4.40 \cdot 372kΩ \cdot 10nF} = 61.09Hz .
\]

3.2. Energetski podsustav

Energetski podsustav makete se sastoji od: dva MOSFET-a IRF 540 (N-kanalni), dva MOSFET-a IRF 9540N (P-kanalni), te transformatora prijenosnog omjera 230/12V, snage 100VA. Stezaljke transformatora su zamijenjene kako bi se dobio prijenosni omjer 12/230V (zamijenjen primar i sekundar). MOSFET-i služe za stvaranje izmjencičnog napon na transformatoru. Na shemi se vidi da su MOSFET-i spojeni s zajedničkim odvodom (eng. drain), što je jako bitno kod P-kanalnog MOSFET-a kako bi se dobio negativan napon \(u_{DS} \) za vođenje.

Slika 3.2 Valni oblici napona na izlazima 10 i 11.
4. ANALIZA RADA IZMJENJIVAČA

4.1. Analiza rada djelatno opterećenog izmjenjivača

Za objašnjavanje rada ovoga sklopa potrebna je nadomjesna shema jednofaznog naponskog izmjenjivača u mosnom spoju, gdje će MOSFET-i biti modelirani pomoću punoupjavljive naponske jednosmjerne sklopke. Transformator pomoću kojeg se podiže napon modeliran je kao idealni transformator, radi lakšeg provođenja analize rada.

\[i = i_1 = i_2 = i_3 = i_4 \]

Slika 4.1. Shema spoja jednofaznog naponskog izmjenjivača u mosnom spoju sa naznačenim smjerovima struja i napona.

Na slici 4.1. označeni su smjerovi struja i napona u granama koji su zadani položajem pojedinog ventila, međutim smjerovi struja \(i_{v1} - i_{v4} \) su pretpostavljeni u odnosu na očekivani rad sklopa, odnosno struje antiparalelnih dioda će zbog čisto radnog opterećenja uvijek biti jednake nuli, pa se može reći kako je \(i_i = i_{v1} \), što vrijedi i za preostala tri ventila. Princip rada ovakvog izmjenjivača je slijedeći: ventili \(V_1 \) (zajedno sa antiparalelnim diodama) i \(V_4 \) rade u paru, odnosno ventili \(V_2 \) i \(V_3 \) rade u paru. Kada je par ventila \(V_1 \) i \(V_4 \) zatvoren, par ventila \(V_2 \) i \(V_3 \) je otvoren, tada struja prolazi u jednom smjeru kroz trošilo, u ovom slučaju kroz primer idealnog transformatora, te je napon na trošilu jednak naponu \(E \). Kada je par ventila \(V_2 \) i \(V_3 \) zatvoren, a ventili \(V_1 \) i \(V_4 \) otvoreni struja prolazi u suprotnom smjeru kroz trošilo, te je na njemu napon \(-E \).
Dakle u analizi rada postoje dva karakteristična intervala:

A) vode ventili V_1, V_{11} i V_4, V_{44}, a ne vode ventili V_2, V_{22} i V_3, V_{33} ($0 \leq t \leq \frac{T}{2}$)

B) vode ventili V_2, V_{22} i V_3, V_{33}, a ne vode ventili V_1, V_{11} i V_4, V_{44} ($\frac{T}{2} \leq t \leq T$)

Karakteristične intervale promotriti ćemo na nadomjesnim shemama.

Interval A:

![Diagram](image)

Slika 4.2. Nadomjesna shema za interval A s označenim smjerovima strujama i naponima.

KZN:

I) $E - u_{v1} - u_t - u_{vd} = 0 \Rightarrow u_t = E$ \hspace{1cm} (4-1)

II) $u_{v1} - u_{v2} + u_t = 0 \Rightarrow u_{v2} = u_t$ \hspace{1cm} (4-2)

III) $u_{v3} - u_{vd} - u_t = 0 \Rightarrow u_{v3} = u_t$ \hspace{1cm} (4-3)

KZS:

a) $i_{v1} - i_t - i_{v3} = 0 \Rightarrow i_{v1} = i_t$ \hspace{1cm} (4-4)

b) $i_{v2} + i_t - i_{v4} = 0 \Rightarrow i_t = i_{v4}$ \hspace{1cm} (4-5)

c) $i - i_{v1} - i_{v2} = 0 \Rightarrow i = i_{v1}$ \hspace{1cm} (4-6)
Pošto je u analizi rada korišten idealni transformator čije su konstitutivne relacije:

\[u_1 = nu_2 \; ; \; i_2 = - ni_1 \] \hspace{1cm} (4-7)

Napon na sekundaru transformatora će biti:

\[u_s = \frac{u_t}{n} \] \hspace{1cm} (4-8)

Uvrštavanjem prvog KZN-a dobije se slijedeće:

\[u_s = \frac{E}{n} = U_s = U_s(0) \] \hspace{1cm} (4-9)

Struja sekundara koja je diktirana trošilom u ovom slučaju će biti u fazi sa naponom jer je trošilo smatramo čisto radnim (žarulja).

Iz relacije (4-9) možemo napisati kirchoffov zakon struje za sekundarni krug:

\[i_s = \frac{u_s}{R} = \frac{1/n \cdot E}{R} = \frac{E}{nR} = I = I(0) \] \hspace{1cm} (4-10)

Interval B:

Slika 4.3. Nadomjesna shema za interval B s označenim smjerovima strujama i naponima.
KZN:

I) \[E - u_{v2} - u_t - u_{v3} = 0 \rightarrow u_t = E \] (4-11)

II) \[u_{v1} - u_{v2} - u_t = 0 \rightarrow u_{v1} = u_t \] (4-12)

III) \[u_{v3} - u_{v4} + u_t = 0 \rightarrow u_{v4} = u_t \] (4-13)

KZS:

a) \[i_{v1} + i_t - i_{v3} = 0 \rightarrow i_{v3} = i_t \] (4-14)

b) \[i_{v2} - i_t - i_{v3} = 0 \rightarrow i_t = i_{v2} \] (4-15)

c) \[i - i_{v1} - i_{v2} = 0 \rightarrow i = i_{v2} \] (4-16)

Za ovaj interval također vrijede relacije (4-9) i (4-10), međutim pažnju treba obratit na smjer napona odnosno struje trošila koji su suprotnog smjera od onih u intervalu A.

Pošto se u analizi rada transformator modelirao idealnim transformatorom koji ima jednostavne matematičke jednadžbe, ali fizički ne modelira najbolje stvarni transformator (idealni transformator može transformirati čak i istosmjerne napone i struje), potrebno je naglasiti važnost dobivanja dvaju različitih smjerova protjecanja struje kroz namote primara transformatora. Promjenjivi smjer struje koji je dobiven u analizi modela izmjenjivača, u stvarnom izmjenjivaču će stvarati promjenjivi magnetski tok koji će po Faraday-Lenzovom zakonu u sekundaru realnog transformatora inducirati napon.

Iz provedene analize se mogu nacrtaći valni oblici struja i napona trošila i ventila.
Slika 4.4. Valni oblici napona i struje trošila i ventila.
4.2. Analiza rada djelatno-induktivno opterećenog izmjenjivača

Kao i kod analize djelatno opterećenog autonomnog naponskog neupravljivog izmjenjivača postoje dva intervala:

A) vode ventili \(V_1, V_{11}, V_4, V_{44} \), a ne vode ventili \(V_2, V_{22}, V_3, V_{33} \) \((0 \leq t \leq \frac{T}{2})\)

B) vode ventili \(V_2, V_{22} \) i \(V_3, V_{33} \), a ne vode ventili \(V_1, V_{11} \) i \(V_4, V_{44} \) \((\frac{T}{2} \leq t \leq T)\)

Napon trošila ovisi isključivo o sklopnom stanju ventila \(V_1, V_{11}, V_2, V_{22}, V_3, V_{33}, V_4, V_{44} \) a ne o trenutnom smjeru struje trošila. Stoga se napon trošila određuje na temelju poznavanja valnih oblika upravljačkih signalova. Na trošilu su, prema slikama 4.2 i 4.3, moguće dvije vrijednosti naponova; kada vodi \(V_1, V_{11} \) tj. kada vodi \(V_4, V_{44} \) jer rade u paru, napon na trošilu je pozitivan, iznosa \(NE \), a kad vodi \(V_2, V_{22} \) i \(V_3, V_{33} \), napon na trošilu je negativan, iznosa \(-NE\). Rastavom naponova trošila, slika 4.5 a), u Fourierov red dobije se izraz za napon trošila u obliku:

\[
 u = \frac{4NE}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\omega t}{n}, \quad n = 1, 3, 5, \ldots
\]
\((4-17) \)

Valni oblik struje, a time i valni oblici struja ventila određuju analizom nadomjesne sheme kruga trošila prikazane na slici 4.5 b).

\[Slika\ 4.5.\ a)\ Valni\ oblik\ napona\ trošila;\]
\[b)\ nadomjesna\ shema\ kruga\ trošila\ izmjenjivača\ operećenog\ djelatno-induktivnim\ trošilom.\]

Iz jednadžbe \(u = u_L + iR \), uz pisanje konstitutivne relacije inductiviteta \(u_L = L \frac{di}{dt} = \omega L \frac{di}{d\omega t} \),
dobije se diferencijalna jednadžba za krug trošila:

\[
 \tan \varphi \frac{dI}{d(\omega t)} + i = \frac{NE}{R} \left\{ \begin{array}{ll}
 1 & 0 \leq \omega t \leq \pi - 0 \\
 -1 & \pi + 0 \leq \omega t \leq 2\pi - 0
 \end{array} \right.
\]
\((4-18) \)
gdje je \(\tan \varphi = \omega L/R \), te se nakon rješavanja diferencijalne jednadžbe koristeći metode rješavanja višeharmonijskih mreža dobije izraz za valni oblik struje trošila:

\[
\begin{align*}
 i &= \frac{NE}{R} \left(1 - \frac{2e^{\frac{\omega t}{\tan \varphi}}}{1 + e^{\frac{\pi}{\tan \varphi}}} \right) + 0 \leq \omega t \leq \pi - 0 \\
 &\quad - \left(1 - \frac{2e^{\frac{\omega t - \pi}{\tan \varphi}}}{1 + e^{\frac{\pi}{\tan \varphi}}} \right) \pi + 0 \leq \omega t \leq 2\pi - 0
\end{align*}
\] (4-19)

Karakteristični valni oblici napona i struja autonomnog neupravljenog naponskog izmjenjivača opterećenog djelatno-induktivnim trošilom prikazani su na slici 4.6.

\[
\text{Slika 4.6. Karakteristični valni oblici napona i struja izmjenjivača.}
\]
4.3. Upravljanje MOSFET-ima

U analiziranom sklopu postoje dvije vrste MOSFET-a P-kanalni i N-kanalni, stoga je svakom od njih potrebno dovesti odgovarajuće napone u_{GS} i u_{DS} kako bi pravilno izvršavali pretvaračke funkcije. Način na koji CMOS 4047 upravlja MOSFET-ima je slijedeći: na izlazima 10 i 11 CMOS 4047 daje pravokutne naponske impulse koji jedan za drugim kasne za polovicu periode a vršna vrijednost im je jednak naponu napajanja, odnosno efektivan je jednak polovici vršne vrijednosti napajanja napona napajanja.

![Slika 4.7. Shema s naznačenim karakterističnim naponima.](image)

Uvjeti pri kojima N tip MOSFET-a vodi su: pozitivan napon u_{DS}, te pozitivan napon u_{GS}. Pošto su u realizaciji korišteni i P tipovi MOSFET-a njima će biti potrebno osigurati negativne vrijednosti napona u_{GS} i u_{DS} za vođenje. Adekvatni polariteti napona osigurani su kroz zajednički spoj odvoda te spajanjem gejta na izlaze 10 i 11. Kako bi se osigurao izmjenjivački način rada, dva MOSFET-a rade u paru, po jedan P i po jedan N kanalni. Radi objašnjenja promotrit ćemo trenutak kada je na 10. izlazu integriranog kruga napon jednak nuli, odnosno na 11. jednak naponu napajanja (12V). Tada su osigurani uvjeti za vođenje MOSFET-a Q1 i Q4, dok MOSFET-i Q2 i Q3 nemaju uvjete za vođenje (na njima ne postoje naponi u_{GS} niti $-u_{GS}$).

U narednim slikama biti će prikazano naponske prilike na MOSFET-ima u intervalu $0 \leq t \leq \frac{T}{2}$.

15

Slika 4.9. Naponske prilike na paru MOSFET-a koji ne vode te njihove izlazne karakteristike.
5. MJERENJA NA IZMJENJIVAČU

5.1. Mjerenja i snimanja valnih oblika za djelatno opterećen izmjenjivač

Prvo mjerenje odradio je u praznom hodu prilikom čega je izmjereno očekivani napon na izlazu sklopa od 217.6 V (iako je predviđeno da na izlazu izmjenjivača bude 230 V), na ulaz sklopa je postavljen napon od 12.25 V. Frekvencija na sekundarnim stezaljkama transformatora je bila 52.78 Hz.

![Slika 5.1. Radno mjesto na kojem su obavljena mjerenja.](image1)

![Slika 5.2. Shema mjerenja.](image2)

Tablica 5.1. Izmjerene vrijednosti na izmjenjivaču.

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>PRAZNI HOD</th>
<th>OPTEREĆENJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>24.93 mA</td>
<td>0.169 A</td>
</tr>
<tr>
<td>V₁</td>
<td>12.25 V</td>
<td>13.25 V</td>
</tr>
<tr>
<td>A₂</td>
<td>0 A</td>
<td>0.094 A</td>
</tr>
<tr>
<td>V₂</td>
<td>217.6 V</td>
<td>220 V</td>
</tr>
</tbody>
</table>
Slika 5.3. Izmjerena frekvencija na sekundarnim stezaljkama transformatora.

Slika 5.4. Valni oblik napona sekundara transformatora na kojem se vidi prenapon uzrokovani trenutnim sklapanjem MOSFET-a.
Nakon obavljenog mjerenja u praznom hodu izmjenjivač je opterećen radnim trošilom snage 25 W (žarulja sa žarnom niti) odmah se mogao zamijetiti pad ulaznog i izlaznog napona te povećanje ulazne i izlazne struje. Za pokus opterećenja obavljena su slijedeća mjerenja:

Slika 5.5. Valni oblici napona u i struje trošila i.

Na valnim oblicima se jasno može vidjeti kako struja slijedi oblik napona, odnosno kako nema faznog pomaka između osnovnih harmonika napona i struje zbog opterećenja čisto radnim trošilom. Izraženi šum koji se javlja na valnom obliku struje jest mjerni šum koji se javlja prilikom mjerenja malih struja strujnim kliještama koja imaju veliku osjetljivost.

Nakon očitanja vrijednosti na instrumentima može se provjeriti podudaraju li se dobivene vrijednosti sa onima koje su dobivene u teorijskoj analizi rada.

Instrumenti kojima su mjereni napon i struja sekundarnog kruga transformatora su *UNISET Hexagon 340* koji mjere TRMS vrijednosti (stvarne efektivne vrijednosti).
Prema teorijskoj analizi efektivna vrijednost struje je:

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^2(t) dt}$$ \hspace{1cm} (5-1)

Gdje je:

I – efektivna vrijednost struje

T – period

$i^2(t)$ – kvadrat funkcije struje ovisna o vremenu

funkcija struje se zatim rastavlja na dva intervala vođenja.

$$I = \sqrt{\frac{1}{T} \left[\int_{0}^{T} \left(\frac{E}{nR} \right)^2 dt + \int_{T/2}^{T} \left(\frac{-E}{nR} \right)^2 dt \right]}$$ \hspace{1cm} (5-2)

Gdje je:

E – napon napajanja

R – otpor trošila

n – prijenosni omjer idealnog transformatora (ovidje uzet kao nisko naponska strana, visoko naponska strana)

$$I^2 = \frac{1}{T} \left[\frac{E^2}{n^2R^2} \cdot \frac{T}{2} + \frac{E^2}{n^2R^2} \cdot \frac{T}{2} - \frac{E^2}{n^2R^2} \cdot \frac{T}{2} \right] = \frac{E}{nR}$$ \hspace{1cm} (5-3)

Otpor trošila (žarulje) dobije se na sljedeći način:

$$P = \frac{U^2}{R} \rightarrow R = \frac{U^2}{P} = \frac{230^2}{25} = 2116 \Omega$$

Prijenosni omjer transformatora:

$$n = \frac{12}{230} = 0.0522$$

$E = 13.25V$

Uvrštavanjem gornjih podatka u jednadžbu (5-3) dobije se $I = \frac{13.25}{0.0522 \cdot 2116} = 0.119 A$

Na osnovu očekivanih i dobivenih rezultate može se izračunati postotna pogreška.

$$p = \frac{x_{mj} - x_p}{x_p} \times 100\%$$ \hspace{1cm} (5-4)
Gdje je:

\[p \quad \text{postotna pogreška} \]

\[X_{mj} \quad \text{mjerni rezultat} \]

\[X_p \quad \text{dogovorna prava vrijednost} \]

\[p = \frac{0.094 - 0.119}{0.119} \times 100\% = -21\% \]

Vidi se kako su izmjerena vrijednost i vrijednost dobivena proračunom po iznosu veoma bliske (21% odstupanje), a razlika se može pripisati mjernoj pogrešci. S obzirom da je cijeli model idealiziran greška od 21% nam je prihvatljiva i može se reći kako dobiveni rezultati odgovaraju teorijskoj analizi.

U trećem mjerenju snimljeni su valni oblici napona na ventilima V1 i V3 koji rade protutaktno, dok je valni oblik valni oblik struje ostavljen radi provjere.

Slika 5.6. Valni oblici napona \(u_{v1}, u_{v3} \) i struja trošila \(i_s \).

Na prikazu osciloskopa može se vidjeti kako je za vrijeme vođenja ventila V1 na njemu napon nula, dok je u isto vrijeme napon na ventilu V3 napon pozitivan i jednak naponu napajanja odnosno trošila. Za vrijeme vođenja ventila V3 napon na njemu je nula, u isto vrijeme napon na ventilu V1 je jednak negativnoj vrijednosti napona napajanja jer se radi o P kanalnom MOSFET-u kojem je za rad potreban negativan napon \(u_{DS} \).
Vrijednosti pojedinih iznosa napona može se direktno isčitati na ekranu osciloskopa ili se mogu prebrojiti podioci koji u ovom slučaju imaju vrijednost 10V/podioku, a vrijednosti napona dostižu nešto manje od jednog podioka. Također se može vidjeti prisutnost mjernog šuma.

\[U_{GS} \]

Slika 5.7. Srednje vrijednosti napona U_{GS} na P kanalnom MOSFET-u (negativno) i N kanalnom MOSFET-u (pozitivno) te ulazni napon.

Četvrto mjerenje obuhvaća snimanje napona na ventilima V1 i V2 te napona U_{GS1}.

\[U_{v1}, U_{v2}, U_{GS1} i struja trošila i_s \]

Slika 5.8. Valni oblici napona u_{v1}, u_{v2}, u_{GS1} i struja trošila i_s.

Sa snimljenih valnih oblika može se vidjeti kako su naponi ventila V1 i V2 kada ne vode negativnih predznaka jer se u oba slučaja radi o P kanalnim MOSFET-ima, također se može vidjeti kada napon u_{GS} ventila V1 iznosi nula tada taj ventil ne vodi struju, odnosno na njemu postoji negativan pad napona. Napon u_{GS} ventila V1 je također negativnog predznaka kada on vodi jer se radi o P kanalnom MOSFET-u.
U petom mjerenju snimljeni su naponi na ventilima V2 i V4 i struja trošila.

![Diagram](image1)

Slika 5.9. Valni oblici napona u v2, u v4 i struja trošila i_s.

Na prikazanim oblicima može se uočiti kako je za vrijeme vođenja ventila V2 napon na ventilu V4 pozitivan (N kanalni MOSFET).

Šestim mjerenjem snimljeni su valni oblici napona na ventilima V4 i V3 te napon uGS4.

![Diagram](image2)

Slika 5.10. Valni oblici napona u v4, u v3, uGS4 i struja trošila i_s.

Na slici 5.10 može se vidjeti kako ventili V3 i V4 rade protutaktno (dok jedan vodi, drugi ne vodi). Može se vidjeti da ventil V4 vodi dok na njemu postoji pozitivan napon uGS (izlaz 1).
Na oba ventila javljaju se pozitivni naponi jer se radi o N kanalnim MOSFET-ima, također napon u_{GS} ventila V4 je pozitivan.

Sedmim mjerenjem snimljeni su valni oblici struje ventila V3 i napona na ventilu V3.

*Slika 5.11. Valni oblik napona u_{v3} i struja ventila i_{v3}.

Na prikazanim oblicima može se uočiti kako napon ventila V3 je pozitivan (N kanalni MOSFET) te dok je napon pozitivan MOSFET ne vodi, tj dok je napon na ventilu V3 jednak nuli MOSFET vodi i ima struje koja je pozitivna.

Osmim mjerenjem snimljeni su valni oblici napona pojne mreže i struja pojne mreže.

Slika 5.12. Valni oblik napona pojne mreže E i struja pojne mreže i.
5.2. Mjerenja i snimanja valnih oblika za djelatno-induktivno opterećen izmjnjivač

Mjerenja i snimanja valnih oblika su određena kao i kod djelatno opterećenog izmjnjivača. Za opterećenje djelatno-induktivno koristili smo brijaći aparat BRAUN Sixtant S/5330. Prvim mjerenjem su se izmjerili naponi i struje prema shemi 5.2.

Tablica 5.2. Izmjerene vrijednosti prilikom opterećenja.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>1.368 A</td>
</tr>
<tr>
<td>V₁</td>
<td>12.51 V</td>
</tr>
<tr>
<td>A₂</td>
<td>0.084 A</td>
</tr>
<tr>
<td>V₂</td>
<td>220 V</td>
</tr>
</tbody>
</table>

Nakon obavljenog očitavanja s instrumenata prelazi se na snimanje valnih oblika. Prvo mjerenje snimanja valnih oblika je snimanje napona i struje na djelatno-induktivnom trošilu tj. brijačem aparatu.

Slika 5.13. Valni oblik napona u₁ i struje i₁.

Na slici 5.13 se može vidjeti pad napona za 3 volta zbog priključenja opterećenja. Prvi harmonik struje trošila kasni za prvim harmonikom napona zato što je trošilo djelatno-induktivno.
Dobiveni valni oblik struje poklapa se s teorijskom analizom izmjjenjivača. Daljnja mjerenja su provedena između istih mjernih točki kao i kod opterećenja sa radnim trošilom.

![Slika 5.14 Valni oblici napona u_{v1}, u_{v3} i struja trošila i_s.](image1)

![Slika 5.15 Valni oblici napona u_{v1}, u_{v2}, u_{GS1} i struja trošila i_s.](image2)
Slika 5.16. Valni oblici napona \(u_{v2} \), \(u_{v4} \) i struja trošila \(i_s \).

Slika 5.17. Valni oblici napona \(u_{v3} \), \(u_{v4} \), \(u_{GS4} \) i struja trošila \(i_s \).
Slika 5.18. Valni oblik napona v_{3} i struja ventila i_{v3}.

Slika 5.19. Valni oblik napona pojne mreže E i struja pojne mreže i.

Na slikama 5.14-5.19 može se vidjeti da ne dolazi do promjene napona na ventilima, jedina razlika je u struji trošila koja više nije u fazi s naponom te je drukčijeg oblika.
6. ZAKLJUČAK

Cilj završnog rada je bio napraviti maketu jednofaznog neupravljivog naponskog izmjenjivača u mosnom spoju upravljanog s pomoću integriranog kruga 4047; 12V/230V,50Hz-60Hz, 100VA s znanjem koje je stečeno na predavanjima i vježbama, te odraditi mjerenja na samoj maketi kako bi rezultate usporedili s teorijskim analizom. Valni oblici dobiveni mjerenjem i valni oblici dobiveni teorijskom analizom se poklapaju, te se dolazi do zaključka da su ciljevi uspješno obavljeni.

Izrađena maketa povezuje istosmjerni i izmjenični električki sustav. Ovaj izmjenjivač za stvaranje izmjeničnog signala koristi četiri MOSFET-a od kojih su dva P i dva N tipa. Zbog korištenja četiri MOSFET-a nije potrebno koristiti transformator sa srednjim izvodom na primaru. Zbog toga je ovaj izmjenjivač znatno jeftiniji od onoga izmjenjivača s dva MOSFET-a koji koristi transformator sa srednjim izvodom na primaru.

Autonomni izmjenjivači često se nalaze u primjeni kod asinkronih motora za regulaciju brzine vrtnje. Koristi se još kod fotonaponskih panela za pretvorbu istosmjernog napona u izmjenični te se koriste još za neprekidno napajanje računala ili nekog elektroničkog sustava.

Izmjenjivači će imati masovnu primjenu u budućnosti zbog sve većeg korištenja fotonaponskih panela. U fotonaponskim panelima nastaje istosmjerna struja koju za svakodnevnu primjenu treba pretvoriti u izmjeničnu. Pritom se energija iz istosmjernog dijela sustava prenosi prema izmjeničnom, a izmjenjivač može proizvesti potrebni napon odgovarajuće frekvencije.

Nedostatak ovoga izmjenjivača je ta što se efektivna vrijednost izlaznog napona jedino može mijenjati promjenom napona na istosmjernim pristupima. Za taj način upravljanja potrebna je složeni istosmjerni ulazni sustav, primjerice fazno upravljivi ispravljač ili istosmjerni pretvarač. Nemogućnost mijenjanja frekvencije u većem rasponu od 50Hz do 60Hz isto predstavlja nedostatak ovome izmjenjivaču.

Izradom ovog završnog rada se povezuje teorijsko znanje stečeno kroz tri godine školovanja s stvarnim problemima u laboratoriju. Uz pomoć završnog rada stečena su nova praktična znanja i rješavanje stvarnih problema u inženjerskoj praksi.
LITERATURA

PRILOZI

Prilog 1 - Prva i šesta stranica podatkovne tablice (eng. data-sheet) za integrirani krug CMOS 4047

Prilog 2 - Prva stranica podatkovne tablice (eng. data-sheet) za MOSFET IRF 9540

Prilog 3 - Prva stranica podatkovne tablice (eng. data-sheet) za MOSFET IRF 540
SAŽETAK

Izrada i analiza rada jednofaznog neupravljivog naponskog izmjenjivača u mosnom spoju upravljanog s pomoću integriranog kruga 4047; 12V/230V, 50Hz-60Hz, 100VA

ABSTRACT

Design and analysis of the single phase, voltage inverter in H-bridge configuration controled by IC 4047; 12V/230V,50Hz-60Hz, 100VA

For the final project the inverter 12V to 220V was constructed. Firstly, the schematic was found on the internet and some changes were made [1]. The inverter was created on the circuit board using the photo processing method which has two subsystems, the energy subsystem and the control subsystem. A theoretical analysis was then completed on the inverter using ideal components on the basis of equivalent circuits which created waveform diagrams of current and voltage. After the theoretical analysis was conducted on the inverter, a practical analysis was completed to ensure that results matched. Measurements were made with active load (real power) and active-inductive load (reactive power). A 25 watt light bulb was used to carry out the active load test, while an electric shaver was used for the active-inductive test. The practical analysis was compared with the theoretical analysis and concluded that the results were similar. This means that the theoretical analysis conducted was correct. Small deviations in measurement can be attributed to the measuring equipment.
SAŽETAK

- završena Elektrotehnička i prometna škola Osijek, smjer: elektrotehničar
- pouzdana, odgovorna, savjesna i ambiciozna osoba, voli neprestano doprinositi timskom radu i voli putovati
- profesionalni cilj: završiti fakultet i pronaći posao

OSOBDNI PODACI

Ime i prezime: Stanko Jeftimir
Mjesto rođenja: Beli Manastir
Adresa: Dobriše Cesarića 51b Mece , 31326 Darda
Mobitel: 099 5985640
E-mail adresa: stane9999@gmail.com
Obitelj: -

OBRAZOVANJE

2009. – 2013. Elektrotehnička i prometna škola Osijek
Elektrotehničar

2013. – Sveučilište Josipa Jurja Strossmayera u Osijeku
Fakultet elektrotehnike, računalstva i informacijskih tehnologija Osijek
Sveučilišni preddiplomski studij elektrotehnika,
smjer: elektroenergetika, 3. godina

VJEŠTINE

- rad na računalu – aktivno korištenje Windows Vista, Windows XP, Windows 7, Windows 8
- rastavljanje i sastavljanje računala - konfiguriranje (hardware,software)
- detaljno poznavanje korisničkih aplikacija kao što su:
 - Microsoft Office 2007 paket (MS Word, Excel, PowerPoint),
 - MS Visio,
- strani jezici: - aktivno znanje engleskog jezika (neprestano usavršavam)
- vozačka dozvola B kategorije

HOBI I INTERESI

- novi software, hardware, posebice se radujem inovacijama u automatici i robotici,
- računalo kao medij odmora,
- vožnja bicikla, putovanja vlastitim automobilom, nogomet.
CD4047B Types

Features:
- **Low power consumption**: special CMOS oscillator configuration
- **Monostable** (one-shot) or astable (free-running) operation
- True complementary buffered outputs
- Only one external R and C required
- Buffered inputs
- **100% tested for quiescent current at 20 V**
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B
 - "Standard Specifications for Description of B Series CMOS Devices"

Monostable Multivibrator Features:
- Positive or negative-edge trigger
- Output pulse width independent of trigger pulse duration
- Retriggerable option for pulse width expansion
- Internal power-on reset circuit
- Long pulse widths possible using small RC components by means of external counter provision
- Fast recovery time essentially independent of pulse width
- Pulse width accuracy maintained at duty cycles approaching 100%

Astable Multivibrator Features:
- Free-running or gateable operating modes
- 50% duty cycle

Calculator Output Available
- Good available frequency stability
- Frequency deviation:
 - $\pm 0.2\%$ at 100 kHz
 - $\pm 0.3\%$ at 500 kHz
- (circuits "trimmed" to frequency $V_{DD} = 10\ V \pm 10\%$)

Applications:
- Digital equipment where low-power dissipation and high noise immunity are primary design requirements:
 - Ringing detection
 - Frequency multiplication
 - Frequency dividers
 - Frequency discriminators
 - Timing circuits
 - Time-delay applications

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range</td>
<td>3 V</td>
<td>5 V</td>
</tr>
</tbody>
</table>

Note: If at 5 V operation a 10 Ω resistor is used, the operating temperature should be between $-25^\circ C$ and $100^\circ C$.

Maximum Ratings

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supply-Voltage Range</td>
<td>$0 V \leq V_{DD} \leq 5 V$</td>
</tr>
<tr>
<td>DC Input Current, Any One Input</td>
<td>$\leq 10\ mA$</td>
</tr>
<tr>
<td>Power Dissipation Per Package (Pd)</td>
<td>$\leq 400\ mW$</td>
</tr>
<tr>
<td>Device Dissipation Per Output Transistor</td>
<td>$\leq 200\ mW$</td>
</tr>
<tr>
<td>Operating Temperature Range (Ta)</td>
<td>$-55^\circ C \leq Ta \leq 125^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature Range (Tstg)</td>
<td>$-60^\circ C \leq Tstg \leq 150^\circ C$</td>
</tr>
<tr>
<td>Lead Temperature (During Soldering)</td>
<td>$\leq 260^\circ C$</td>
</tr>
</tbody>
</table>

Copyright © 2003, Texas Instruments Incorporated.
CD4047B Types

1. Astable Mode Design Information
 A. Unit-to-Unit Transfer Voltage
 Variations — The following analysis presumes variations from unit to unit as a function of transfer-voltage (V_{TP}) shift (33%—67% V_{DD}) for free-running (astable) operation.

 \[\begin{align*}
 t_1 &= \frac{-RC}{V_{TR}} \left(\frac{V_{DD} + V_{TR}}{V_{DD}} \right) \\
 t_2 &= \frac{-RC}{2V_{DD} - V_{TR}} \\
 t_A &= \frac{2t_1 + t_2}{2}
 \end{align*} \]

 Typically, \(t_1 = 1.1 \text{ RC} \)

 \[t_1 = \frac{-RC}{V_{TR}} \left(\frac{V_{DD} + V_{TR}}{V_{DD}} \right) \]

 Thus, if \(t_A = 4.40 \text{ RC} \) is used, the variation will be \(\pm 5\% \), \(-5\%\) due to variations in transfer voltage.

 B. Variations Due to V_{DD} and Temperature Changes — In addition to variations from unit to unit, the astable period varies with V_{DD} and temperature. Typical variations are presented in graphical form in Figs. 15 to 18 with 10% as reference for voltage variations curves and 25°C as reference for temperature variations curves.

II. Monostable Mode Design Information
 The following analysis presents variations from unit to unit as a function of transfer-voltage (V_{TP}) shift (33%—67% V_{DD}) for one-shot (monostable) operation.

 \[\begin{align*}
 t_1' &= \frac{-RC}{2V_{DD}} \\
 t_2' &= \frac{-V_{TR}}{2V_{DD} - V_{TR}} \left(V_{DD} + V_{TR} \right) \\
 t_A' &= \frac{2t_1' + t_2'}{2}
 \end{align*} \]

 Typically, \(t_1' = 1.38 \text{ RC} \)

 \(t_M = (V_1 + t_2') \)

 \[t_M = \frac{-RC}{V_{TR}} \left(\frac{V_{DD} + V_{TR}}{2V_{DD} - V_{TR}} \left(V_{DD} + V_{TR} \right) \right) \]

 where \(t_M = \text{Monostable mode pulse width. Values for } t_M \) are as follows:

 \[\begin{align*}
 t_1' &= \frac{-RC}{2V_{DD}} \\
 t_2' &= \frac{-V_{TR}}{2V_{DD} - V_{TR}} \left(V_{DD} + V_{TR} \right) \\
 t_A' &= \frac{2t_1' + t_2'}{2}
 \end{align*} \]

 Typically, \(t_1' = 1.38 \text{ RC} \)

 \[t_M = (V_1 + t_2') \]

 \[t_M = \frac{-RC}{V_{TR}} \left(\frac{V_{DD} + V_{TR}}{2V_{DD} - V_{TR}} \left(V_{DD} + V_{TR} \right) \right) \]

 where \(t_M = 2.48 \text{ RC} \) is used, the variation will be \(\pm 3\% \), \(-5\%\) due to variations in transfer voltage.

 Note:
 In the monostable mode, the first positive half cycle has a duration of \(t_M \). Successive durations are \(t_2' \).

 In addition to variations from unit to unit, the monostable pulse width varies with V_{DD} and temperature. These variations are presented in graphical form in Figs. 19 to 26 with 10% as reference for voltage-variation curves and 25°C as reference for temperature-variation curves.
Prilog 2 - Podatkovna tablica za MOSFET IRF 9540

IRF9540N

Power MOSFET

- **V_DSS** = -100V
- **R_DS(on)** = 0.117Ω
- **I_D** = -23A

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial and industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D @ T_J = 25°C Continuous Drain Current, V_GS @ -10V</td>
<td>-23</td>
<td>A</td>
</tr>
<tr>
<td>I_D @ T_J = 100°C Continuous Drain Current, V_GS @ -10V</td>
<td>-16</td>
<td>A</td>
</tr>
<tr>
<td>I_DM</td>
<td>-76</td>
<td></td>
</tr>
<tr>
<td>P_D @ T_J = 25°C Power Dissipation</td>
<td>140</td>
<td>W</td>
</tr>
<tr>
<td>I_F</td>
<td>5.91</td>
<td>W/°C</td>
</tr>
<tr>
<td>V_GS</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>E_A</td>
<td>4.9</td>
<td>mJ</td>
</tr>
<tr>
<td>I_A</td>
<td>-11</td>
<td>A</td>
</tr>
<tr>
<td>E_M</td>
<td>14</td>
<td>mJ</td>
</tr>
<tr>
<td>t_d/dt</td>
<td>-5.0</td>
<td>V/µs</td>
</tr>
<tr>
<td>T_J</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>T_STG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering Temperature, for 10 seconds</td>
<td>300 (1.8mm from case)</td>
<td></td>
</tr>
<tr>
<td>Mounting torque, 6-32 or M3 screw</td>
<td>10 lb/in (1.1Nm)</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_JA</td>
<td>——</td>
<td>1.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_JC</td>
<td>——</td>
<td>0.50</td>
<td>——</td>
</tr>
<tr>
<td>R_JA</td>
<td>——</td>
<td>0.62</td>
<td>——</td>
</tr>
</tbody>
</table>
Prilog 3 - Podatkovna tablica za MOSFET IRF 540

International Rectifier

IRF540

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- 175°C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID @ TC = 25°C</td>
<td>26 A</td>
<td></td>
</tr>
<tr>
<td>ID @ TC = 100°C</td>
<td>20 A</td>
<td></td>
</tr>
<tr>
<td>IDM</td>
<td>110 A</td>
<td></td>
</tr>
<tr>
<td>PD @ TC = 25°C</td>
<td>150 W</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>1.0 W/°C</td>
<td></td>
</tr>
<tr>
<td>VGS</td>
<td>±20 V</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>230 mJ</td>
<td></td>
</tr>
<tr>
<td>IAR</td>
<td>28 A</td>
<td></td>
</tr>
<tr>
<td>EAR</td>
<td>15 mJ</td>
<td></td>
</tr>
<tr>
<td>dv/dt</td>
<td>5.5 V/ns</td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>-55 to +175 °C</td>
<td></td>
</tr>
<tr>
<td>TSS/TS</td>
<td>300 (1.6mm from case)</td>
<td></td>
</tr>
<tr>
<td>Mounting Torque, 6-32 or M3 screw</td>
<td>10 lbf/in (1.1 Nm)</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rθjc</td>
<td>1.0</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>Rθcs</td>
<td>0.59</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>Rθja</td>
<td></td>
<td></td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>