Brzovezujuća anorganska veziva na osnovi gipsa

Jazvo, Kristina

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:909974

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-06-11

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb
Kristina Jazvo

Brzovezujuća anorganska veziva na osnovi gipsa

DIPLOMSKI RAD

Voditelj rada: Izv. prof. dr. sc. Nevenka Vrbos

Članovi ispitne komisije: Izv. prof. dr. sc. Nevenka Vrbos
Izv. prof. dr. sc. Juraj Šipušić
Izv. prof. dr. sc. Marija Vuković Domanovac

Zagreb, srpanj, 2015.
Zahvaljujem se dragoj mentorici Izv. prof. dr. sc. Nevenki Vrbos, na posvećenom vremenu, korisnim savjetima i podršci prilikom izrade ovog rada.

Zahvaljujem se Izv. prof. dr. sc. Jurju Špušiću na posvećenom vremenu i pomoći prilikom izrade ovog rada.

Hvala dr. sc. Vilku Mandiću na snimanju uzoraka.

Posebno hvala mojim roditeljima koji su mi omogućili studij, na njihovoj žrtvi, odricanju i ljubavi.
SAŽETAK

Otpadni gips, CaSO₄×2H₂O, hidrotermalno je transformiran pri temperaturama od 120-160 °C u reaktorskom sustavu otvorenom i zatvorenom prema atmosferi. Pri temperaturama od 130-160 °C, rendgenskom difrakcijom ustanovljeno je da nakon 24 h gotovo nestaje gips, a nastaje hemihidrat, CaSO₄×½H₂O, anhidrit, CaSO₄, te rijetko spominjana faza CaSO₄×0.67H₂O. Ovi su rezultati u suglasju s rezultatima infracrvene spektroskopije. Ustanovljen je utjecaj hidrotermalne obrade na morfologiju kristala nastalog produkta kojom se pripravlja gips visokih mehaničkih svojstava. U daljnjem radu potrebno je pratiti i održavati željeni parcijalni tlak vodene pare u sustavu.

Ključne riječi: gips, oporaba otpada, hidrotermalna reakcija

ABSTRACT

Waste gypsum, CaSO₄×2H₂O, had been hydrothermaly transformed in reaction system closed and open to the atmosphere at temperatures 120-160 °C during 24 h. Samples prepared at 130 °C and higher temperatures contained, from the results of X-ray diffraction, mainly bassanite mineral (hemihydrate) CaSO₄×½H₂O, anhydrite, CaSO₄, and rarely mentioned hydrate phase, CaSO₄×0.67H₂O. These results are in concordance with the results of infrared spectroscopy. The influence of hydrothermal treatment on product crystal morphology opens up the possibility of preparation of gypsum of high mechanical properties. Further work should focus on the improvement of experimental setup, especially regarding the possibility of measuring and controlling water vapor partial pressure.

Keywords: gypsum, waste reuse, hydrothermal reaction
1. UVOD

Smjernice politike za očuvanje kakvoće i okoliša definiraju osnovna načela menagementa kakvoće i zaštite okoliša na kojima počiva politika pojedine tvrtke. Osnovna djelatnost tvrtke Tondach d.o.o Đakovo je proizvodnja crijepe od gline: prešani i vučeni crijepe.

Proces proizvodnje obuhvaća: primarnu preradu gline, oblikovanje crijepe (uključujući i proizvodnju gipsanih kalupa koji se koriste u oblikovanju crijepe), sušenje crijepe, glaziranje, pečenje crijepe, pretovar i pakiranje gotovih proizvoda.

Gipsani kalupi koriste se u proizvodnji za oblikovanje crijepe, a potom se iskorišteni gipsani kalupi razbijaju vodenim mlazom pod visokim pritiskom.

Otpadni gipsani kalupi se skupljaju i privremeno skladište na određenom vanjskom skladištu sa nepropusnom podlogom u skladu sa izvedenim građevinskim projektima o korištenju otpadnog gipsa.

Odloženi gips je opasan jer se u kontaktu sa organskim tvarima razvijaju sumporovodični plinovi. Zato je potrebno pronaći najefikasniji način da otpadni gips ponovno upotrijebimo. Rješenje se vidi u potpunom recikliranju. Recikliranje se sastoji od procesa hidratacije i dehidratacije i to teoretski neograničen broj puta. U ovom radu pobliže je istražena ta problematika.
2. OPĆI DIO

2.1. VEZIVA

Veziva su tvari čija je namjena spajanje ili povezivanje istih ili različitih materijala u kompaktnje cjeline. U suvremenom graditeljstvu je veoma važno spajanje i povezivanje, jer se na taj način realizira priprava građevinskih materijala kao osnovnih komponenti građenja. Anorganska mineralna veziva su tvari anorganskog mineralnog podrijetla, koje pomiješane s vodom i djelovanjem fizikalno-kemijskih procesa, tijekom vremena stvrdnjavaju. Najviše se koriste za pripravu jednostavnih i složenih kompozita, kao što su malteri ili žbuke i sve vrste betona.1

2.1.1. Podjela anorganskih mineralnih veziva

Podjela veziva ovisi o pristupu samoj podjeli, pa se ista može napraviti prema:

• načinu proizvodnje i temperaturi termičke obrade sirovine
• načinu stvrdnjavanja ili očvršćivanja
• prema kemijskom sastavu

Prema načinu proizvodnje i temperaturi termičke obrade sirovine, veziva mogu biti podijeljena na veziva pripremljena iz prirodnog oblika sirovine:

- bez termičke obrade (glina)
- termičkom obradom do temperature dehidratacije (gips)
- termičkom obradom ili pečenjem do temperature kalcinacije (vapno, hidraulično vezivo)
- termičkom obradom do temperature sinteriranja (portland cement)
- termičkom obradom ili pečenjem do temperature taljenja (aluminatni cement)

Prema načinu stvrdnjavanja ili očvršćivanja veziva se dijele na hidraulična veziva i nehidraulična veziva.

Hidraulična veziva u dodiru s vodom vežu ili stvrdnjavaju, neovisno nalaze li se na zraku ili pod vodom, i daju stabilne produkte ili netopljive produkte (sve vrste cementa i hidraulično vapno). Nehidraulična veziva su ona veziva koja vežu i stvrdnjavaju djelovanjem vode na zraku. Ne mogu očvrnuti pod vodom jer su im produkti reakcija s vodom topljivi spojevi i nestabilni u vodi.

Prema kemijskom sastavu veziva se mogu podijeliti na: cement, vapno, gips i glinu.
Sva anorganska mineralna veziva s izuzetkom veziva na bazi gipsa i magnezitnog veziva, promatraju se kao višekomponentni sustavi u kojima osnovni sastojci tih veziva i njihova zastupljenost utječu na njihova svojstva, te određuju njihovu podjelu i svrstavanje u vrstu veziva.¹

2.2. CEMENT

Cement (lat. *caementum* = zidarski kamen) je skupno ime za hidraulično vezivo koje samostalno očvrsne na zraku i pod vodom. Praškasti je materijal, koji pomiješan s vodom, kemijskim reakcijama i pratećim fizikalnim procesima prelazi u očvrsnulu cementu pastu ili cementi kamen.² Ima adhezijska i kohezijska svojstva koja mu omogućavaju povezivanje mineralnih dijelova u zajedničku cijelinu.³ Koristi se pretežno u građevinarstvu kao vezivo prirodnih ili umjetnih agregata za proizvodnju betona i mortova.⁴

Prema namjeni, cement se dijeli na cement opće namjene (među koje najviše spada silikatni cement) i cement posebne namjene gdje se ubraja: cement niske topline hidratacije, sulfatno otporni cement, bijeli cement i aluminatni cement.⁴
2.2.1. Sirovine za proizvodnju cementa

Osnovne sirovine za proizvodnju cementa su lapori sa povećanim udjelom karbonata i glinovitih pijesci, pri čemu su minerali glina iz frakcije pijeska nositelj oksida Si, Al i Fe. Koje će se sirovine upotrijebiti ovisi o dostupnosti ovih sirovina na nekom području te o vrsti i svojstvima cementa koji se proizvodi. Bitno je da sirovine budu izvor minerala potrebnih za formiranje klinkera.4

Tipični proces proizvodnje cementa uključuje sljedeće faze:
- eksploatacija mineralnih sirovina
- priprema (oplemenjivanje i homogenizacija) mineralnih sirovina za proizvodnju klinkera
- miješanje mineralnih sirovina i proizvodnja klinkera
- mljevenje klinkera i dodavanje aditiva te pakiranje cementa

2.2.2. Silikatni ili portland cement (PC)

1848. godine Joseph Aspid je proizveo i patentirao materijal koji je u očvrslom stanju bojom odgovarao građevinskom kamenu iz okolice Portlanda, a nazvao ga je portlandski cement. Svojstva tog materijala ne odgovaraju svojstvima materijala koji se danas koristi pod tim imenom. 1838. godine Isaac Charles Johnson je proizveo cement koji po svojim svojstvima odgovara današnjem portlandskom cementu.2

Portland cement je hidraulično vezivo koje se proizvodi od portland cementnog klinkera.3 Prosječni kemijski sastav portland-cementog klinkera, odnosno udjeli njegovih oksida, prikazani su u tablici 2.1. Vidi se da su glavni kemijski sastojci CaO, Al2O3, SiO2 i Fe2O3.4

Tablica 2.1. Prosječni kemijski sastav portland-cementog klinkera4

<table>
<thead>
<tr>
<th>Sastojak</th>
<th>w, (mas.%)</th>
<th>Sastojak</th>
<th>w, (mas.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>16-26</td>
<td>CaO</td>
<td>58-67</td>
</tr>
<tr>
<td>Al2O3</td>
<td>4-8</td>
<td>MgO</td>
<td>1-5</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>2-5</td>
<td>Na2O+K2O</td>
<td>0-1</td>
</tr>
<tr>
<td>Mn2O3</td>
<td>0-3</td>
<td>SO3</td>
<td>0,1-2,5</td>
</tr>
<tr>
<td>TiO2</td>
<td>0-0,5</td>
<td>P2O5</td>
<td>0-1,5</td>
</tr>
<tr>
<td>Gubitak žarenjem</td>
<td>0-0,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Glavne četiri faze portland cementnog klinkera su: alit, belit, aluminat i ferit. Udio tih minerala u cementnom klinkeru varira ovisno o sastavu sirovine i utječe na hidrataciju i razvoj čvrstoće konačnog produkta.

\[
\text{CaO } + \text{ 2 CaO } \times \text{ SiO}_2 \rightarrow \text{ 3 CaO } \times \text{ SiO}_2 \hspace{1cm} (2.1)
\]

Belit (C₂S) je poznat u 4 modifikacije: \(\alpha\)-C₂S, \(\alpha'\)-C₂S, \(\beta\)-C₂S i \(\gamma\)-C₂S. Jedino je \(\beta\)-C₂S uobičajen konstituent portlandskog cementnog klinkera. Kristalizira u monoklinskom sustavu. Stabilan je između 1150 – 675 °C. Sporo reagira s vodom i slabo doprinosi razvoju čvrstoće unutar 28 dana, ali je važan za kasniji prirast čvrstoće. Razvija relativno malo topline hidratacije. Nastaje reakcijom na temperaturi od 1100 °C do 1200 °C.

\[
\text{2 CaO } + \text{ SiO}_2 \rightarrow \text{ 2 CaO } \times \text{ SiO}_2 \hspace{1cm} (2.2)
\]

\[
\text{3 CaO } + \text{ Al}_2\text{O}_3 \rightarrow \text{ 3 CaO } \times \text{ Al}_2\text{O}_3 \hspace{1cm} (2.3)
\]

Za **ferit (C₄AF)** se pretpostavlja da se sastoji od kristala mješanaca i to C₂A i C₂F. Ima ulogu topitelja, snažava točku sintiranja, korigira loša svojstva alita. Tali se kod 1410 °C. Razvija vrlo visoku toplinu hidratacije. Reagira s vodom dosta brzo, ali ne kao C₃A. Nema značajnijeg utjecaja na svojstva, osim na boju (više ferita -> sivi cement; manje ferita -> svjetliji cement). Nastaje na 1100 – 1200 °C.
2. OPĆI DIO

2.1. Brzovezujuća anorganska veziva na osnovi gipsa

\[4 \text{CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 \rightarrow 4 \text{CaO} \times \text{Al}_2\text{O}_3 \times \text{Fe}_2\text{O}_3 \] (2.4)

Mineralni sastav cementnog klinkera može se odrediti na više načina, ali najpouzdaniji od njih je rendgenska difrakcijska analiza. To je najznačajnija fizikalna metoda pomoću koje je moguće kvalitativno i kvantitativno analizirati sastav krute tvari, kao i odrediti strukturu kristala. Dvije različite kristalne faze, zbog različitih strukturno kemijskih značajki nikada neće dati istu difrakcijsku sliku, dok je kod istih minerala ona uvijek ista. Na tome se temelji kvalitativna identifikacija spojeva. Kvantitativna odnosno semikvantitativna rendgenska analiza temelji se na proporcionalnoj ovisnosti difrakcijskog maksimuma pojedine faze i njenog udjela u smjesi uz uvjet konstantnosti kristalne strukture, veličine kristalita te nekih drugih manje bitnih parametara.

2.2.3. Aluminatni cement

Aluminatni cement je fini proizvod koji se dobiva finim mljevenjem aluminatnog cementnog klinkera koji se dobiva pečenjem vapnenca i boksita. Osnovni oksidi aluminatnog cementa su CaO, Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\), a kao prateći sastojci SiO\(_2\), TiO\(_2\), MgO i alkalije. Aluminatni cement je otporan na sulfate, razvija vrlo visoku energiju hidratacije. Glavne faze aluminatnog cementnog klinkera su: CA, CA\(_2\), C\(_2\)S, C\(_2\)AS i C\(_3\)A.
2.2.4. Ekspolatacija sirovina za proizvodnju cementa u Republici Hrvatskoj

Slika 2.1. Ekspolatacija polja cementnih sirovina u Republici Hrvatskoj4
2.3. GIPS

Gips je nehidraulično anorgansko mineralno vezivo. U graditeljstvu pokazuje posebna svojstva koja se očituju brzim vezivanjem i očvršćivanjem. Kao mineralna tvar u prirodi je dosta raširena i obično se nalazi u dva kristalna oblika, i to:

- kameni sadrovac ili sadra, odnosno gips u obliku dihidrata, CaSO_4·2H_2O i
- anhidrit, CaSO_4

Oba kristalna oblika u prirodi se nalaze često zajedno. Po svom fizičkom izgledu su vrlo slični pa ih je vrlo teško razlikovati. Razlikovati ih se može provedenom analizom na sadržaj kristalno vezane vode, žarenjem kod 650 °C.

Vezivna svojstva gipsa zasnivaju se na procesu hidratacije i stvaranja dihidrata CaSO_4·2H_2O, tj. na svojstvima sustava CaSO_4-voda i mogućem stvaranju hidrata. Dodaje se pri mljevenju klinkera kao regulator bržeg vezanja ili kao produkt cementa.

![Slika 2.2. Kemijska struktura gipsa](https://example.com/gips.png)

2.3.1. Vrste gipsa

Iako na tržištu postoje različite vrste gipsa pod nazivima građevinski gips, modelarski gips, štukaturni, zubarski, alabaster, električarski gips itd., gotovo uvijek se radi o gipsu poluhidratu (hemihidratu) koji se razlikuje u određenim (granulometrijskim) svojstvima specifičnim za neku primjenu. Izuzetak je estrih gips koji se proizvodi istim postupkom, ali na višim temperaturama, te se sastoji od anhidrita i vapna. Neka od važnijih svojstava prema kojima se razlikuju vrste gipsa za određenu namjenu su: vrijeme vezivanja, čvrstoća na tlak i savijanje, finoća mljevenja (granulometrija), ekspanzija pri vezivanju, omjer gips/voda, boja itd. Način postizanja određenih svojstava leži u primijenjenom postupku proizvodnje (kalcinacije), kakvoću sirovine, te dodacima gipsu kojima se reguliraju svojstva tijekom vezivanja. Danas se gips svrstava u dvije skupine: prirodni i sintetički gips.
Prirodni gips

Mineralne sirovine nastajale su tijekom dugih geoloških razdoblja. Nastoji se što više istražiti i otkriti nova ležišta, usporedno s trošenjem postojećih. Ležišta gipsa redovito se pojavljuju uz ležišta anhidrita (CaSO₄). Prema postanku razlikuju se tri tipa ležišta:

- sedimentna
- infiltracijska
- metasomatska (rijetko se pojavljuju)

Sedimentna ležišta nastaju porastom koncentracije kalcijevog sulfata otopljenog u morima i jezerima evaporacijom vode, pri čemu, ovisno o temperaturi, dolazi do izlučivanja i taloženja gipsa i anhidrita. Infiltracijska ležišta gipsa nastaju hidratacijom već nastalih naslaga anhidrita djelovanjem pornih voda, na dubinama do približno 1000 m. Također je moguć i prijelaz gipsa u anhidrit procesom dehidratacije, koji se odvija na dubinama većim od 1000 m zbog povišenih temperatura. Sedimentna i infiltracijska ležišta obično su permske starosti (542-251 milijuna godina), a nastaju u velikim sedimentnim bazenima zbog čega su ležišta gipsa najčešće vrlo masivna i prostrana, debljine i do više desetaka metara. Metasomatska ležišta nastaju djelovanjem voda obogaćenih sumpornom kiselinom na vapnence, gdje sumporna kiselina obično potječe od pirita i pirhotina oksidiranih utjecajem površinskih i podzemnih voda.

Sintetički gips

Sintetički gips se zapravo pojavljuje kao nusprodukt tehnoloških procesa. Najveće količine sintetičkog gipsa se pojavljuju u termoelektranama na ugljen, u postupku odsumporavanja dimnih plinova. Za odsumporavanje dimnih plinova razvijeno je više različitih postupaka. U suhom postupku koristi se suho vapno ili hidratizirano vapno kao apsorbens. Kao produkt se dobiva se otpadna mješavina letećeg pepela nastalog izgaranjem ugljena i produkata odsumporavanja, tj. kalcijevog sulfata (CaSO₄), kalcijevog sulfita (CaSO₃), kalcijevog hidroksida (Ca(OH)₂) i gipsa. Iako se u ovom postupku javlja gips kao nusprodukt, najčešće nije dovoljne čistoće za daljnju komercijalnu uporabu. U mokrom postupku koristi se suspenzija vapna, hidratiziranog vapna ili vapnenca kao apsorbens sumpornih plinova (SO₃). Mokri postupci pročišćavanja dimnih plinova češće se primjenjuju, a daju kao nusprodukt gips visoke čistoće, uz sadržaj gipsa veći od 95%, što je više nego u mnogim prirodnim
ležišta. Mokri postupci odsumporavanja temelje se na apsorpciji SO$_2$ u vodenoj suspenziji kalcijevog karbonata (CaCO$_3$), vapna (CaO) ili hidratiziranog vapna (Ca(OH)$_2$). U tipičnom sustavu za čišćenje dimnih plinova apsorberi za mokro odsumporavanje smješteni su nakon filtra koji izdvaja krute čestice (leteći pepeo). Nakon filtriranja dimni plinovi prolaze kroz apsorber u protustruji raspršene suspenzije (magla), gdje sitne kapljice suspenzije kalcijevog karbonata apsorbiraju SO$_2$ prema jednadžbi:

$$\text{CaCO}_3 + \frac{1}{2} \text{H}_2\text{O} + \text{SO}_2 \rightarrow \text{CaSO}_3 \times \frac{1}{2} \text{H}_2\text{O} + \text{CO}_2 \quad (2.5)$$

ili u slučaju korištenja vapna:

$$\text{Ca(OH)}_2 + \text{SO}_2 \rightarrow \text{CaSO}_3 \times \frac{1}{2} \text{H}_2\text{O} + \frac{1}{2} \text{H}_2\text{O} \quad (2.6)$$

U oba slučaja nastaje kalcij-sulfit hemihidrat (CaSO$_3 \times \frac{1}{2} \text{H}_2\text{O}$) koji se ispušta i prikuplja u rezervoaru suspenzije, dok se ostatak plinova nakon obaranja kapljica suspenzije ispušta u atmosferu. U rezervoaru se suspenzija aerira kako bi se sulfit oksidirao u sulfat, te kao produkt nastaje gips:

$$\text{CaSO}_3 \times \frac{1}{2} \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 + 1\frac{1}{2} \text{H}_2\text{O} \rightarrow \text{CaSO}_4 \times 2\text{H}_2\text{O} \quad (2.7)$$

Oksidacijom sulfita u gips dolazi do njegove precipitacije da bi se nakon toga izdvojio iz suspenzije. Istovremeno se u rezervoar dodaje svježa suspenzija kako bi se nadoknadio gubitak apsorbensa. Ovako dobiveni gips jednak je gipsu dobivenom rudarenjem iz prirodnih ležišta, uz razliku što nije potrebno drobljenje i mljevenje. Daljnja primjena ili prerada jednaka je za prirodni i sintetski gips. Korištenjem vapna kao apsorbensa nema emisije CO$_2$ pri odsumporavanju dimnih plinova (kao kod korištenja kalcijevog karbonata) zato jer je do emisije CO$_2$ došlo pri proizvodnji vapna.4

2.3.1. Proizvodnja i primjena gipsa

Gips ima raznoliku primjenu. Idealan je građevinski materijal jer je otporan na vatru, ima dobra mehanička svojstva, ekonomičan je i ima odlične kvalitete. Gips također ima i dobra akustična svojstva te može smanjiti razinu buke i ima određene ekološke prednosti.5 Najčešće se koristi kalcinirani gips, odnosno poluhidrat (CaSO$_4 \times \frac{1}{2} \text{H}_2\text{O}$) koji pomiješan s vodom u građevinarstvu služi kao vezivo.
2. OPĆI DIO

Brzovezujuća anorganska veziva na osnovi gipsa

Proizvodnja poluhidrata uključuje sljedeće faze:

- ekspolatacija mineralne sirovine (dihidrat)
- oplemenjivanje (drobljenje i mljevenje, sušenje)
- kalcinacija (prijelaz dihidrata u poluhidrat)
- dodatak aditiva

Proizvodni proces i konfiguracija postojanja se razlikuje kod proizvođača, a ovisi o kvaliteti sirovine te vrsti gipsa (ili gotovih proizvoda). Nakon eksploatacije, mineralna sirovina se drobljeljenjem i mljevenjem priprema za kalcinaciju. Nakon drobljenja moguće je pranje ili sijanje čime se izdvajaju primjese u sirovini. Drobljenjem se dobiva prvi u nizu produkata, tj. gips za portland cement. Nakon drobljenja se provodi sušenje (ispod 50 °C) da se ukloni slobodna vlaga a da pri tome ne dolazi do kalcinacije, te radi lakše obrade u narednim postupcima. Ovisno o stupnju drobljenja i tipu peći, nakon sušenja se gips kalcinira ili melje. Postoji više tipova peći za kacinaciju od kojih za svaku postoje određeni zahtjevi na granulometrijski sastav sirovine.

Gips ima sposobnost i gubitka vode pri relativno niskoj temperaturi, tako nastaje dehidrirani (kalcinirani) gips koji ima isto veziva svojstva. Osim u građevinarstvu koristi u većem broju industrijskih proizvoda (proizvodnja šećera, gnojiva, u farmaciji, za gume, boje, u medicini itd). Dodatkom vode dehidriranom gipsu, hidratacijom nastali produkt istovjetan je izvornom materijalu/sirovini. Procesi dehidratacije i hidratacije temelj su tehnologije gipsa.

2.3.1.1. Kalcinacija

Kalcinacijom na određenim temperaturama nastaju različite modifikacije gipsa i anhidrita koji vlastitim svojstvima utječu na svojstva krajnjeg produkta. Na Slici 2.3. prikazano je formiranje produkata kalcinacije, s povišenjem temperature:

- do 90 °C gips se oslobađa higroskopne vlage,
- na 90-170 °C nastaje α ili β hemihidrat, ovisno koji se postupak primjenjuje.

Suhim postupkom, odnosno pri atmosferskom tlaku nastaje β-hemihidrat. Na taj način nastaju sitniji kristali, nejednolike veličine, što rezultira velikom specifičnom površinom i topljivošću u vodi. Mokrim postupkom, pod visokim pritiskom vodene pare u posebnim pećima
(autoklavima) nastaje α-hemihidrat. Ovim postupkom nastaju krupniji kristali, jednolike veličine, što rezultira manjom specifičnom površinom i manjom topljivošću u vodi.

Slika 2.3. Produžti kalcinacije gipsa

- na 170-250 °C nastaje γ-anhidrit, koji se još naziva anhidrit III ili topljivi anhidrit. Brzo prelazi u poluhidrat, nestabilan je i ima puno veću topljivost u vodi od poluhidrata zbog specifične kristalne strukture. Ovo svojstvo omogućuje njegovu uporabu kao apsorbensa vlage.

- pri 250-540 °C nastaje β anhidrit, naziva se još netopljivim anhidritom.
Ova modifikacija anhidrita je jedina i jednaka anhidritu koji se pojavljuje u prirodi. Vezan je uz ležišta gipsa gdje se pojavljuje kao štetna primjesa. Nema vezivna svojstva, nereaktivirani je s vodom zbog guste kristalne rešetke u odnosu na γ-anhidrit. Ovakav anhidrit može poprimiti vezivna svojstva uz dodatak aktivatora koji potiču/iniciraju njegovu hidrataciju.

- pri 540-900 °C nastaje α-anhidrit ili anhidrit I, svojstvima je sličan anhidritu II
- iznad 900 °C anhidrit počinje disocirati na CaO (vapno) i plin SO₃, koji pri visokoj temperaturi odmah dalje disocira na SO₂ i kisik. Ovakvim postupkom nastaje mješavina anhidrita i manje količine vapna, poznata pod nazivom estrih gips. Vapno ovdje djeluje kao aktivator hidratacije anhidrita te stoga estrih gips pomiješan s vodom pokazuje vezivna svojstva. Za razliku od hemihidrata, estrih gips veže mnogo sporije.

2.3.1.2. Reakcija dehidratacije

Grijanjem gipsa (CaSO₄× 2H₂O) na temperaturama između 90 i 170 °C dolazi do gubitka mase za 20.9 % što odgovara nastanku hemihidrata gipsa (CaSO₄ × ½ H₂O). Hemihidrat je mekan i može se jednostavno samljeti u prah.

Endotermna reakcija djelomične dehidratacije prikazana je sljedećom jednadžbom:

\[\text{CaSO}_4 \times 2\text{H}_2\text{O} + \text{toplina} \rightarrow \text{CaSO}_4 \times \frac{1}{2}\text{H}_2\text{O} + \frac{3}{2}\text{H}_2\text{O} \quad (2.8) \]

2.3.1.3. Reakcija hidratacije

Kada se praškasti gips (CaSO₄× ½ H₂O) pomiješa s vodom u obliku paste ili guste suspenzije, reakcijom hidratacije nastaje produkt – dihidrat istog sastava kao sirovina za proizvodnju, jer se kemijski vezana voda, prije istjerana grijanjem, ponovno veže u kristalnu rešetku materijala.

Egzotermna reakcija hidratacije prikazan sljedećom jednadžbom:

\[\text{CaSO}_4 \times \frac{1}{2}\text{H}_2\text{O} + \frac{3}{2}\text{H}_2\text{O} \rightarrow \text{CaSO}_4 \times 2\text{H}_2\text{O} + \text{toplina} \quad (2.9) \]

2.3.1.4. Dodaci gipsu

Prirodni kalcinirani gips, pomiješan s vodom, veže u vremenu od 15-25 minuta, što je dugo predstavljalo problem za širu primjenu gipsa. Aditivi koji se dodaju gipsu najčešće imaju ulogu regulatora brzine vezivanja. Danas je dodacima gipsu moguće postići vrijeme vezivanja od 2-3 minute, pa sve do nekoliko sati.
2.3.1.5. Kakvoća sirovine

Kakvoća sirovine za proizvodnju gipsa se odnosi na udio gipsa dihidrata u sirovini, tj. na udio i vrstu primjesa. Koliko će neka primjesa biti štetna ili neutralna u sirovini za gips, ovisi o njegovoj namjeni. Većina ležišta sadrži 80-90% gipsa, što čini prosječnu čistoću, dok se vrlo čista ležišta s preko 95% gipsa rijetko nalaze. Također se eksploatiraju ležišta i sa manje od 80% gipsa. Nečistoće u ležištima gipsa mogu se podijeliti u tri skupine:

- netopljivi minerali (vapnenac, dolomit, anhidrit, silikati)
- topljive soli (halit, mirabitl...)
- gline

Netopljive komponente poput vapnenca i dolomita umanjuju čvrstoću gipsanog veziva i povećavaju gustoću gipsanih proizvoda. Većina ležišta sadrži 10-15% netopljivih primjesa.

Topljive soli mogu izazvati niz problema u proizvodnom procesu jer utječu na temperaturu kalcinacije. Udio topljivih soli u ležištima je ograničen na 0,02-0,03%.

Gline koje vežu puno vode mogu izazvati probleme bubrenjem (pojava pukotina) jer mogu upijati vodu prilikom miješanja gipsa s vodom ili u očvrslom vezivu. Udio ovih glina je najčešće ograničen na 1-2%.4

2.3.2. Eksploatacija gipsa u Republici Hrvatskoj

2.4. METODE ISPITIVANJA

2.4.1. Rendgenska difrakcijska analiza (XRD)

Rendgenske zrake su elektromagnetski valovi visoke energije i kratke valne duljine (0.01 nm do 1 nm) koji nastaju u rendgenskoj cijevi. Otkrio ih je njemački fizičar Wilhelm Konrad Röentgen 1895. godine. Rendgenska difrakcijska analiza se temelji na međudijelovanju rendgenskih zraka i tvari, tj. elektrona.

Rendgenska difrakcijska analiza je najznačajnija fizikalna metoda određivanja vrste i strukture krute tvari. Pomoću nje se kristalne tvari mogu i kvalitativno i kvantitativno analizirati, ali njena najveća primjena je u određivanju strukture kristala.

Kada snop rendgenskih zraka padne na monokristal, dio zraka prolazi, dio se apsorbira, a dio se raspršuje na elektronskom omotaču svakog atoma. Rendgensku difrakciju najjednostavnije je interpretirao Bragg. Difrakcija rendgenskih zraka posljedica je njegove refleksije i interferencije sa zamišljenih ekvidistantnih ploha kristalne rešetke (Slika 2.5.).
2. OPĆI DIO

Brzovezujuća anorganska veziva na osnovi gipsa

Slika 2.5. Refleksija i interferencija rendgenskih zraka sa zamišljenih ekvidistantnih ploha.

Razlika puteva dvije zrake iznosi \(2\cdot d\cdot \sin \theta\).

Do pojačanja amplitude reflektiranih rendgenskih zraka s ekvidistantnih ploha doći će ako jedna zraka zaostaje za drugom za cjelobrojni umnožak valne duljine, što je dano Bragg-ovom jednadžbom:

\[n\lambda = 2d \sin \theta \] \hspace{1cm} (2.10)

gdje je:

\(n\) – cijeli broj (1,2,3..)

\(\theta\) - kut kojim treba ozračiti uzorak da bi došlo do konstruktivne interferencije

\(\lambda\) - valna duljina primjenjenog zračenja (CuK\(_{\alpha}\) zračenje ima valnu duljinu od 1,5045 Å)

\(d\) - razmak između ekvidistantnih ravnina kristalne rešetke

Poznavajući vrijednosti \(\lambda\) i \(\theta\) (uporabljeno karakteristično zračenje i tzv. kut sjaja) može se pomoću ove jednadžbe odrediti \(d\). Rezultat takve analize je rendgenogram iz kojeg se prema visini i položaju pikova mogu kvalitativno i kvantitativno odrediti mineralne faze u uzorku.

2.4.1.1. Kvalitativna rendgenska analiza

Dvije različite kristalne tvari, zbog različitog rasporeda ili vrste atoma, nikada neće dati istu rendgensku sliku, dok će isti mineral uvijek davati istu sliku. Na tome se temelji kvalitativna identifikacija spojeva. Sustav identifikacije nepoznate kristalne supstance na temelju snimljenog rendgenograma, u današnje je vrijeme u potpunosti razrađen zbog velikog broja kristalnih spojeva. Za identifikaciju se koristi Hanawalt sustav u kojem su kristalni spojevi svrstani u skupine po razmaku \(d\) najjačeg intenziteta.
Iz rendgenograma se najprije odrede kutevi θ, a zatim se preko Bragg-ove jednadžbe (2.10) izračunaju međuplošne udaljenosti d. Vrijednosti međuplošnih udaljenosti se uspoređuju za 3 pika najjačeg intenziteta, te se na taj način dolazi do naziva i kemijske formule spoja, te broja kartice. Kartica sadrži sve d vrijednosti tog spoja, Müllerove indekse h, k i l, te parametre jedinične čelije. Na taj način identificiran je nepoznati spoj.

2.4.1.2. Kvantitativna rendgenska analiza

Kvantitativna rendgenska analiza temelji se na činjenici da intenzitet difrakcijskog maksimuma pojedine komponente u smjesi raste s porastom masenog udjela te faze u smjesi. Na tu ovisnost utječe i apsorpcijski koeficijent koji ovisi o vrsti i udjelima ostalih komponenti uzorka.

Kod kvantitativne rendgenske analize najvažnija je i najviše se primjenjuje metoda unutarnjeg standarda. Kod nje se uzorku dodaje nova komponenta (standard) uvijek u istoj količini, te se mjeri omjer intenziteta difrakcijskog maksimuma ispitivane tvari s difrakcijskim maksimumom standarda.

Standard mora biti kristalizirana, stabilna tvar, čiji se difrakcijski maksimum ne poklapa s maksimumom tvari koju određujemo.

2.4.2. Pretražni elektronski mikroskop (SEM)

SEM se rutinski koristi za snimanje slika visoke razlučivosti, omogućuje promatranje vrlo sitnih objekata i detalja te prikazuje prostorne varijacije u kemijskom sastavu. Također, možemo ga koristiti za identificiranje faza temeljenih na kvalitativnom kemijskom sastavu ili kristalnoj strukturi. Priprema uzorka za SEM može biti jednostavna ili složena ovisi o prirodi uzorka i zahtjevu snimanja. Uzorci moraju biti čvrsti, suhi i prekriveni metalom i moraju se ukloniti u mikroskopsku komoru. Za većinu instrumenata uzorci moraju biti stabilni u vakuumu u redu od 5-10 i 10-6 Torr.

SEM koristi snop elektrona visoke energije za stvaranje različitih signala na površini krutih uzoraka. Signali koji nastaju interakcijom uzorka i elektrona sadrže informacije o uzorku, uključujući morfologiju (teksturu), kemijski sastav, kristalnu strukturu i orijentaciju molekula koje čine uzorak. SEM obuhvaća područje veličina od 4 nm do 4 mm, ima moć razlučivanja 4
2. OPĆI DIO

Brzovezujuća anorganska veziva na osnovi gipsa

nm te povećanje od 20-1x105. Za razliku od optičkog mikroskopa, pomoću kojeg možemo uočiti i površinu i unutrašnjost, SEM-om uočavamo samo površinu.

2.4.3. Infracrvena spektrometrija

Metoda infracrvene spektroskopije se upotrebljava za određivanje strukture molekula, identifikaciju kemijskih spojeva, kvalitativno i kvantitativno određivanje sastava smjesa, te u nizu drugih primjena. Upotrebjava se za istraživanje krutih, kapljevitih i plinovitih tvari, a njena je primjena uobičajena u kemijskoj, fizici, inženjerstvu materijala itd.

Iako je relativno novija tehnika u području istraživanja cementa i betona, postaje sve važnija i zastupljenija sa napretkom instrumentacije i karakterizacije produkata hidratacije, novih spojeva itd. Molekula koja se nalazi u elektromagnetskom polju može primati i davati energiju samo određenih iznosa, određenih prema formuli:

\[E = h\nu \]

gdje je \(h \)-Planckova konstanta \((h=6.626176*10^{-34} \text{Js})\), a \(\nu \)-frekvencija elektromagnetskog polja.

U slučaju dvoatomske molekule, moguće je pokazati da je relativno gibanje atoma ekvivalentno gibanju jedne čestice mase, \(\mu \), a čiji je pomak iz stanja ravnoteže jednak promjeni međuatomske udaljenosti. Masa \(\mu \) naziva se reducirana masa i izračuna se prema:

\[\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}, \]

gdje su \(m_1 \) i \(m_2 \) mase dvaju atoma.

Kinetička energija takvog sustava jednaka je:

\[E_k = \frac{\mu \dot{x}^2}{2} \]

U slučaju harmonijskog oscilatora, potencijalna energija jednaka je:

\[\Phi = \frac{kx^2}{2} \]

gdje je \(k \)-konstanta sile. Schrödingerovu jednadžbu moguće je napisati u obliku:

\[\frac{d^2 \psi}{dx^2} + \frac{8\pi^2 \mu}{\hbar^2} \left(E - \frac{kx^2}{2}\right) \psi = 0 \]

i njeno je rješenje:

\[E_\nu = h\nu(\varphi + 1/2) \]

\[\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \]

gdje \(\varphi \) poprima vrijednosti vibracijskih kvantnih brojeva. Prema gornjoj jednadžbi, frekvencija titranja dvoatomske molekule proporcionalna je drugom korijenu iz \(k/\mu \). Ako je \(k \) konstantno za niz dvoatomskih molekula, tada frekvencija opada porastom reducirane mase.
U slučaju višeatomskih molekula, situacija je složenija, jer svi atomi izvode vlastito harmoničko gibanje odnosno titranje. Općenito, vibracije višeatomskih molekula prikazuju se kao superpozicija normalnih titraja, i ima ih općenito $3N-6$, odnosno $3N-5$ za linearne molekule (N je broj atoma u molekuli). Ipak, za svaku molekulu, dozvoljene su samo one vibracije koje su određene izbornim pravilima (ovise o simetriji molekule) i aktivne su ili kao infracrvene ili Ramanove vrpce. Vjerojatnost pojedinih prijelaza moguće je izračunati na osnovi kvantne mehanike.

Infracrvena spektrometrija sa Fourierovom transformacijom

Detektor IR zračenja nije u mogućnosti osjetiti i frekvenciju i intenzitet infracrvenog zračenja koji bi imao praktičnu primjenu. Stoga disperzivni instrumenti koji promatraju ovisnost intenziteta zračenja o promjeni frekvencije, frekvenciju upadnog zračenja određuju (izvedbom samog uređaja) pomicanjem mehaničkih dijelova (prizme, optičke mrežice itd.). Takav uređaj sa velikim brojem pokretnih mehaničkih dijelova zato zahtjeva periodična precizna baždarenja.

![Diagram infracrvenog spektrometra s Fourierovom transformacijom](image_url)

Slika 2.6. Shematski prikaz uređaja za infracrvenu spektrometriju s Fourierovom transformacijom
Načelno rada FTIR instrumenata kao interferometra IR zračenja izbjegava brojna ograničenja disperznih instrumenata. Uredaji za infracrvenu spektrometriju koji rade na načelu interferencije infracrvenog zračenja, primjerice kao Michaelsonov interferometar, omogućuju istodobno zahvaćanje cijelog infracrvenog spektra. Podatak mjerenja je zapravo interferogram koji je posljedica istodobne interferencije svih valnih duljina infracrvenog zračenja, a on se matematičkom transformacijom (Fourierova transformacija) prevodi u spektar ovisnosti intenziteta IR zračenja o valnom broju. Taj je matematički postupak zathjevan, te je tek otkrićem algoritma brze Fourierove transformacije, FFT (engl. Fast Fourier Transform) utjecao na široku primjenu ove interferometrijske tehnike.11,12

Tablica 2.2. prikazuje infracrvene vrpce mineralnih faza u sastavu CaSO$_4$-H$_2$O, i od velike su pomoći podaci iz ove tablice za karakterizaciju uzoraka pripremljenih u ovome radu. Na Slici 2.7. prikazan je izgled spektra za gips, hemihidrat i anhidrit.13
Tablica 2.2. Infracrvene vrpce raznih modifikacija kalcijevog dihidrata (CaSO$_4$·H$_2$O)13

<table>
<thead>
<tr>
<th>Gips</th>
<th>Hemihidrat</th>
<th>Toplivi anhidrit</th>
<th>Netoplivi anhidrit</th>
<th>Asignacija vrpca</th>
</tr>
</thead>
<tbody>
<tr>
<td>667 s</td>
<td>660 s</td>
<td>665 s</td>
<td>666 sh</td>
<td>ν_4, SO$_4$</td>
</tr>
<tr>
<td>672 sh</td>
<td>670 s</td>
<td>672 sh</td>
<td>673 s</td>
<td>ν_4, SO$_4$</td>
</tr>
<tr>
<td>1004 vw</td>
<td>1008 n</td>
<td>1008 vw</td>
<td>1012 vw</td>
<td>ν_1, SO$_4$, ν_1, SO$_4$</td>
</tr>
<tr>
<td>1120 vs</td>
<td>1094 s</td>
<td>1092 s</td>
<td>1095 s (n)</td>
<td>ν_3, SO$_4$, ν_3, SO$_4$, ν_3, SO$_4$</td>
</tr>
<tr>
<td>1145 vs</td>
<td>1135 sh</td>
<td>1135 sh</td>
<td>1130 s (d)</td>
<td>ν_3, SO$_4$, ν_3, SO$_4$, ν_3, SO$_4$</td>
</tr>
<tr>
<td>1155 sh</td>
<td>1155 vs</td>
<td>1155 vs</td>
<td>1158 vs</td>
<td>ν_3, SO$_4$, ν_3, SO$_4$, ν_3, SO$_4$</td>
</tr>
<tr>
<td>1168 sh</td>
<td>1168 sh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1617 sh</td>
<td>1617 sh</td>
<td>1617 sh</td>
<td></td>
<td>ν_2, H$_2$O</td>
</tr>
<tr>
<td>1623 s</td>
<td>1623 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1688 m</td>
<td>1688 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2130 w</td>
<td>2030 vw</td>
<td>2130 vw</td>
<td>2130 vw</td>
<td>$2 \times \nu_1$, SO$_4$, ν_1, SO$_4$, ν_1, SO$_4$</td>
</tr>
<tr>
<td>2230 w</td>
<td>2220 vw</td>
<td>2230 vw</td>
<td>2230 vw</td>
<td>$2 \times \nu_3$, SO$_4$, $2 \times \nu_3$, SO$_4$, ν_1, SO$_4$, ν_1, H$_2$O</td>
</tr>
<tr>
<td>3245 sh</td>
<td>3220 vw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3410 s</td>
<td>3500 w</td>
<td>3560 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3555 m</td>
<td>3615 s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n – može se dobiti samo u parafinskoj suspenziji; d – može se dobiti samo s KBr diskom; vw – jako slabo; w – slabo; m – srednje; s – jako; vs – vrlo jako; sh – rame

Slika 2.7. MIR spektar za gips, hemihidrat i anhidrit13
3. EKSPERIMENTALNI DIO

3.1. MATERIJALI

U tvornici TONDACH d.o.o iz Đakova, proizvodi se glineni crijep za krovove. U tehnološkom procesu pripravlja se glina koja se formira u željeni oblik prešanjem između dva gipsana kalupa. Nakon određenog broja otpresaka, gipsani kalupi više ne zadovoljavaju toleranciju dimenzija, te se zamjenjuju novima. U ovom radu ispitana je moguća oporaba uzoraka otpadnih gipsanih kalupa hidrotermalnom obradom u visokotlačnom reaktoru.

Slika 3.1. Otpadni gips iz tvornice TONDACH d.o.o

3.2. POSTUPAK RADA

Prije provođenja eksperimenta uzorke gipsa je bilo potrebno izvagati kako bi se mogla pratiti promjena mase, tj. gubitak vode u uzorku, prije i poslije provedbe eksperimenta. Masa uzoraka se pratila pomoću laboratorijske tehničke vage KERN PLJ, KERN&SOHN GmbH (Slika 3.2.), nosivosti 0,5 g do 3500 g (razlučivosti 0,01 g). Početna masa ispitivanih uzoraka iznosila je oko 200 g.
Eksperiment je započet zagrijavanjem uzoraka u hidrotermalnom reaktoru (Slika 3.3.). Na taj način je izvršena dehidratacija (kalcinacija) gipsa, prema jednadžbi kemijske reakcije 2.8.

U eksperimentima je dehidratacija otpadnog gipsa provedena u rasponu temperatura od 120-160 °C, u zatvorenom sustavu, tijekom 24h. U sljedećoj seriji eksperimenata, dehidratacija otpadnog gipsa provedena je u istom rasponu temperatura od 120-160 °C (tijekom 24h), no sustav (reaktor) je bio otvoren prema atmosferi (otvoren ventil, detalj Slike 3.3).

U prvom slučaju, parcijalni tlak vodene pare koja nastaje tijekom djelomične dehidratacije gipsa određen je ravnotežom između hemihidrata (CaSO_4×1/2 H_2O) i dihidrata (CaSO_4×2 H_2O), dok je u drugom slučaju, parcijalni tlak vodene pare niži (sustav je otvoren prema atmosferi). Potrebno je napomenuti da nije mjeren tlak u reaktoru. U slučaju rada u zatvorenom sustavu, povremeno je nakratko otvoren ventil prema atmosferi, da se omogući izlazak kondenzata i vodene pare. Zbog potpune konverzije otpadnog gipsa potrebno je...
ukloniti produkt (vodu) iz sustava. Nakon provedene reakcije i hlađenja hidrotermalnog reaktora, uzorci su izvađeni iz reaktora, dodatno ohlađeni na sobnu temperaturu i izvagani. Masa uzoraka prije i poslije reakcije u otvorenom i zatvorenom sustavu, te gubitak vode, prikazani su u tablicama 3.1. i 3.2.

Tablica 3.1. Rezultati hidrotermalne obrade otpadnog gipsa u zatvorenom sustavu

<table>
<thead>
<tr>
<th>θ/ °C</th>
<th>m(gips, poč.)/g</th>
<th>m(gips, kraj)/g</th>
<th>m(H₂O, isparene)/g</th>
<th>m(gips, kraj) / m(gips, poč.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>202,13</td>
<td>isto</td>
<td>bez promjene</td>
<td>1,000</td>
</tr>
<tr>
<td>130</td>
<td>230,87</td>
<td>190,33</td>
<td>40,54</td>
<td>0,824</td>
</tr>
<tr>
<td>140</td>
<td>197,71</td>
<td>172,97</td>
<td>24,74</td>
<td>0,875</td>
</tr>
<tr>
<td>150</td>
<td>215,67</td>
<td>182,6</td>
<td>33,07</td>
<td>0,847</td>
</tr>
<tr>
<td>160</td>
<td>246,71</td>
<td>207,7</td>
<td>39,01</td>
<td>0,842</td>
</tr>
</tbody>
</table>

Tablica 3.2. Rezultati hidrotermalne obrade otpadnog gipsa u otvorenom sustavu

<table>
<thead>
<tr>
<th>θ/ °C</th>
<th>m(gips, poč.)/g</th>
<th>m(gips, kraj)/g</th>
<th>m(H₂O, isparene)/g</th>
<th>m(gips, kraj) / m(gips, poč.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>205,78</td>
<td>isto</td>
<td>bez promjene</td>
<td>1,000</td>
</tr>
<tr>
<td>130</td>
<td>216,96</td>
<td>185,34</td>
<td>31,62</td>
<td>0,854</td>
</tr>
<tr>
<td>140</td>
<td>231,22</td>
<td>197,42</td>
<td>33,80</td>
<td>0,854</td>
</tr>
<tr>
<td>150</td>
<td>220,36</td>
<td>178,82</td>
<td>41,54</td>
<td>0,811</td>
</tr>
<tr>
<td>160</td>
<td>201,05</td>
<td>171,06</td>
<td>29,99</td>
<td>0,851</td>
</tr>
</tbody>
</table>
Nakon vaganja, uzorci su ručno usitnjeni (Slika 3.4.), te prosijani na situ otvora 250 μm (Slika 3.5.) kako bi se odvojila sitna frakcija praha (Slika 3.6.).

Slika 3.4. Ručno drobljenje uzoraka u laboratoriju

Slika 3.5. Sito za prosijavanje
Slika 3.6. Usitnjeni i prosijani uzorci

Ovako pripremljeni uzorci dalje su karakterizirani rendgenskom difrakcijskom analizom (XRD) pomoću uređaja Shimadzu XRD-6000 (Slika 3.7.), kako bi se odredio mineraloški sastav.

Slika 3.7. Uređaj za rendgensku difrakcijsku analizu, Shimadzu XRD-6000

Kako postoji vrlo mala razlika između rendgenskih difraktograma hemihidrata i topljivog anhidrita, rendgenska je difrakcijska analiza relativno neprikladna i skupa (spora) metoda za razlikovanje dvaju dehidratacijskih produkata. Infracrveni spektar pripravljenih uzoraka određen je na uređaju Vertex 70, Bruker GmbH (Slika 3.9.) u ATR modu, u području valnih brojeva od 4000-400 cm⁻¹. Morfologija nastalog produkta određena je elektronskom mikroskopijom na uređaju SEM-TESCAN VEGA TS5236LS (Slika 3.8.).
3. EKSPERIMENTALNI DIO

Brzovezujuća anorganska veziva na osnovi gipsa

Slika 3.8. Elektronski mikroskop SEM-TESCAN VEGA TS5236LS

Slika 3.9. Spektrometar Vertex 70, Bruker GmbH, s ATR modulom
4. REZULTATI

4.1. RENDGENSKA DIFRAKCIJSKA ANALIZA (XRD)

Prikazani su rezultati rendgenske difrakcije uzoraka otpadnog gipsa obrađenih u hidrotermalnom reaktoru (otvoren i zatvoren sustav) na temperaturama 120-160 °C. Na Slici 4.1. prikazan je rezultat uzorka otpadnog gipsa i hidrotermalno obrađenog otpadnog gipsa (prethodni eksperiment na 130 °C, zatvoren sustav). Na Slikama 4.2., 4.3., 4.4., 4.5. i 4.7. prikazani su rezultati rendgenske difrakcijske analize zajedno za otvoren i zatvoren sustav (120-160 °C). Mineraloški sastav hidrotermalno obrađenog gipsa određen je pomoću baze podataka (Prilog 7.1.). Na Slici 4.6. prikazani su rezultati obrade rezultata rendgenske difrakcijske analize (150 °C, otvoren sustav).

![Slika 4.1. Rezultati rendgenske difrakcijske analize uzorka otpadnog gipsa i hidrotermalno obrađenog otpadnog gipsa](image-url)
4. REZULTATI

Brzovezjuća anorganska veziva na osnovi gipsa

Slika 4.2. Rezultati rendgenske difrakcijske analize – otpadni gips, 120 °C (zatvoren sustav)

Slika 4.3. Rezultati rendgenske difrakcijske analize – otpadni gips, 130 °C (otvoren i zatvoren sustav)
4. REZULTATI
Brzovezujuća anorganska veziva na osnovi gipsa

Slika 4.4. Rezultati rendgenske difrakcijske analize – otpadni gips, 140 °C (otvoren i zatvoren sustav)

Slika 4.5. Rezultati rendgenske difrakcijske analize – otpadni gips, 150 °C (otvoren i zatvoren sustav)
4. REZULTATI
Brzovezujuća anorganska veziva na osnovi gipsa

<table>
<thead>
<tr>
<th>Broj PDF</th>
<th>Podudaranje</th>
<th>Ime spoja</th>
<th>Pomak [°2θ]</th>
<th>Udio</th>
<th>Kemijski sastav</th>
</tr>
</thead>
<tbody>
<tr>
<td>070-0909</td>
<td>83</td>
<td>Kalcij sulfat</td>
<td>-0,090</td>
<td>0,876</td>
<td>CaSO₄</td>
</tr>
<tr>
<td>081-1848</td>
<td>56</td>
<td>Kalcij sulfat hemihidrat</td>
<td>-0,081</td>
<td>0,097</td>
<td>Ca(SO₄)(H₂O)₀.₅</td>
</tr>
<tr>
<td>085-0531</td>
<td>50</td>
<td>Kalcij sulfat (hidrat)</td>
<td>-0,076</td>
<td>0,091</td>
<td>CaSO₄(H₂O)₀.₆₇</td>
</tr>
</tbody>
</table>

Slika 4.6. Rezultati obrade rezultata rendgenske difrakcijske analize – otpadni gips, 150 °C (otvoren sustav)
Slika 4.7. Rezultati rendgenske difrakcijske analize - otpadni gips, 160 °C (otvoren i zatvoren sustav)
4. REZULTATI

4.2. PRETRAŽNI ELEKTRONSKI MIKROSKOP (SEM)

Prikazani su rezultati pretražnog elektronskog mikroskopa pri različitim povećanjima za početnu sirovinu (neobrađen otpadni gips, Slike 4.8.- 4.10.) i za uzorke otpadnog gipsa nakon eksperimenta pri temperaturi 130 °C, otvoren i zatvoren sustav (Slike 4.11.- 4.16.).

Slika 4.8. Rezultati elektronske mikroskopije uzorka početne sirovine (povećanje 667 x)
Slika 4.9. Rezultati elektronske mikroskopije uzorka početne sirovine

(povećanje 1330 x)
Slika 4.10. Rezultati elektronske mikroskopije uzorka početne sirovine

(povećanje 3340 x)
Slika 4.11. Rezultati elektronske mikroskopije uzorka otpadnog gipsa, 130 °C otvoren sustav (povećanje 666 x)
Slika 4.12. Rezultati elektronske mikroskopije uzorka otpadnog gipsa, 130 °C otvoren sustav (povećanje 1330 x)
4. REZULTATI

Brzovezujuća anorganska veziva na osnovi gipsa

Slika 4.13. Rezultati elektronske mikroskopije uzorka otpadnog gipsa, 130 °C otvoren sustav (povećanje 3330 x)
Slika 4.14. Rezultati elektronske mikroskopske analize uzorka otpadnog gipsa, 130 °C zatvorenog sustava (povećanje 662 x)
Slika 4.15. Rezultati elektronske mikroskopije uzorka otpadnog gipsa, 130 °C zatvoren sustav (povećanje 1330 x)
4. REZULTATI

Brzovezujuća anorganska veziva na osnovi gipsa

Slika 4.16. Rezultati elektronske mikroskopije uzorka otpadnog gipsa, 130 °C zatvoren sustav
(povećanje 3330 x)
4.3. INFRACRVENA SPEKTROMETRIJA

Slika 4.17. Rezultati MIR spektra uzoraka otpadnog gipsa obrađenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav), u području valnih brojeva 4500-400 cm\(^{-1}\)
4. REZULTATI

Brzovezujuća anorganska veziva na osnovi gipsa

Slika 4.18. Rezultati MIR spektra uzoraka obrađenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav), u području valnih brojeva 4000-3000 cm⁻¹

Slika 4.19. Rezultati MIR spektra uzoraka obrađenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav), u području valnih brojeva 1750-1450 cm⁻¹
Slika 4.20. Rezultati MIR spektra uzoraka otpadnog gipsa obrađenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav), u području valnih brojeva 1750-400 cm\(^{-1}\)

Slika 4.21. Rezultati MIR spektra uzoraka otpadnog gipsa obrađenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav), u području valnih brojeva 1400-800 cm\(^{-1}\)
Slika 4.22. Rezultati MIR spektra uzoraka otpadnog gipsa obradenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav), u području valnih brojeva 800-400 cm⁻¹
5. RASPRAVA

U ovom radu pripravljena su brzovezujuća anorganska veziva na osnovi gipsa. Korišten je otpadni gips iz tvornice TONDACH, d.o.o iz Đakova, koji nastaje prilikom proizvodnje glinenog crijepe. Tijekom prešanja crijepe kalupi se troše, a nakon što više ne zadovoljavaju toleranciju dimenzije, istrošene gipsane kalupe potrebno je zbrinuti na odgovarajući način. Jedan od načina uporabe otpadnog gipsa je djelomična dehidratacija u hidrotermalnom reaktoru kako bi se dobila brzovezujuća anorganska veziva na osnovi gipsa. Provedene su dvije serije eksperimenta dehidratacije gipsa u rasponu temperatura 120-160 °C, u toku 24h. U prvoj seriji, reakcijski sustav je otvoren prema atmosferi, dok je u drugoj seriji eksperimenta reakcijski sustav bio zatvoren (Slika 3.3.). Na početku ispitivanja, pomoću uređaja Shimadzu XRD-6000 karakterizirana je početna sirovina i hidrotermalno obrađeni otpadni gips (prethodni eksperiment, zatvoren sustav na 130 °C). Dobiveni rezultati prikazani na slici 4.1. pokazuju da je došlo do promjene, transformacije otpadnog gipsa u novi produkt, kako je očekivano prema literaturnim podacima. Početna sirovina je vrlo čisti dihidrat (CaSO₄×2H₂O), a hidrotermalno obrađeni otpadni gips je po kemijskom sastavu hemihidrat (CaSO₄×½H₂O). Na ovaj način omogućena je da se provedba eksperimenta, a prema literaturnim podacima odabrana je temperatura od 120 °C (zatvoren sustav). Pri provedbi eksperimenta na ovoj temperaturi nije došlo do promjene mase (Tablica 3.1.) koja bi ukazala na prijelaz dihidrata u hemihidrat. Renđenskom difrakcijskom analizom (Slika 4.2.) pokazano je da hidrotermalnom obradom na ovoj temperaturi nije nastao hemihidrat. Prema literaturnim podacima, hemihidrat nastaje pri temperaturama od 90-170 °C, no u ovom slučaju, moguće je definirati da je temperatura transformacije dihidrata u hemihidrat viša od 120 °C, a niža od 130 °C. Određivanje točne temperature pri kojoj se odvija reakcija nije dalje istraživano, zato jer je za praktičnu industrijsku primjenu potrebna i viša temperatura, ako se želi ova endotermna reakcija što prije provesti do kraja.

Na slici 4.3. prikazani su rezultati rendgenske difrakcijske analize uzoraka pripravljenih na 130 °C, za otvoren i zatvoren sustav. U oba slučaja, glavna mineralna faza je hemihidrat, a vidljiva je i manja količina dihidrata. U području difrakcijskih kutova manjih od 10 ° 2θ CuKα, vidljiva je razlika u baznoj liniji, no ova se razlika ne pokazuje sustavno i stoga nije dalje istraživana. U oba sustava uz hemihidrat nastaje malo dihidrata. Najjači difrakcijski maksimum anhidrita javlja se pri 25.437 °2θ CuKα i jako je preklopljen sa difrakcijskim maksimumom hemihidrata pri 25.670 °2θ CuKα, što otežava kvalitativnu interpretaciju...
difraktograma. Uzorak pripravljen u otvorenom sustavu sadrži i malu količinu anhidrita. Difrakcijski maksimum pri 7 °2θ CuKα pripada rijetko spominjanoj fazi CaSO4×0.67H2O koja je određena tek detaljnom analizom uzorka pripravljenog pri 150 °C (Slika 4.6.).

Na Slici 4.4. prikazani su rezultati rendgenske difrakcijske analize uzoraka pripravljenih eksperimentom na 140 °C (otvoren i zatvoren sustav). Bazna linija se podudara za oba uzorka. Uz hemihidrat se javlja vrlo malo dihidrata, dok je u zatvorenom sustavu nastao i anhidrit.

Na Slici 4.5. prikazani su rezultati provedbe eksperimenta na 150 °C kod oba sustava. Uzorak pripravljen na 150 °C (otvoren sustav) znatno se razlikuje od svih pripravljenih uzoraka te je zbog boljeg tumaćenja detaljno karakteriziran. Na Slici 4.6. prikazani su rezultati obrade rezultata difrakcijske analize za otvoreni sustav. Prikazana je lista difrakcijskih maksimuma (lista pikova, narančastom bojom) te su ponuđeni maksimumi anhidrita crvenom linijom, plavom linijom prikazani su difrakcijski maksimumi hemihidrata i zelenom linijom difrakcijski maksimumi rijetko spominjane faze kalcijevog sulfata hidrata (CaSO4×0.67H2O, Powder Diffraction File 85-0531). Iz slike je vidljivo da su maksimumi hemihidrata i hidrata sa 0.67 molekula vode jako slični, zato jer postoji tek neznatna razlika u sadržaju vode (oko 0.67 H2O odnosno 0.5 H2O). Prema istom difraktogramu, uzorak sadrži i anhidrit.

Daljnja ispitivanja provedena su na uređaju SEM-TESCAN VEGA TS5236 LS. Na Slikama 4.8.-4.10. prikazani su rezultati mikroskopske analize početne sirovine, uz tri različita povećanja (667x, 1330 x i 3330 x). Vidljivi su kristali dihidrata, u obliku igličastih, izduženih i isprepletenih kristala koji su uz relativno malu poroznost odgovorni za dobru mehaničku svojstva gipsanih kalupa. Dalje na Slikama 4.11.-4.13. prikazane su mikrografije uzorka pripravljenog hidrotermalnom reakcijom u otvorenom sustavu na temperaturi 130 °C, dok su na Slikama 4.14.-4.16. prikazane mikrografije uzorka pripravljenog hidrotermalnom reakcijom u zatvorenom sustavu na temperaturi 130 °C. Usporedbom rezultata jasno se vidi da su hidrotermalnom obradom u otvorenom sustavu pripravljeni kristali neznatno promijenjene morfologije (u odnosu na početni uzorak), dok je u zatvorenom sustavu došlo do pojave kompaktnijih kristala sa manjim omjerom duljine prema širini. Takvi se kristali lakše
slažu u gustu slagalinu, a za postizanje određene konzistencije potrebno je manje vode. Na taj način, kristali su bolje povezani i nakon hidratacije daju materijal veće čvrstoće (i manje poroznosti). Imajući u vidu moguću oporabu otpadnog gipsa, može se preporučiti hidrotermalna obrada (dehidratacija) za pripravu gipsa visoke čvrstoće, koji se može ponovno uporabiti za pripravu kalupa ili kao dodatak/замjena dijela uvoznog gipsa.

Radi lakše usporedbе dobivenih produkata, uzorci su dalje karakterizirani infracrvenom spektrometrijom. Na Slici 4.17. prikazani su rezultati MIR spektra otpadnog gipsa obrađenog pri temperaturama od 120-160 °C (otvoren i zatvoren sustav). Na spektromera su vidljiva poklapanja rezultata i mala odstupanja. Za bolje tumačenje dobivenih rezultata, prikazani su detalji FTIR spektra sa Slike 4.17. pomoću kojih se jasnije tumače rezultati (Tablica 2.2. i Slika 2.7.).

Na Slici 4.18. prikazani su rezultati u području valne duljine 4000-3000 cm^{-1}. Iz dobivenih rezultata kod temperature 120 °C, zatvoren sustav, vidljive su vrlo jake vrpce karakteristične za vibraciju O-H veza u molekuli vode (Tablica 2.2.) na 3410 i 3555 cm^{-1}. Pri 120 °C uzorak se sastoji od dihidrata, te su rezultati FTIR analize u suglasju s rezultatima rendgenske difrakcijske analize. Kod temperature od 130 °C, ustanovljen je gubitak mase uzorka (Tablica 3.1. i Tablica 3.2.), što ukazuje na transformaciju dihidrata u hemihidrat, a što je potvrđeno i rendgenskom difrakcijskom analizom. Također je vidljiva promjena u FTIR spektru, te nestaju karakteristične vibracijske vrpce za dihidrat (Tablica 2.2.), a javljaju se vibracijske vrpce karakteristične za hemihidrat, pri 3560 i 3615 cm^{-1}. Za sve dalje pripravljene uzorke, na temperaturama od 140, 150 i 160 °C prema rezultatima FTIR analize, slijedi da je hidrotermalnom obradom pripravljen hemihidrat. Gornja temperatura kod koje nestaje hemihidrat nije istraživana budući da zbog teflonskih brtvi, temperatura u aparaturi ne smije prekoračiti 200 °C. Uzorak pripravljen pri 150 °C (otvoren sustav) znatno se razlikuje od uzoraka pripravljenih pri nižoj i višoj temperaturi, te je vjerojatno posljedica kratkotrajnog porasta temperature iznad zadane i/ili pada parcijalnog tlaka vodene pare. Vrijedi primijetiti da taj uzorak pokazuje najveći gubitak mase, zato jer je izmjereno \(m_{(kraj)}/m_{(početak)}=0.811\), dok je rezultat za druge pripravljene uzorke oko 0.85 i gotovo se podudara sa stehiometrijskim proračunom \(m(CaSO_4 \times \frac{1}{2}H_2O)/m(CaSO_4 \times 2H_2O)=0.843\). FTIR spektar ovog uzorka najsljičniji je FTIR spektru anhidrita (Slika 2.7.), u kojem nema apsorpcijskih vrpca u širokom području valnih brojeva od 4000-1300 cm^{-1}.
6. ZAKLJUČAK

U ovom je radu istražena mogućnost uporabe otpadnog gipsa iz redovne proizvodnje glinenog crijeva tvornice TONDACH d.o.o. iz Đakova. Ispitana je mogućnost hidrotermalno aktivirane dehidratacije gipsa u području temperatura od 120-160 °C, u reaktorskim sustavu otvorenom i zatvorenom prema atmosferi.

Rendgenskom difrakcijskom analizom ustanovljeno je da do dehidratacije gipsa i nastanka pretežito hemihidrata ne dolazi na temperaturi od 120 °C, dok već na temperaturi od 130 °C dolazi do nastanka hemihidrata. Hidrotermalna obrada, iako je relativno skupa, ima veliku prednost za pripravu visokovrijednog gipsanog veziva, jer utječe na morfologiju nastalog produkta.

Pretražnom elektronskom mikroskopijom ustanovljeno je da hidrotermalnom obradom u zatvorenom sustavu nastaju kompaktniji kristali kod kojih je omjer duljine prema širini manji nego u ishodnoj sirovini. Takav produkt omogućuje primjenu (postizanje određene konzistencije) uz manji utrošak vode, što rezultira manjim poroznošću i boljim mehaničkim svojstvima.

Rendgenskom difrakcijskom analizom ustanovljeno je da pripravljeni uzorci sadrže male količine zaostalog gipsa (dihidrata), a pretežito nastaje hemihidrat (mineral basanit), uz moguću pojavu anhidrita (CaSO₄), te rijetko spominjane hidratne faze CaSO₄×0.67H₂O. Rezultati rendgenske difrakcije u suglasju su s rezultatima infracrvene spektroskopije (MIR FTIR).

Rezultati FTIR analize slažu se s rezultatima dostupnim u literaturi. U daljnjem je radu potrebno unaprijediti aparaturu kako bi se osim temperature mogao mjeriti i održavati određeni parcijalni tlak vodene pare u sustavu.
7. POPIS SIMBOLA

m - masa [kg]

w - maseni udio [g g$^{-1}$]

θ - temperatura [°C]

ν – valni broj [cm$^{-1}$]

Skraćenice

PC – portland cement

C_3S – alit

C_2S – belit

C_3A – trikalcijski aluminat

C_4AF – ferit

XRD – rendgenska difrakcijska analiza

SEM – pretražna elektronska mikroskopija
8. LITERATURA

7. F. Wirsching, Ullmanns encyklopädie der technischen Chemie, band 12
13. Y. Liu, A. Wang, J. J. Freeman, Raman, MIR, and NIR spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite, Department of Earth and Planetary Sciences and McDonnell Center for Space Sciences, Washington University, Campus Box 1169, Saint Louis, MO 63130
9. PRILOZI

PRILOG 1.

Tablica 9.1. Difrakcijski maksimumi za dihidrat i hemihidrat, prema PDF Indeksu.

<table>
<thead>
<tr>
<th>Gips (sintetski) CaSO₄·2H₂O PDF#33-0311</th>
<th>Basanit CaSO₄·½H₂O PDF#41-0244</th>
<th>Kalcij sulfat hidrat CaSO₄·0.67H₂O PDF#85-0531</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Θ CuKα / ° Intenzitet</td>
<td>2 Θ CuKα / ° Intenzitet</td>
<td>2 Θ CuKα / ° Intenzitet</td>
</tr>
<tr>
<td>11,589 100</td>
<td>14,72 80</td>
<td>6,969 27</td>
</tr>
<tr>
<td>20,722 100</td>
<td>20,30 5</td>
<td>14,746 999</td>
</tr>
<tr>
<td>23,397 17</td>
<td>20,74 5</td>
<td>16,338 41</td>
</tr>
<tr>
<td>23,397 17</td>
<td>22,24 5</td>
<td>20,381 26</td>
</tr>
<tr>
<td>28,109 4</td>
<td>23,23 5</td>
<td>21,012 4</td>
</tr>
<tr>
<td>29,111 75</td>
<td>24,63 5</td>
<td>25,652 447</td>
</tr>
<tr>
<td>31,104 45</td>
<td>25,67 50</td>
<td>26,660 28</td>
</tr>
<tr>
<td>32,066 10</td>
<td>27,68 5</td>
<td>29,364 101</td>
</tr>
<tr>
<td>32,754 2</td>
<td>29,33 10</td>
<td>29,743 815</td>
</tr>
<tr>
<td>33,344 35</td>
<td>29,69 100</td>
<td>30,573 14</td>
</tr>
<tr>
<td>33,344 35</td>
<td>31,90 90</td>
<td>31,888 705</td>
</tr>
<tr>
<td>34,508 6</td>
<td>32,96 10</td>
<td>32,972 76</td>
</tr>
<tr>
<td>35,394 2</td>
<td>34,26 5</td>
<td>33,336 7</td>
</tr>
<tr>
<td>35,966 11</td>
<td>34,89 5</td>
<td>33,428 13</td>
</tr>
<tr>
<td>36,252 1</td>
<td>38,42 5</td>
<td>35,383 1</td>
</tr>
<tr>
<td>36,619 6</td>
<td>39,65 5</td>
<td>36,588 1</td>
</tr>
<tr>
<td>37,345 4</td>
<td>40,47 5</td>
<td>36,734 1</td>
</tr>
<tr>
<td>39,295 1</td>
<td>41,34 5</td>
<td>38,379 28</td>
</tr>
<tr>
<td>40,625 15</td>
<td>42,25 10</td>
<td>38,476 60</td>
</tr>
<tr>
<td>42,153 2</td>
<td>42,71 10</td>
<td>39,629 19</td>
</tr>
<tr>
<td>43,341 25</td>
<td>44,64 5</td>
<td>39,717 24</td>
</tr>
<tr>
<td>43,605 15</td>
<td>45,26 5</td>
<td>40,380 13</td>
</tr>
<tr>
<td>43,605 15</td>
<td>46,45 5</td>
<td>41,366 33</td>
</tr>
<tr>
<td>44,187 6</td>
<td>47,61 10</td>
<td>41,442 29</td>
</tr>
<tr>
<td>44,554 1</td>
<td>49,24 20</td>
<td>42,263 122</td>
</tr>
<tr>
<td>45,498 4</td>
<td>49,36 30</td>
<td>42,775 83</td>
</tr>
<tr>
<td>46,209 3</td>
<td>50,29 5</td>
<td>44,244 7</td>
</tr>
<tr>
<td>47,840 16</td>
<td>51,01 5</td>
<td>45,195 10</td>
</tr>
<tr>
<td>47,840 16</td>
<td>52,19 5</td>
<td>45,285 17</td>
</tr>
<tr>
<td>48,39 12</td>
<td>52,70 10</td>
<td>45,458 13</td>
</tr>
<tr>
<td>48,791 3</td>
<td>52,78 10</td>
<td>45,891 4</td>
</tr>
<tr>
<td>50,321 13</td>
<td>53,90 5</td>
<td>46,833 2</td>
</tr>
<tr>
<td>50,689 6</td>
<td>54,14 20</td>
<td>46,922 5</td>
</tr>
<tr>
<td>51,149 9</td>
<td>55,10 20</td>
<td>47,481 21</td>
</tr>
<tr>
<td>51,331 12</td>
<td>57,13 5</td>
<td>47,648 47</td>
</tr>
<tr>
<td>53,571 1</td>
<td>58,42 5</td>
<td>49,222 182</td>
</tr>
<tr>
<td>54,421 3</td>
<td>59,77 5</td>
<td>49,405 362</td>
</tr>
<tr>
<td>55,151 6</td>
<td>60,33 5</td>
<td>50,265 2</td>
</tr>
</tbody>
</table>
Brzovezujuća anorganska veziva na osnovi gipsa

<table>
<thead>
<tr>
<th>Gips (sintetski) CaSO₄·2H₂O PDF#33-0311</th>
<th>Basanit CaSO₄·½H₂O PDF#41-0244</th>
<th>Kalcij sulfat hidrat CaSO₄·0.67H₂O PDF#85-0531</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ / °</td>
<td>Intenzitet</td>
<td>Θ / °</td>
</tr>
<tr>
<td>55,822</td>
<td>4</td>
<td>60,86</td>
</tr>
<tr>
<td>56,749</td>
<td>9</td>
<td>61,74</td>
</tr>
<tr>
<td>56,749</td>
<td>9</td>
<td>62,82</td>
</tr>
<tr>
<td>57,539</td>
<td>1</td>
<td>63,01</td>
</tr>
<tr>
<td>58,171</td>
<td>4</td>
<td>63,92</td>
</tr>
<tr>
<td>60,341</td>
<td>2</td>
<td>64,46</td>
</tr>
</tbody>
</table>
ŽIVOTOPIS

Stručnu praksu sam odradila na drugoj godini fakulteta u Fealu, proizvodnja aluminija d.o.o u Širokom Brijegu. Tokom stručne prakse u Fealu izradila sam seminarski rad pod nazivom „Prerada i površinska zaštita aluminija“ pod mentorstvom dipl.kem.ing. Anele Dumančić.

2013. godine sam upisala diplomski sveučilišni studij Ekoinženjerstva na Fakultetu kemijskog inženjerstva i tehnologije u Zagrebu.