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Sažetak 

 

 

Sažetak 

 

Korištenje obnovljivih izvora biomase za održivu proizvodnju prepoznato je kao 

moguća zamjena za neobnovljiva fosilna goriva. Bio-utemeljeno gospodarstvo će 

značajno smanjiti ovisnost o naftnim sirovinama, ublažiti globalno zatopljenje, 

smanjenjem CO2 emisija, smanjiti odlaganja otpada i konačno povećati ekonomsku 

korist. Trenutni pokušaji provode se s ciljem razvoja novih smjerova u sintezi alkil-

levulinoata iz levulinske kiseline, kao polaznog materijala. Tijekom poslijednjih pet 

godina alkil-levulinoati privukli su pozornost istraživača, zbog svojih specifičnih 

fizikalno-kemijskih svojstava i mogućnosti primjene.  

Osim korištenja obnovljivih izvora sirovine, heterogena kataliza privukla je 

puno pozornosti na području zelene kemije. Ovaj diplomski rad dio je širokog 

istraživačkog projekta, koji je bio proveden u Laboratoriju za zelenu sintetsku kemiju 

(Green S.O.C., Sveučilište Perugia, Italija) s ciljem razvoja potpuno zelene sintetske 

metodologije za pripremu bio-kemikalija dodatnih vrijednosti. Priprava alkil-

levulinoata počevši od levulinske kiseline podrazumijeva korištenje alkohola kao 

reagensa i prisustvo kiselog katalizatora (tzv. reakcija esterifikacije).  Pristup koji je 

korišten temelji se na pripremi novih heterogenih katalizatora, odnosno umreženih 

kiselih katalizatora temeljenih na polistirenu, a koji sadrže različita svojstva u pogledu 

gustoće aktivnih mjesta i fizičke morfologije. Da bi se potvrdila njihova katalitička 

aktivnost, provedene su reakcije esterifikacije s levulinskom kiselinom i različitim 

alkoholima. 

Ključne riječi: biomasa, alkil-levulinoati, zelena kemija, heterogena kataliza, kiseli 

katalizatori 
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Summary 

 

Utilisation of renewable biomass for sustainable production has been recognised 

as a possible substitute for non-renewable fossil fuels. A bio based  economy will 

substantially reduce the dependence on petroleum feedstock, mitigate the global 

warming by reducing CO2 emissions, reduce waste disposal and finally increase the 

economic benefits. Current efforts have been performed to develop new routes in the 

synthesis of alkyl levulinates from levulinic acid, as a starting material. Over the past 

five years, the alkyl levulinates have attracted the attention of researches due to their 

specific physical-chemical properties and possible applications. 

Beside the use of renewable feedstock, heterogeneous catalysis has gain also a 

lot of attention in the area of green chemistry. This thesis work is part of broad research 

project carried out at the Laboratory of Green Synthetic Chemistry (Green S.O.C., 

University of Perugia, Italy) aiming at the development of fully green synthetic 

methodologies for the preparation of value-added bio-chemicals. The preparation of 

alkyl levulinates starting from levulinic acid implies the use of an alcohol as a reagent, 

in the present of an acid catalyst (so-called esterification reactions). The approach used 

is based on the preparation of novel heterogeneous catalysts, specifically cross-linked 

polystyrene-based acid catalysts, featuring different properties in term of density in 

active sites and physical morphologies. To verify their catalytic efficiency, 

esterification reactions of levulinic acid with different alcohols were conducted.  

Key words: biomass, alkyl levulinates, green chemistry, heterogeneous catalysis, acid 

catalysts 
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1. Introduction 

Environmental protection is a prominent trend in the whole world, not only on 

individual continents or on sectors of interest. This is a wide and comprehensive 

concept, which is not only promoted by the scientists but it is the duty of the state policy, 

as well as European and world policy. Although it is called a trend, it must be 

considered also as a responsibility of all of us. 

Most of the political parties have implemented the environmental obstacles into 

their policy, and their standpoints about sustainability are being emphasized so they 

could increase the awareness about the environment protection. 

The rapid development of industries and technology has brought many negative 

effects, which are revealed in different aspects of pollution, especially in air, water and 

soil pollution. Other undesirable effects are: impact on climate change, the gradual 

decommissioning of the stratospheric ozone layer, degradation, deforestation, soil 

impoverishment and reduction of biodiversity. Need for change mitigation lead 

scientists and engineers to think to create greener and more sustainable technologies.  

Global competitive tension forces chemical engineers to continually and constantly 

monitor the introduction of new technologies in the market, inform about their 

capabilities and apply the ones that will give the most efficient and effective results. 

In this thesis, the development of new heterogeneous acid catalysts and their use in 

the production of alkyl levulinates is described.  
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2. Green Chemistry 

 

The field that creates a framework for better and healthier conditions is the field 

of Green Chemistry, which should be in conjunction with the sustainable development. 

Green Chemistry is defined as the “design of chemical products and processes to reduce 

or eliminate the use and the generation of hazardous substances”.1 

Art of Green Chemistry is to devise a design, which considers efficient 

exploitation of raw materials (preferably renewable) without using toxic and/or 

hazardous reagents and solvents. Apart from that the developed systems should 

eliminate the generation of waste.2,3 

On the other hand, sustainability considers beside the ecological component also 

the societal and economic component (Figure 1). To employ the optimal use of 

resources it is necessary to integrate technical, economic and social development, which 

are compliant with the necessity of environmental protection and advanced life 

ambience.3  

 

 Figure 1. Graphical display of sustainability. 

 

In recent years, plenty of Countries jointly participated in the implementation of 

green and sustainable activities in academia and industries. Because of their extreme 

activities, there are a lot of examples of successful utilisation of green chemistry 

technologies.4 
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2.1. Principles of Green Chemistry 

 

In 1998 Paul Anastas and John Warner presented the 12 principles of Green 

chemistry, although before them Trevor Kletz already entitled the next phrase: “What 

you don’t have, can’t leak”, and made the frames in which industrial and scientific work 

should have been defined.1,5 

The following list helps to understand the meaning of the definition in practice 

and guides chemists towards fulfilling their role in achieving sustainable development. 

The 12 principles are shown in table 1.  

Table 1. 12 Principles of Green chemistry:1 

1. Prevention 
It is better to prevent waste than to treat or 

clean up waste after it has been created. 

2. Atom Economy 
Synthetic methods should be designed to 

maximize the incorporation of all materials 

used in the process into the final product. 

3. Less Hazardous Chemical 

Synthesis 

Wherever practicable, synthetic methods 

should be designed to use and generate 

substances that possess little or no toxicity 

to human health and the environment. 

4. Designing Safer Chemicals Chemical products should be designed to 

affect their desired function while 

minimizing their toxicity. 

5. Safer Solvents and Auxiliaries The use of auxiliary substances (e.g., 

solvents, separation agents, etc.) should be 

made unnecessary wherever possible and 

innocuous when used. 

6. Design for Energy Efficiency Energy requirements of chemical processes 

should be recognized for their 

environmental and economic impacts and 

should be minimized. Synthetic methods 
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should be conducted at ambient 

temperature and pressure. 

7. Use of Renewable Feedstock 
A raw material or feedstock should be 

renewable rather than depleting whenever 

technically and economically practicable. 

8. Reuse Derivatives Unnecessary derivatization (use of 

blocking groups, protection/ deprotection, 

temporary modification of 

physical/chemical processes) should be 

minimized or avoided if possible, because 

such steps require additional reagents and 

can generate waste. 

9. Catalysis 
Catalytic reagents (as selective as possible) 

are superior to stoichiometric reagents. 

10. Design for Degradation 
Chemical products should be designed so 

that at the end of their function they break 

down into innocuous degradation products 

and do not persist in the environment. 

11. Real-time analysis for Pollution 

Prevention 

Analytical methodologies need to be 

further developed to allow for real-time, in-

process monitoring and control prior to the 

formation of hazardous substances. 

12. Inherently Safer Chemistry for 

Accident Prevention 

Substances and the form of a substance 

used in a chemical process should be 

chosen to minimize the potential for 

chemical accidents, including releases, 

explosions, and fires. 
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2.2. Metrics 

 

In recent years, new systematic methods and tools are proposed in order to assess 

the sustainability of a process and therefore lot of progress is needed for the 

identification, design and development of appropriate products and processes that will 

produce sustainable and environmental acceptable processes.6  

Reaction yield (RY) represents the quantity of a product (usually expressed as a 

fraction or a percentage) obtained in a chemical reaction from a given reactant. 

Selectivity (S) indicates the ratio of one of the products (usually the desired one) 

emanating from the conversion of a certain reactant with respect to the other ones, or to 

the conversion of the starting material.7 

The most commonly used metrics are: "Atom Economy", "Atom Efficiency", 

"Carbon Efficiency", "Environmental Factor (E-factor)", "Effective Mass Yield" and 

"Reaction Mass Efficiency". 

Atom Economy (AE) has been introduced by Barry Trost in 1990s8 and it refers to 

the concept of maximising the incorporation of atoms from reactants into the final 

products. It is defined as the ratio of molecular weight of the desired product over the 

molecular weights of all reactants, see eq. 1.1.1,7 

𝐴𝐸 =
𝑀𝑊(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)

∑ 𝑀𝑊(𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠)
                                                                                         (1.1) 

The ideal reaction would be the one where all the atoms could be found in the 

desired product. If there is a multi-step process where intermediates are formed the 

calculation extends in the form shown in Figure 2. 

 

Figure 2. Multistep reaction. 
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                                 % 𝐴𝐸 𝑜𝑓 𝐺 =  
𝑀𝑊(𝐺)

𝑀𝑊(𝐴+𝐵+𝐷+𝐹)
∗ 100%                                              (1.2.) 

 

              % 𝐴𝐸 𝑜𝑓 𝑁 =  
𝑀𝑊(𝑁)

𝑀𝑊(𝐴+𝐵+𝐷+𝐹+𝐻+𝐼+𝐾)
∗ 100%                                                      (1.3.) 

Researchers from GlaxoSmithKline in 2001 presented a census of green metrics 

used by their company to promote sustainable chemistry. Among these, reaction mass 

efficiency (RME) was also represented. It is defined as ratio of product mass over the 

sum of the masses of reactants. 

For a generic reaction:             𝐴 + 𝐵 → 𝐶 

𝑅𝑀𝐸(%) =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝐶

𝑚𝑎𝑠𝑠 𝑜𝑓 𝐴+𝑚𝑎𝑠𝑠 𝑜𝑓 𝐵
∗ 100%                                                                               (1.4.) 

It was also revealed that reaction mass efficiency relates Atom Economy, 

chemical yield and stoichiometry (actual molar quantities of reactants). Extended 

expression, that shows this connection is shown in Figure 3. 9,10 

 

𝑅𝑀𝐸 =  
𝑚3

𝑚1 + 𝑚2
=  

𝑧(𝑀𝑊3)

𝑦(𝑀𝑊1) + 𝑧(𝑀𝑊2)
 

=  
𝑧(𝑀𝑊3)

𝑥(𝑀𝑊1) + (𝑦 − 𝑥 + 𝑥)(𝑀𝑊2)
=  

𝑧(𝑀𝑊3)

𝑥(𝑀𝑊1) + 𝑥(𝑀𝑊2) + (𝑦 − 𝑥)(𝑀𝑊2)
 

=
𝑧

𝑥
∗ 

𝑀𝑊3

𝑀𝑊1 +  𝑀𝑊2 + 𝑥−1(𝑦 − 𝑥)𝑀𝑊2
∗

(𝑀𝑊1 + 𝑀𝑊2)−1

(𝑀𝑊1 + 𝑀𝑊2)−1
 

=
𝑧

𝑥
∗

𝑀𝑊3

𝑀𝑊1 + 𝑀𝑊2
∗

1

1 +
(𝑦 − 𝑥)𝑀𝑊2

𝑥(𝑀𝑊1 + 𝑀𝑊2)
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= 𝑌𝑖𝑒𝑙𝑑 ∗ 𝐴𝑡𝑜𝑚 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 ∗
1

𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐  𝐹𝑎𝑐𝑡𝑜𝑟
 

Figure 3. REM relates chemical yield, AE and stoichiometry. 

Another often used parameter is process mass intensity (PMI, the reciprocal of 

reaction mass efficiency). General reaction assumes also the use of auxiliary materials 

such as reaction solvents (S), catalyst (C), work up materials (WPM) and purification 

materials (PM). Hence, the PMI is defined as a percentage of mass of all the inputs 

relative to the mass of desired product.11 

𝑃𝑀𝐼 =
 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
=  

𝑚𝐴+𝑚𝐵+𝑚𝑆+𝑚𝐶+𝑚𝑊𝑃𝑀+𝑚𝑃𝑀

𝑚𝑃
                                   (1.5.) 

The main limitation of PMI parameter is that it considers the mass of chemicals 

involved as a “lump sum” and does not consider their quality or ecological risks related 

to them. Hence, Hudlicky defined the term Effective mass yield (EMY), defined as a 

percentage of mass of the desired product relative to the mass of all non-benign 

materials used in its synthesis.7 

𝐸𝑀𝑌 (%) =  
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑜𝑛 𝑏𝑒𝑛𝑖𝑔𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
∗ 100%                                                               (1.6.) 

 Under the term “benign components”, by-products, solvents or reagents that 

have no known environmental risk associated with them are defined. For example, 

water, dilute ethanol, low concentration saline solutions, autoclaved cell mass, etc.7 

Due to the impossibility to determine if certain substances are non-benign, this 

parameter is not much useful. 

Carbon efficiency (CE) is described as the percentage of carbon in the product 

respect to the total carbon in reactants.  

𝐶𝐸(%) =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 
∗ 100%                                        (1.7.) 

This parameter does not take in account neither the solvent nor the additives, 

which are used in the reactions thus means it has a significant limitation and should be 

conjoined with other metrics.7,10 

One of the simplest and most useful parameter that measures environmentally 

accessibility of chemical processes, or in other words respond to the question: “Is the 
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process sustainable?” is called Environmental Factor (E-factor). It is described as the 

ratio of the mass of waste to the final product. 

𝐸 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑠𝑡𝑒𝑠 (𝑘𝑔)

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑘𝑔)
                                                                      (1.8) 

Table 2. shows typical values of E-factor in different industrial sectors. The E-

factor considers the reaction yield and includes reactants, solvents, all the additives/ 

coadjuvants and in principle the energy involved, although this latter is difficult to 

quantify. Higher E-factor values means more waste, and therefore bigger negative 

environmental impact.  

Table 2. E-factor in various segments of chemical industry 

Industry sector Annual production(t) E-factor Waste production (t) 

Oil refining 106-108 <0.1 104-106 

Bulk chemicals 104-106 <1-5 104-5x106 

Fine chemicals 102-104 5-50 5x102-5x105 

Pharmaceuticals 10-103 25-100 2,5x102-105 

 

From the table it can be concluded that processes, leading to the synthesis of 

fine chemicals or pharmaceuticals produce larger amount of waste, since they involve 

multiple syntheses and numerous purification steps.7,12 

For measuring the environmental acceptability of processes, mass intensity (MI) 

is also used. Developed by Constable and co-workers of GlaxoSmithKline is defined 

as the total mass used in the process divided with the mass of the product.12 

𝑀𝐼 = 𝐸 𝑓𝑎𝑐𝑡𝑜𝑟 + 1                                                                                                   (1.9.) 

Considering the value of ideal conditions MI should be one in comparison to E-

factor, where the expected value should be zero. As the value zero reminds to the 

terminal goal of zero waste, E-factor is considered the best metric, which gives a mental 

picture of how wasteful a process is.12 
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2.3.Solvents 

 

 Solvents are used in chemical laboratories and in chemical industries 

worldwide with global demand in the region of 20 million metric tonnes per annum.13 

As it mainly refers to hazardous, toxic or otherwise damaging solvents it means that 

they represent a large contribution to the environmental impact and also impact on cost, 

safety and health issues.14,15,16 

It has been estimated that ca. 85% of mass wasted in synthesis and processes is 

constituted by the solvent, and the recovery efficiencies are typically 50-80%.17,18  In 

the manufacture of active pharmaceutical ingredients (API) typical composition of the 

material used, is showed on Figure 4. The American Chemical Society Green Chemistry 

Institute Pharmaceutical Roundtable (ACS GCIPR) published this benchmark in 2008. 

  

Figure 4. Composition by mass of the types of material used to manufacture an API.14 

Customarily, solvents are used in the reaction as an unreactive auxiliary fluid 

with the primary purpose of dissolving reactants. Intermolecular interactions stabilise 

the solutes, promote the desired equilibrium position and can influence product 

selectivity. Their volatility and boiling temperature characteristics can facilitate their 

separation from the products by distillation but on the other hand, they may create 

undesired vapor emissions.13,19 

Polar aprotic solvent, are also very common in organic synthesis, especially in 

nucleophilic substitutions. However, they have significant environmental and safety 

issues due to their toxity. Also, their miscibility with water enables their separation by 

washing with water but results with inevitably contaminated aqueous effluent.18 

In addition to the problems connected with:  

Water
32%

Other
5%

Reactants
7%

Solvents
56%
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 health and safety factors such as toxicity, flammability, 

 release of solvents in the environment, thus causing further 

environmental contaminations,  

 subsequent reaction work up and separation  

development of sustainable ones has become one of the most active area of Green 

Chemistry.17,18 

Research on green solvents is an evolving field of interest and the promotion of 

this idea represents one of the principles of Green Chemistry.13   

The ideal conditions would be avoiding the use of any kind of solvents, or in 

other words, “The best solvent is no solvent”. Solvent-free processes are inescapable 

due to their crucial role in dissolving solids, heat and mass transfer, influencing 

viscosity and in separation and purification steps.17,18 

The need of alternative solvents come up as the most acceptable solution to 

minimise the environmental impact and avoid problems with health and safety issues. 

There are four submitted ways to achieve that goal:15 

1. Substitution of hazardous solvents with one that shows better EHS 

(Environmental, Health and Safe) properties 

2. Use of “bio-solvents“, i.e. solvents produced from renewable recourses 

3. Substitution of organic solvents with supercritical fluids  

4. Or with ionic liquids that show low vapour pressure, and thus less emissions 

in air. 

Green solvents should have some of the following properties:  

Low toxicity, non-flammable, safe to handle, easily biodegradable under 

environmental conditions, derived from renewable sources, high boiling point (not very 

volatile, low vapour emission) and easy to recycle.20 

Liquid fatty acids, bioethanol, esters (biodiesel), limonene, glycerol, ethanol and 

acetic acid may all be produced from renewable resources and could be considered as 

possible replacement solvents. However, the use of alternative solvents is not sufficient 

to consider a process for a green one. As above mentioned every other aspects of the 

process should be examined and reach better outcome, for instance, the atom efficiency, 
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demands on non-renewable resources, energy use, transport costs, all must be taken into 

account.20  

The evaluation of the greenness of a solvent can be determined by two 

environmental assessment methods with different scopes. The first method is 

Environmental, Health and Safety (EHS), which goal is to identify potential hazards of 

chemicals.15,19 

The EHS method relies heavily on the availability of the process information 

and as in the early stage there is a lack of substance date, it could represent a problem. 

Applying these methods to process design therefore require expert judgment and large 

amount of time to create fate and effect date not only for the wellstudied substances but 

also for the new intermediates and products.15,21 

Simplified EHS aspects are assessed in three categories with nine subgroup:  

1. Environmental hazards – persistency, air hazard and water hazard 

2. Health hazards – acute toxicity, irritation and chronic toxicity 

3. Safety hazard – release potential, fire/explosion and 

reaction/decomposition. 

For each category effect, an index between zero and one is calculated, one is 

used for dangerous substances whereas zero is for the harmless ones (Figure  5.).15,9,21
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Figure 5. EHS rankings for five representative solvents.19 

The second method is Life Cycle Assessment Method (LCA), a conceptual 

approach that comprises the consideration of all stages along the life cycle of a chemical 

(Figure 6). It is a flexible, interdisciplinary tool which principles can be applied to 

products and processes in any kind of industry or sector.15,22,23 

Some of the metrics used in LCA are: (1) amount of inputs, (2) emissions to air, 

water and land (3) relative toxicities of materials (4) process or product costs (5) use of 

recycled materials.23   

 

Figure 6. System model of the solvent assessment using the life-cycle assessment 

method.13,15 
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One of the quickest option to calculate LCA is the net cumulative energy 

demand (CED). On Figure 7. blue bars show the energy required for the production of 

1 kg of solvent, red bars indicate the energy required for distillation rather than 

production, and the green bars show the energy recovered from incineration.  

Underneath, the light red and green bars illustrate the saved energy.19 

 

Figure 7. Energy demands associated with the production of five representative 

solvents.19 

A multi-criteria evaluation or in other words combining the two mentioned 

methods would give the best solution for alternative solvent selection, providing results 

of practical relevance.15  

Example of assembling the scores of two methods in order to get a bigger picture 

of solvent impact could be seen in Figure 8. Ethanol and ethyl acetate provide the 

optimum results from EHS perspective, and on the other hand, n-hexane and diethyl 

ether, because of their lower energy demand are considered more environmentally 

favourable solvents.19 
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Figure 8. Map of EHS and CED values for representative solvents. 

  

2.4. Heterogeneous catalysts 

 

Organic catalysis is one of the most broadening fields of research in the modern 

organic chemistry.24 Heterogeneous catalysis refers to the form of catalysis where 

heterogeneous catalyst exist in different phase to that of the reactants. The great 

majority of the catalyst are in solid phase; meanwhile the reactants occur in liquid or 

gas phase.25 

Organic catalyst has recently been defined as “organic compound of relatively 

low molecular weight and simple structure capable of promoting a given transformation 

in substoichiometric quantity”.26,27 This definition, with its certain limitations, gives yet 

a clear picture what organic catalyst is not. Is not an enzyme nor a metal-based catalyst. 

In this term, “organic” refers to metal-free conditions. Some of advantages of such 

conditions might include: inter alia, the possibility to work under wet solvents and under 

aerobic atmosphere, dealing with a stable and firm catalyst, avoiding the problem of 

metal leaching into the organic product.24,27 

Switching from stoichiometric methodologies to catalytic processes, the 

efficiency of the reaction improves by lowering the energy input required. The amount 
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of catalyst needed for reaction comes in smaller percentage in comparison to 

stoichiometric amount, thus the formation of waste is avoided and the E-factor value 

and higher economic losses are decreased. Beyond efficiency, some otherwise 

unfavourable reactions could be also realized by using the correct catalyst.1 

Furthermore, immobilisation of catalyst over an inert solid support is highly 

investigated. The scope of immobilisation is to simplify the isolation of products and 

catalyst recycling and to facilitate the reuse and recovery of the catalyst.24,28 Hence, this 

leads to increased productivity of the catalyst, economic and environmental 

advantages.28,29 Many different materials have been studied and developed as supports 

for a large variety of species being able to successfully participate as catalysts for 

organic or organic cross-coupling reactions. Although, with all this advantages 

supported catalyst often suffers from lower activities and selectivities when compared 

with their nonsupported analogues. Thus further synthetic efforts have to be 

performed.29,30 

The supported catalyst could be divided in two groups: organic and inorganic 

supports. Within the category of organic supports different types of polymers are 

incorporated, which range from insoluble resins to highly soluble oligomers.30,31 

The work of this thesis is focused on the synthesis of heterogeneous acid 

catalysts, which are now preferred giving moderate to high yields in the synthesis of 

alkyl levulinates. Moreover in the case of solid acid catalyst, the corrosion and disposal 

issues that appear when liquid mineral acid are used, may be avoided.32 The following 

chapters will give a review of the two types of heterogeneous catalysts. 

 

2.4.1. Polystyrenes 

 

The concept of solid-phase peptide synthesis using heterogenoeus 

chloromethylated polystyrene crosslinked by divynylbenzene (DVB) was reported by 

Merrifield in 1963.33 Since then a very high number of research groups focused the 

attention on development of heterogeneous polystyrene, such as Merrifield resin34, as 

well as of new crosslinkers for polystyrene.35 
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Polymer resin beads based on polystyrene have greatly attracted the interest of 

chemists, becoming one of the most studied and used polymeric materials. They were 

obtained by free-radical crosslinking copolymerization of styrene and crosslinker 

monomers using suspension polymerization.36 Crosslinker constitutes a link between 

the chains, forming a stable network. Besides the monomer and crosslinker, initiator 

and immiscible water phase is included. Water phase indicates an aqueous solution, 

which contains a suspension stabilizer, often a water soluble polymer that helps avoid 

association of the organic-phase droplets. Polymerization and crosslinking reactions 

begin with the decomposition of initiator that produces free radicals. These conditions 

ensure the production of robust and spherical particles of an appropriate size and size 

distribution, that are essential in most of the applications.37 Finally, the product needs 

to be washed in a Soxhlet extractor for 24 h and then vacuum dried in order to remove 

traces of unreacted monomers and initiator. 

 

2.4.2. Gel-type resins 

 

In order to obtain hard glassy transparent beads, in the case of gel-type polymer, 

the comonomer mixture of styrene and chosen crooslinker is required (Figure 9). 

Usually the range of crosslinker is between 0,5 – 20%, but when it is used for 

application as support the range is reduced at 0,5 – 2 %. In the dry state the resin shows 

a very low surface area (less than 10 m2g-1), thus the diffusion of even small molecules 

is very slow. In spite of that if solvent with the solubility parameter similar to that of 

the polymer is used, “solvent porosity” is created, allowing the diffusion of small 

molecules to the polymer network. 

 

Figure 9. Opthical photograph of gel-type bead. 

As it can be seen on the Figure 10.a) when the swelling process begins, it occurs 

from the outside to the interior, forming an expanded exterior pellicular layer and 
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leaving the central unswollen glassy core. With time, the central core shrinks and finally 

disappears. The second part of the Figure 10 (Figure 10.b) ) shows a diverse process of 

swelling. Pressure of the interior swollen core is caused by the lost of solvent in the 

external layer. Hence, the external dry layer can lead to fracture or burst of the resin 

particles. The described phenomenon is known as the phenomenon of the “osmotick 

shock”. The matrix that can undergo many cycles of swelling and deswelling without 

any mechanical damage is considered to be usefull. 

 

  

 

 

 

Figure 10. Solvent response of gel-type resin. 

 

2.4.3. Macroporous resins  

 

 The term macroporous resin refers to permanent well-developed porous 

structure that is almost independent from the solvent nature and presists in the dry 

state.28 Unlike gel-type resins, these beads have higher surface areas, typically around 

50 to 1000 m2g-1. Macroporous resin is obtained when in the comonomer mixture an 

appropriate organic solvent (diluent or porogen ) is added. The product consists of hard 

but opaque spherical beads with a rough surface (Figure 11). Such permanent network 

of pores allows access to the interior of the pore structure by essentially all solvents 

whether categorised as “good” or “bad”. 

 

 

 

Figure 11. Opthical photograph of macroporous bead. 
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The key role of the porogen is to create a phase sepration of the polymer matrix 

that is mainly responsible for the formation of porous structures in the dried state 

(Figure 12).36 Mixture of monomer, crosslinker and porogen is an isotropic solution (a). 

Polymer network must occur during the process of polymerization (b) (c). Macroporous 

beads, finally, consist of a crosslinked polymer phase and a discrete porogen phase, that 

latter begins to act as a template (d) (e). The product is washed in a Soxhlet extractor in 

order to remove all the unreacted reagents, including porogen (f). 

Figure 12. Action of porogen in forming porous morphology in a macroporous 

resin. 

Porogen types have significant influence on the pore structure. Various types of 

porogen lead to different pore size, pore volume, surface area and so.38 One of the most 

used porogens are: 2-ethyl-hexanoic acid, 1-chlorodecane, toluene and cyclohexanol. 

For the synthesis of catalysts m-SP-SO3H described in this thesis, 1-chlorodecane has 

been employed as a novel pore-forming agent to produce macroporous beads, bearing 

in mind its effectiveness in generating the required structure.38,39,40 

According to literature, catalytic activity of macroporous resin should give 

better results, due to the nature of the resin. As it is depicted in Figure 13 macroporous 

resin own large surface area and high speed ion exchange ability. Moreover, plenty of 

apertures and large pore diameter of resin allow faster access to molecules of reactants 

to inner of resins. On the other hand, the surface area and the pore diameter of gel resins 

are smaller, allowing interaction of reactants with the active group only on the surface 

of gel resin. Consequently, lower yields are expected.41 
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Figure 13. The schematic diagram of the interaction between the different resins and 

reactant molecules.41 

For further verifying, different type of synthesized and commercially available 

catalyst were compared in the work of this thesis. 
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3. Biomass 

 

3.1. Advantages of renewable resources 

With today’s lifestyle and advanced technology, requirements for energy 

consumption are in perpetual increase. Current industrial economies are still largely 

depend on non-renewable recourses, such as crude oil, coal and natural gas, what can 

lead to early depletion of their reserves.42 Apart from that, the use of petro-based fuels 

and chemicals creates a negative impact on the environment, accounting for more than 

two thirds of the GHG emissions addressed by the Kyoto Protocol.43,44 The 

development countries were responsible for over 50 % of global growth of carbon 

dioxide (CO2).
44 Hence, an urgent need to develop more sustainable energy systems has 

come up as a solution to overcome the aforementioned problems.45 

Another great challenge in the 21st century is to diminish the enlargement of 

waste disposal. Environmental legislation have given stringent requirements not only 

to reduce the waste but also to make use of that waste through reuse and recycling.42 

The deployment of alternative sources of energy considers substitution of 

unsustainable raw materials with the renewable feedstocks.46 Renewable resources, like 

solar radiation, geothermal energy, winds, tides and biomass can be replenished by the 

environment over relatively short periods of time and can be a good replacement for 

fossil fuels.(Figure 14).42 

 

Figure 14. Different types of renewable and non-renewable resources. 
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The applicability of biomass as a renewable resource has been recognised as 

most promising solution to substantially reduce emissions, make contributions in all 

sectors and gain more profit.47,48 Biomass is most copious resource in the world and it 

correspondents to any organic matter that is renewed rapidly as of the carbon cycle.42,48 

It encompasses feed crops, agricultural food, dedicated energy crops and trees, forestry 

and agricultural residues, aquatic plants and animal and municipal waste (Figure 15.).49 

 

Figure 15. Different types of biomass. 

Incorporation of biomass into manufacturing processes and establishing a bio-

based economy affords various economic, environmental and social benefits.49 

Biomass is the only renewable source that can be used to produce not only 

energy but also a whole portfolio of valuable products.5,42  From the economic point of 

view coproduction of platform chemicals and materials can afford an additional benefit 

to industries with integrated biorefineries.50 

The switch to renewable feedstock gives advantageous reduction in the carbon 

footprint of liquid fuels and chemicals. Biomass compounds take up carbon dioxide 

from the air trough photosynthesis, while they are growing. At the end of life cycle, 

when such organic matter decomposes or burns (while clean energy is created - Figure 

3x) carbon dioxide from the matter returns back to atmosphere, thereby creating a 

“closed loop”.42 Studies suggest that bio-fuels reduce greenhouse gases up to 65 %.51 
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And finally social benefit is achieved through more stable and profitable 

agricultural economy.49 

 

Figure 16. Bio-energy production flow. 

Although the accent is still focused on conversion of biomass into bio-energy, 

that may be derived in the form of heat or transformed into electricity for distribution, 

growing emphasis is also on manufacture of commodity chemicals and liquid fuels. 

Figure 16 also explains one role of the biofuels, which is that they can be used as 

feedstock intended for the production of bio-energy, produced directly or indirectly 

from biomass.44 

3.2. Composition of biomass 

Presently, the global production of plant biomass is estimated around 1.0*1011 

tonnes per year.52 First generation biomass feedstock considers food commodities, such 

as edible oil seeds, sucrose, starch and maize. As it competes directly or indirectly with 

food production, it appears as an unsustainable solution.49,50,53  In contrast, the second 

generation of bio-based fuels and platform chemicals refers largely to lignocellulosic 

biomass and inedible oil seed crops as feedstock in integrated biorefineries. It avoids 

competition with food sector, is cheap and abundant and does not require as much land 

and fertilisers to grow, thus is considered as a potential alternative for bioenergy 

resources.42,53 

Moreover, the utilisation of organic waste, which is generated in the processing, 

harvesting and use of agricultural products, contributes not only the minimisation of the 

waste but also maximising the value of biomass, creating the spirit “waste equals 

feedstock”.42,50 
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A major concern for biomass is the variability of biomass; therefore, the 

development of economically viable methods is still in progress. Chemical 

transformations required to establish renewable chemicals industry still remain to be 

discovered. However, the great potential in the use of plant biomass to produce liquid 

biofuels is widely recognised by governments and scientists.53,54 

As noted above, lignocellulose, the fibrous material that constitutes the cell 

walls of plants, is the most important resource of biomass.32,49 It is mainly composed of 

three major polymeric components: lignin (ca. 20%), cellulose (ca. 40 %) and 

hemicellulose (ca. 20%) (Figure 17).32,45,46,50 These polymers create a hetero-matrix, 

which composition depends on the species type and even resource of biomass.  

  

Figure 17. Composition of lignocellulose. 

Lignin is a three-dimensional biopolymer, that is generally accepted as the 

“glue” that binds the different components of lignocellulosic biomass together, thus 

making it insoluble in water. Its non-uniform structure that imparts rigidity and 

resistance to plant cell walls. Lignin is formed of methoxylated phenyl propane 

structures, therefore it is the only one composed entirely of aromatic subunits.32,45,50 It 

can be used to generate electricity.49 

Cellulose and hemicellulose are polymers composed of glucose or different 

carbohydrate units. Cellulose is the main constituent of plant cell wall conferring 

structural support and it refers to unbranched homopolymer. Unlike cellulose, 

hemicelluloses are branched, heterogeneous polymers of pentoses, hexoses and 

acetylated sugars. Depolymerisation of cellulose and hemicellulose can give 

fermentable sugars and derivate, which are of crucial importance due to their potential 

20%

40%

25%

15%

Lignocellulose

lignin

cellulose

hemicellulose

others

 

 



3. Biomass  

 

 

24 

 

for use and transformation to important commodity platform chemicals (Figure 

18).32,45,46 

Figure 18. Different approaches to 2nd generation of biofuels from lignocellulose.49 

 

3.3. Conversion of biomass to commodity chemicals 

Nowadays, the biorefinery products compete with the existing petroleum-derived 

products. The key to success in the bio-based production is to choose the right biomass 

as the raw material and to develop a cost-effective infrastructure for production, storage 

and pre-treatment of biomass.5,42 

Hexoses and pentoses, the building blocks of cellulose and hemicellulose can 

subsequently be used as raw materials for conversion to many different industrial 

products by either fermentation or chemocatalytic processes. One approach is to design 

a process that will give different types of hydrocarbons, meanwhile the other approach 

focuses to obtain oxygenates or amino acids, as biobased platform chemicals. Glycerol, 

as the co-product in the transesterification of triglycerides also represents a significant 

feedstock for various C3 commodity chemicals, that are currently petroleum-based 

chemicals, obtained from propylene.5,49 
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Hydroxymethylfurfural (HMF) and furfural are produced from C5 and C6 sugars 

through acid catalysed dehydration process.55 Due the specific functional groups of 

HMF, a wide range of chemicals, polymers and biofuels can be produced, but its 

production has not yet been reduced to commercial practice.5,55 HMF can be further 

converted to γ-valerolactone (GVL), furan-2,5-dicarboxylic acid (FDCA) or to 

levulinic acid (LA), on which is the main focus of this work.5,49 

Investigation on LA has been decided to run, because LA is considered to be one of 

the most imperative biochemical, originated from cellulose and has been highlighted as 

a promising building block for chemistry.55 LA is classified as green solvent, that can 

be used in number of industrial processes.32,56 Moreover, LA, as an representative 

organic compound from biomass may be acknowledged more favourable industrial 

replacement in comparison to other alternative solvents (e.g. ionic liquids, supercritical 

fluids or fluorous solvents) considering that technologies required for their use are 

similar to the current ones, which means lower economical costs.56,57 LA has been used 

in the synthesis of alkyl levulinates. 

3.4. Synthesis of alkyl levulinates and their application 

Alkyl levulinates, as a potential industrial substitutes can be obtain in high yield 

from simple biomass derived products such as levulinic acid or furfuryl alcohol or 

directly from lignocellulosic resources in lower yields (Figure 19).32 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Routes for production of alkyl levulinates.32 
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In this thesis the route from LA as a starting material for synthesis of alkyl 

levulinates have been chosen (Figure 20). 

 

Figure 20. Production of alkyl-levulinates from levulinic acid.47 

Alkyl levulinates have been prepared by the esterification of levulinic acid in 

the presence of following alcohols: methanol, ethanol, propanol and buthanol. To avoid 

very slow reaction conditions and to achieve equilibrium conversion in a reasonable 

period of time, the reaction has been conducted on elevated temperatures in the presence 

of different types of catalysts.47 

Alkyl levulinates have extensive field of possibility to be used. Due their 

specific physicochemical properties they have been recognised as an alternative green 

solvents. Moreover, they can find applications, as additives to conventional diesel or 

gasoline fuels, (Fisher-Tropsch) gas oil-based fuels, and even biodiesels. Their use 

leads to cleaner combustion processes with lower NOx emissions. Furthermore, it has 

been pointed out that they can be used as building blocks in the area of chemical 

synthesis (Figure 6x).32 Transformation of alkyl levulinates into γ-Valerolactone (GVL) 

is getting the major of attention. GVL has unique physical and chemical properties, 

which represents an ideal chemical for use as a solvent or intermediate in chemical 

industry or energy storage. Beside that it is a colourless liquid, with specific odour, 

which makes it suitable for the production of perfumes and food additives.57,58 

To conclude, the recent researches confirm that application and development of 

alkyl levulinates will contribute to future greener and sustainable processes. 
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4. Aim of the work 

 

In recent years, awareness of the need for greener and more sustainable technologies 

has been recognised. Through the fundamental principles of green chemistry economic, 

environmental and social goals can be accomplished. Therefore, flowing the newest 

trends, this thesis has been focused on the topics such as renewable feedstock and 

catalysis. 

Utilisation of the biomass can assure large numbers of platform chemicals. 

Levulinic acid has been chosen as the starting material because it is one of the most 

imperative biochemical that can be used in esterification reactions to obtain alkyl 

levulinates that can be used in various applications, such as solvents, additives or 

speciality chemicals.32  

 On the other hand, catalysis, or more specifically, development of heterogeneous 

systems has also attracted the interest of the chemists because it simplifies the isolation 

of products and catalyst recycling, leading to economic and environmental 

advantages.28   

The experimental part has been carried out at the Laboratory of Synthetic Green 

Organic Chemistry (Green S.O.C.) on the Department of Chemistry, Biology and 

Biotechnology at the University of Perugia. The aim of this current thesis was the 

preparation of two polystyrene based acid catalyst and test their efficiency in 

esterification reactions with LA.  
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5. Results and Discussion 

 

5.1. Synthesis of 1,4-bis(4-vinylphenoxy)benzene 4 

 

1,4-Bis(4-vinylphenoxy)benzene cross-linker 4 was synthesized as outlined in 

Scheme 1. Two step synthesis begins with the reaction of 4-fluorobenzaldehyde and 

hydroquinone in the presence of K2CO3.
59 Within this conditions ether-linked 

dialdehyde 4,40-[1,4-phenylenebis(oxy)]dibenzaldehyde 7 occurs, which is 

subjected to subsequent reaction with methyltriphenyl phosphonium bromide under 

Wittig conditions to afford the target product in good overall yield (72%). 

Noticeably, a major advantage of the proposed cross-linker is that it can be readily 

synthesized from easily accessible precursors, does not require rare materials, 

reducing risks regarding materials supply or costs; and, finally, the compound can 

easily be isolated by re-crystallization.  

 

Scheme 1. Synthetic route for 1,4-Bis(4-vinylphenoxy)benzene 4 

5.2. Polymerization 

 

New gel-type and macroporous polystyrene-supported heterogeneous acid catalysts 

(namely SP-SO3H and m-SP-SO3H) were developed in order to investigate their 

application in the production of alkyl levulinates from lignocellulosic biomass. General 

approach for the synthesis of polystyrene based catalysts is shown on scheme 2. 
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Scheme 2. Synthetic route for catalysts SP-SO3H and m-SP-SO3H 

In this thesis work will be discussed first the preparation of the two types of 

polymer-supported catalysts synthesized and afterwards will be shown the results of the 

esterification reactions promoted by gel-type SP-SO3H and by macroporous resin m-

SP-SO3H catalysts, where their efficiency was tested. Application of the mentioned 

catalysts in esterification reactions in water solution were also conducted in order to get 

a more extensive picture about their efficiency.  

5.2.1. Synthesis of gel-type polystyrene resins SP 

Novel sulfonic acid functionalized polystyrene-based resin SP-SO3H has been 

prepared by following synthetic strategy depicted in scheme 3. 

 

Scheme 3. Synthesis of SP and SP-SO3H 
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The synthesis of unfunctionalized polystyrene resin SP proceed through 

conventional free radical suspension polymerization method. (Figure 27) A liquid 

mixture of the co-monomers (styrene and 1,4- bis(4-vinylphenoxy)benzene 4 as cross-

linker (2 mol%)) dissolved in chlorobenzene was dispersed in an excess of immiscible 

water phase under stirring. In the optimization process, it was found that the best 

stabilizer is Acacia Gum, hence the aquatic solution consisted of Acacia Gum (4%) and 

NaCl (3%) in distilled water and it stirred for 30 minutes under room temperature. 

Benzoyl peroxide was used as polymerization initiator and after 24 h under stirring at 

85 oC the resulting product have consisted hard transparent resin beads. They were 

washed in a Soxhlet extractor (Figure 21) for 24 hours with water, THF and hexane in 

order to remove residual monomers and then vacuum dried overnight. 

 

Figure 21. Scheme of Soxhlet extractor (on the left) and Soxhlet extractor used 

in laboratory (on the right). 

5.2.2. Synthesis of macroporous polystyrene resins m-SP 

 

Macroporous polystyrene-based resin (m-SP) has been synthesized in a similar 

way as the previous, with suspension polymerization method, conducted in a three-

necked glass reactor (Figure 27). Synthetic strategy of the mentioned polymer is 

depicted on the scheme 4, along with the preparation of m-SP-SO3H catalysts (see 

below). 
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Scheme 4. Synthesis of m-SP and m-SP-SO3H 

The aqueous solution of NaCl and high molecular weight PVA stabilizer 

(MW85,000-124,000) was put under vigorous mechanical stirring, after 24 h to this 

solution was added the organic phase composed by styrene, cross linker (1,4- bis(4-

vinylphenoxy)benzene 4 ) and chlorobenzene as a solvent. The solvent must be soluble 

in the monomer mixture but insoluble in the continuous phase of the polymerization 

suspension. Chlorodecan, as a porogen, was selected bearing in mind its effectiveness 

in generating macroporous structure.38-40,60 The polymerization starts with the addition 

of radical initiator.28 In this case two different initiators were used in order to investigate 

which one of them could give better yields, i.e. benzoyl peroxide  or AIBN. The reaction 

was carried out at 85 oC for 24h. Glassy and opaque beads were extracted in Soxhlet 

with water, THF and hexane in order to remove the unreacted monomers and porogens. 

Finally the product was vacuum dried overnight. All the conditions used in such process 

of optimisation are given in the table 3. 

Table 3. Conditions for polymerization optimization 

Entry Styrene,% Cross Linker,% PVA,mg Initiator,mg Porogen(mL) 

Chlorodecan 

Yield,% 

1 98 2 16 131,12 

(benzoylperoxide) 

0,4  71,47 

2 98 2 24 131,12 

(benzoylperoxide) 

0,4 n.a. 

3 98 2 32 40 (AIBN) 2 n.a. 

4 98 2 64 40 (AIBN) 2 11 

* n.a. → not applicable, the product was obtained but the yield couldn’t be determine 
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In entry 3 and 4, where AIBN was used the gain reaction yields were very small, 

and in the case of entry 3 the yield wasn’t calculated because during the washing of the 

polymer beads, they were dissolved. In the second case (entry 4) amount of AIBN was 

increased in order to increase polymerization rate and, ultimately, obtain mechanically 

more resistant beads. With new created beads, solubility tests were performed, which 

showed, indeed, that the synthesized polymer wasn’t soluble in neither of the solvents 

used in Soxhlet extractor.  

The condition in entry 1 was pointed out as the best one. Spherical beads were 

obtained. Increasing the amount of PVA (entry 2) sticky solution was gained, without 

formation of the required beads.  

The functionalization of the macroporous, described in the subsequent chapter 

was enforced on the polymer synthesized in the conditions reported in entry 1. 

 

5.3. Functionalization of novel synthesized polymers: preparation of catalysts 

SP-SO3H and m-SP-SO3H 

 

The introduction of sulfonic acid group (-SO3H) into above mentioned polymer 

beads, creating acid catalysts SP-SO3H (scheme 3 and 4) featuring three different 

loadings (A,B,C) is realized with the use of concentrated sulphuric acid. Sulphonation 

reactions are carried out in a round–bottomed flask, containing a magnetic stirrer with 

the mixture of polymer and sulphuric acid and used as a standard batch reactor. 

Different conditions are performed, depending on the desired loading.61,62 The loading 

was determined by Elemental microanalysis  and acid-base titration. Table 4. shows the 

conditions and results of the mentioned process for achieving different loadings of gel-

type polymer. To achieve high and medium loading SP-SO3H the reaction was 

conducted at 60 oC for 15 and 6h, while achieving low loading catalyst the reaction was 

carried out at room temperature for 6h. 

 

 

 



5 .Results and Discussion  

 

 

33 

 

Table 4. Reaction conditions used to obtain sulphonated acid gel-type polymers with 

different loadings. 

Sulfonating 

Agent 

Temp.(°C) Time(h) Loading* 

(mmol/g) 

Loading** 

(mmol/g) 

Polymer 

SP-SO3H 

H2SO4 (96%) 60 15 4.10 4.68 A 

H2SO4 (96%) 60 6 3.11 2.92 B 

H2SO4 (96%) r.t. 6 0.46 0.89 C 

* Determined by Elemental microanalyses 

** Determined by acid-base titration 

Table 5. Loadings and percentage of cross-linker in the newly synthesized 

catalysts SP-SO3H and the commercially available ones. 

Catalyst Cross-linker(mol%) Loading (mmol/g) 

SP-SO3H A 4 (2) 4.68 

SP-SO3H B 4 (2) 2.98  

SP-SO3H C 4 (2) 0.89 

m-SP-SO3H A 4 (2) 4.7 

Amberlyst 15 DVB (20) 4.7 

PS-p-TSA DVB (2-5) 2.9 

 

Catalyst were tested in activity and recoverability in the synthesis of alkyl 

levulinates and were compared with the commercially available ones (Amberlyst 15 

and polystyrene (PS) supported p-toluensulphonic acid – p-TSA). Table 5 illustrates 

the loadings (determined with acid-base titration) of all catalyst and the type of 

crosslinker used in crosslinking polymerization reaction carried out for the purpose of 

this thesis. 

Amberlyst 15 (Figure 22) is a macroreticular polystyrene based ion exchange 

resin with strongly acidic sulfonic group, which is used as heterogeneous catalysis.63 
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Figure 22. Structure schematization of commercially available acid catalysts, 

Amberlyst 15 and PS-p-TSA.63 

The other commercially used catalyst is PS-p-Toluenesulfonic acid (PS-p-

TAS). It may be schematically represented similarly to Amberlyst 15 (Figure 22), but 

unlike Amberlyst 15, PS-p-TSA has smaller amount of cross-linker (table 5), which 

result is less degree of crosslinking, and it is PS-p-TSA macroporous. 

Another main difference between the commercially available catalyst and 

catalyst synthetized in laboratory is the kind of cross-linker used. Instead of 

divinylbenzene (DVB), that is used to form polymer network in the commercially 

available catalysts, all the novel ones are made with the cross-linker described in the 

previous chapter (table 5). 

General procedure, mechanism and results of test reactions used are reported in 

the following chapter. 

 

5.4. Catalytic activity tests 

 

The efficiency of the synthetized polymeric supported catalysts have been tested 

in esterification reactions between levulinic acid and different alcohols in order to 

obtain alkyl levulinates, as the new challenge in modern green chemistry. 

5.4.1. Esterification reactions of levulinic acid promoted by gel-type SP-

SO3H catalyst 

 

As mentioned before alkyl levulinates are recognised as bio based chemicals 

with strong potential to substitute chemicals manufactured from non-renewable 

resources. They are considered for attainable green solvents and effective chemicals, 

which can convert renewable biomass into fuel. 
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The esterification reaction of LA with ethanol is showed in scheme 5. 

 

Scheme 5. Esterification reaction of LA with ethanol 

The results of reaction described in scheme 5 are summarized in the table 6. 

Table 6. Synthesis of Ethyl-levulinate in the presence of catalyst SP-SO3H  

Entry LA/EtOH Cat.(mol%)* T (oC) t (h) C (%)** 

1 1:5 / 70 24 1 

2 1:5 A(4.3) 70 24 47 

3 1:5 A (8) 70 5 71 

4 1:5 A(8) 70 24 54 

5 1:10 A(8) 70 24 80 

6 1:5 A(10) 70 24 76 

7 1:10 A(10) 70 24 70 

8 1:10 B(8) 70 24 47 

9 1:5 B (10) 70 24 72 

10 1:10 B (10) 70 24 65 

11 1:10 C (8) 70 24 36 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversion are determined by 1H-NMR Spectroscopy. 

Results obtained with esterification reaction seem to suggest the main factor 

affecting the catalytic efficiency is represented by the loading values. The best result in 

table 6 is highlighted in green (table 6, entry 5) and refers to use of catalyst with high 

loading. This may be (at least partially) attributed to the greater reaction mixing 

efficiency. In Table 6, entry 11 could only achieved 36 % of conversion, indicating that 

catalyst with low loading gives unsatisfactory results. Entry 6 and entry 9 have given 

similar results (entry 6 – 76% of conversion, entry 9 – 72% of conversion) in 

comparison to the best obtained ones (entry 5 – 80 %), they use less amount of alcohol, 

but in both case the amount of catalyst is bigger. As it is easier and more economic to 

put less amount of catalyst, indeed the entry 5 represents the best conditions. 
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Table 7. Synthesis of Ethyl-levulinate in the presence of commercially available 

Amberlyst 15 

Entry LA/EtOH Cat.(mol%)* T (oC) t (h) C (%)** 

1 1:5 Amberlyst 15 (4.3) 70 24 33 

2 1:5 Amberlyst 15 (8) 70 24 47 

3 1:10 Amberlyst 15 (8) 70 24 60 

4 1:5 Amberlyst 15 (10) 70 24 66 

5 1:10 Amberlyst 15 (10) 70 24 65 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

Table 8. Synthesis of Ethyl-levulinate in the presence of commercially available PS-p-

TSA 

Entry LA/EtOH Cat.(mol%)* T (oC) t (h) C (%)** 

1 1:5 PS-p-TSA (4.3) 70 24 16 

2 1:5 PS-p-TSA (8) 70 24 57 

3 1:10 PS-p-TSA (8) 70 24 62 

4 1:5 PS-p-TSA (10) 70 24 66 

 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

In table 7 and table 8 the results of esterification reactions with the commercially 

available catalyst are shown. The best conditions are highlighted in green.  In both cases 

the best outcome use 10% of catalyst, which is more than the best obtained result with 

the synthetized polymer SP-SO3H A that uses 8% of catalyst. The overall reaction 

conversion in both cases is 66%, which is again less than with the newly synthesized 

catalyst (80%) obtained in more favourable condition (condition with less amount of 

catalyst). 

If the same reaction conditions are scrutinized with different catalyst (table 6, 

entry 6 and entry 9, table 7 entry 4 and table 8 entry 4) the conclusion that could be 

drawn is that in all conditions better results are achieved with newly synthesized 

catalysts. 
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Comparison of best achieved results with new synthetized gel-type SP-SO3H 

and commercially available Amberlyst 15 and PS-p-TSA are also demonstrated in a 

graphical form, showed in Figure 23. 

 

Figure 23. Comparison of best achieved results with newly synthesized gel-type 

SP-SO3H and commercially available Amberlyst 15 and PS-p-TSA. 

The esterification reaction of LA with pentanol was investigated to broaden the 

SP-SO3H scope. The esterification reaction with pentanol is showed in scheme 6. The 

most significative results are summarized in table 9 and table 10. 

 

Scheme 6. Esterification reaction of LA with pentanol 

Table 9. Synthesis of Pentyl-levulinate in the presence of catalyst SP-SO3H 

Entry LA/PeOH Cat.(mol%)* T (oC) t (h) C (%)** B/P*** 

1 1:5 A(8) 70 24 52  

2 1:10 A(8) 70 24 72  

3 1:5 A(10) 70 5 70 0:100 

4 1:5 A(10) 50 3 47 0:100 
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5 1:5 A(10) 50 5 55 0.34:99.6 

6 1:5 A(10) 70 24 70  

7 1:10 A(10) 70 5 80  

8 1:10 A(10) 70 24 82  

9 1:10 A(10) 70 48 92  

10 5:1 A(10) 70 24 88  

11 1:10 B(8) 70 24 70  

12 1:5 B(10) 70 24 78  

13 1:10 C(8) 70 24 54  

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

*** B/P refers to ratio of by-product and product. 

Table 10. Synthesis of Pentyl-levulinate in the presence of commercially 

available Amberlyst 15 

Entry LA/PeOH Cat.(mol%)* T (oC) t (h) C (%)** B/P*** 

1  1:10 Amberlyst 15 (8) 70 24 70  

2 1:5 Amberlyst 15 (10) 70 24 62 2:98 

3 1:10 Amberlyst 15 (8) 70 5 60  

4 1:5 Amberlyst 15 (10) 50 3 9 12:88 

5 1:5 Amberlyst 15 (10) 50 5 30 5:95 

6 1:5 Amberlyst 15 (10) 70 24 66  

7 1:10 Amberlyst 15 (10) 70 5 65  

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

*** B/P refers to ratio of by-product and product. 

The best result given in the production of pentyl-levulinates are obtained with 

the novel synthetized gel-type polymer with highest loading. The results with 

Amberlyst 15 are worse (Figure 24) in comparison of reactions preformed in same 

conditions using gel-type SP-SO3H catalyst. For example table 9 entry 6   and 12 and 

table 10 entry 6 have been performed in the same conditions; molar ratio of levulinic 

acid and pentanol was 1:5 and they were conducted at 70 oC for 24 h. The only 

difference is the catalyst. In entry 7 (table 9) SP-SO3H A is used, in entry 12 (table 9) 
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SP-SO3H B, and in entry 6 (table 10) Amberlyst 15. The highest conversion have been 

obtained with the catalyst with medium loading, the lowest with Amberlyst 15. It should 

be noted that in the mentioned conditions better results were obtained with medium 

loading catalyst in comparison with the high loading ones. The alkyl chain of pentanol 

is longer than in ethanol, used in previous reactions, therefore when high loading 

catalyst is used, there may be occurred some sort of steric hindrance, which might 

explain better activity of the SP-SO3H catalyst with medium loading. 

Notably, it was also found that polystyrene based novel polymer reached better 

selectivity (entry 3,4,5 of table 9 in comparison with entry 2,4,5 of table 10). The side 

product, which is formed in the presence of Amberlyst15 may derive from the undesired 

attack of pentanol to carbonyl function of LA, and subsequent cyclization.64  

Some of the reaction conditions were conducted at lower temperatures, at 50 oC 

for 3 and 5h. Reactions with Amberlyst 15 show negligible conversions (Table 10: entry 

4 – 9% and 5 – 30%), but the one performed with SP-SO3H A (entry 4 and 5 of table 9) 

have reached higher conversion yields. Entry 4 reached 47 % , and entry 5 reached 55% 

of yield, which is almost high as the one performed in the conditions of higher 

temperatures. Studies of the reactions conducted at lower temperatures could be further 

investigated. 

Figure 24 shows the best results in graphic display that are highlighted in green 

in the tables above.  
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Figure 24. Comparison of best achieved results with new synthesized gel-type 

SP-SO3H catalysts and commercially available Amberlyst 15. 

Studies on the recoverability and recyclability of the polymer are currently in 

the progress. 

 

5.4.2. Esterification reactions of levulinic acid with the use of macroporous 

m-SP-SO3H catalyst 

 

Macroporous resin have been synthetized to compare its efficiency with other 

above mentioned polymers. The esterification reaction were conducted at 70 oC for 24h. 

Esterification reaction with ethanol and pentanol are showed in scheme 5 and 6. In this 

case, to broaden the scope of catalysts, esterification reaction with butanol and methanol 

were also performed in order to try to synthesize methyl-levulinates and butyl-

levulinates. Remarked reactions are showed in scheme 7 and 8. The collected results 

are summerized in table 11 to 14. 
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Table 11. Synthesis of Ethyl-levulinate in the presence of synthesized 

macroporous m-SP-SO3H 

Entry LA/EtOH Cat(mol%)* T(oC) t(h) C(%)** 

1 1:5 m-SP-SO3H (10) 70 24 75 

2 1:5 m-SP-SO3H (7) 70 24 51 

3 1:10 m-SP-SO3H (5) 70 24 65 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

Table 12. Synthesis of Pentyl-levulinate in the presence of synthesized 

macroporous m-SP-SO3H 

Entry LA/PeOH Cat(mol%)* T(oC) t(h) C(%)** 

1 1:5 m-SP-SO3H (10) 70 24 85 

2 1:5 m-SP-SO3H (7) 70 24 57 

3 1:10 m-SP-SO3H (5) 70 24 45 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

Entry 1 in the table 11 and 12 shows the best result. The conditions that gave 

those results were performed in molar ratio of LA/ alcohol=1:5 with 10 % of catalysts. 

Furthermore, results obtained in synthesis of pentyl-levulinates and ethyl-levulinates, 

in the case where gel-type catalyst with medium loading SP-SO3H B and macroporous 

catalyst m-SP-SO3H were used, in the aforementioned conditions could be compared.   

Table 6 entry 9 – 72% and table 9 entry 12 – 78% give the conversion yields promoted 

by gel-type catalysts, while table 11 entry 1 – 75% and table 12 entry 1 – 85% give the 

results obtained with the use of macroporous resin. In both cases higher yields were 

obtained synthesizing pentyl-levulinates. Additionally, it can be noticed that entry 1 of 

table 12 with the conversion yield of 85 % is considered as the best overall result if we 

compare all the reactions carried out with employment of  new synthetized polymer. 
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Scheme 7.  Esterification reaction of LA with methanol 

Table 13. Synthesis of Methyl-levulinate in the presence of synthesized 

macroporous m-SP-SO3H, commercially available PS-p-TSA and Amberlyst 15. 

Entry LA/MeOH Cat(mol%)* T(oC)     t(h)   C(%)**  

1 1:5 m-SP-SO3H (10) 70 24 40  

2 1:10 m-SP-SO3H (8) 70 24 50  

3 1:5 p-TSA (10) 70 24 45  

4 1:10 p-TSA (8) 70 24 63  

5 1:5 Amberlyst 15 (10) 70 24 74  

6 1:10 Amberlyst 15 (8) 70 24 52  

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

In contrast with the majority of cases in which Amberlyst 15 showed lowest 

conversion yields, in the synthesis of methyl-levulinates gave the best result (entry 5), 

in conditions where molar ration of LA/methanol was 1/5 with the addition of 10% of 

Amberlyst 15. Remarkable results have not been obtain with the use of macroporous 

m-SP-SO3H yet, so further investigations have to be conducted.  

 

Scheme 8. Esterification reaction of LA with butanol 
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Table 14. Synthesis of Butyl-levulinate in the presence of synthesized 

macroporous m-SP-SO3H, commercially available PS-p-TSA  and Amberlyst 15 

Entry LA/BuOH Cat(mol%)* T(oC)     t(h)   C(%**)  

1 1:5 m-SP-SO3H (10) 70 24 49  

2 1:10 m-SP-SO3H (8) 70 24 67  

3 1:5 PS-p-TSA (10) 70 24 87  

4 1:10 PS-p-TSA (8) 70 24 89  

5 1:5 Amberlyst 15 (10) 70 24 44  

6 1:10 Amberlyst 15 (8) 70 24 60  

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

In the synthesis of butyl-levulinates highest efficiency is obtain with PS-p-TSA 

(entry 4), with conversion yields of 89%. Macroporous resin (67 %) gave slightly lower 

conversion (entry 2) and the lowest reaction yields have been obtained with Amberlyst 

15. 

Figure 25 shows graphical display of conversion obtained with m-SP-SO3H in 

various conditions. From that can be noticed that ethyl – and pentyl – levulinates 

provide better results with the conditions of higher amount of catalyst m-SP-SO3H and 

less volume of alcohol. On the other hand, butyl – and methyl – levulinates give better 

results in conditions with lower amount of catalyst m-SP-SO3H and in molar ratio of 

LA/alcohol 1:10. 
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Figure 25. Graphical  display of conversion obtained in  various conditions. 

5.4.3. Activity of SP-SO3H and m-SP-SO3H in esterification reactions of 

levulinic acid in water solution conditions 

 

Generally biomass has approximately between 70-50 % of water content. If the 

solid acid catalyst could carry out the esterification reactions, it would mean saving the 

time and money for unnecessary procedure of concentration processes. Esterification 

reaction with the employment of novel catalyst were examined in order to check is it 

possible to run the reaction in water solution conditions. The given results are collected 

in the following tables (table 15,16,17 and 18). 

Table 15. Esterification reaction of LA (70 % in water) with ethanol 

Entry LA/EtOH Cat (mol%)* T(°C)  t (h) C (%)** 

1 1:10 A(8) 70 24 50 

2 1:5 A(10) 70 24 77 

3 1:10 A(10) 70 24 67 

4 1:5 B(10) 70 24 37 

5 1:5 Amberlyst15(10) 70 24 43 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 
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Table 16. Esterification reaction of LA (50% in water) with ethanol 

Entry LA/EtOH Cat (mol%)* T 

(°C)  

t (h) C (%)** 

1 1:5 A(8) 70 24 25 

2 1:5 A(10) 70 24 31 

4 1:5 B(10) 70 24 30 

5 1:5 Amberlyst15(10) 70 24 16 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

Table 17.  Esterification reaction of LA (50% in water) with ethanol 

Entry LA/EtOH Cat(mol%)* T(oC)     t(h)   C(%)** 

1 1:5 (70%) mSP-SO3H (10) 70 24 24 

2 1:5 (50%) mSP-SO3H (10) 70 24 12 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

Table 18. Esterification reaction of LA (50% in water) with pentanol 

Entry LA/PeOH Cat(mol%)* T(oC)     t(h)   C(%)** 

1 1:5 (70%) mSP-SO3H (10) 70 24 45 

2 1:5 (50%) mSP-SO3H (10) 70 24 22 

* Catalyst mol% refers to the amount of immobilized acid moieties used. 

** Conversions are determined by 1H-NMR Spectroscopy. 

 

Figure 26. Graphical display of reaction conversions obtained in water solution 

conditions, with use of different catalyst. 
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Table 15, 16 and 17 show the results obtained for the synthesis of ethyl-

levulinate. The gel-type polymer with highest loading seems to be the best choice for 

achieving highest conversions. 

As expected, higher conversion yields are obtained in conditions with 70% of 

water solution. Increasing the water content the yield of ethyl-levulinate noticeably 

decreased, and part of ethanol was probably been reacting with the water to form 

levulinic acid. Thus, higher water content in the reaction medium become subjected to 

the competing processes of alcoholysis and hydrolysis. 

Alcohols with longer hydrocarbon chain, like pentanol are less soluble in water, 

so the synthesis of pentyl-levulinate have given higher yields in comparison with the 

synthesis of ethyl-levulinate, where the yields are unsatisfactory.  
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6. Experimental part 

 

6.1. General remarks 

 

All chemicals were purchased and used without any further purification unless 

otherwise noted. Suspension polymerizations were run using a three-neck cylinder-

shaped glass vessel, equipped with a mechanical stirrer, condenser and nitrogen inlet. 

A silicon oil bath was used as heating source.  

Elemental microanalyses were performed using a Fison’s EA1106CHN 

analyzer using atropine, 2,5-bis-2-(5-tert-butylbenzoxazol-yl)-thiophene (BBOT) and 

phenanthrene as reference standard, with an accuracy of ca. 2 lmol/g. 

GLC analyses were performed by using Hewlett–Packard HP 5890A equipped 

with a capillary column DB-35MS (30 m, 0.53 mm), a FID detector and hydrogen as 

gas carrier. GLC-EIMS analyses were carried out by using a Hewlett–Packard HP 6890 

N Network GC system/5975 Mass Selective Detector equipped with an electron impact 

ionizer at 70 eV. 

All 1H NMR and 13C NMR spectra were recorded at 400 MHz and 100.6 MHz, 

respectively, using CDCl3 as deuterated solvent and bromoanisole as internal standard. 

 

6.2. Synthesis of 1,4-bis(4-vinylphenoxy)benzene 4 

 

In a round bottomed flask equipped with a condenser and a magnetic stirrer, 4-

fluorobenzaldehyde 5 (3.18 g, 25.6 mmol), hydroquinone 6 (1.54 g, 14.0 mmol) were 

dissolved in N,N-dimethylformamemide (20.0 mL), and potassium carbonate (4.84 g, 

12.60 mmol) was added. The reaction mixture was left under stirring at 160 oC for 6 h, 

then poured into cold water (20 mL) and filtered to afford 4,4’-[1,4-phenylen-bis-

(oxy)]dibenzaldehyde 7 as brown solid, with a yield of 82% , which was pure according 

to NMR analysis and was used without further purification. 1H NMR (CDCl3) δ 7.04–

7.16 (m, 8H), 7.84–7.93 (m, 4H), 9.99 (s, 2H); 13C NMR (CDCl3) δ 117.9, 118.5, 129.8, 

131.3, 150.1, 162.7, 190.6.  
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In a three-neck round bottom flask, equipped with a magnetic stirrer and a 

nitrogen inlet/outlet, methyltriphenylphosphoniumbromide (5.167 g, 14.49 mmol) was 

dissolved in dry THF (55 mL) at 0 oC. A solution of nBuLi (9.04mL, 1.6 M in n-hexane, 

14.49 mmol) was then added dropwise, and the reaction mixture was left under stirring 

at 0 oC for 3 h, then allowed to warm at room temperature. Next, a solution of 4,4’-[1,4-

phenylenebis(oxy)]dibenzaldehyde 7 (2.0 g, 6.29 mmol) in dry THF (15.0 mL) was 

added, and this mixture was stirred at room temperature for an additional 24 h. After 

this time, THF was removed under vacuum, and the residue was recrystallized from 

methanol, affording 1,4-bis(4-vinylphenoxy) benzene 4 (1.77g, 89.5% yield) as a white 

solid (m.p. 146–146.5 oC). 1H NMR (CDCl3) δ 5.18–5.21 (d, 1H, J = 11.08 Hz), 5.64–

5.68 (d, 1H, J = 17.52 Hz), 6.65–6.72 (dd, 1H, J = 11.08, 6.6 Hz), 6.95–6.97 (d, 2H, J 

= 8.66 Hz), 7.00 (s, 2H), 7.36–7.39 (d, 2H, J = 8.66); 13C NMR (CDCl3) δ 112.79, 

118.25, 120.43, 127.54, 132.65, 135.95, 152.62, 157.40. An. Calcd. For C22H18O2: C, 

84.05; H, 5.77%. Found: C, 84.11; H, 5.76%. 

 

6.3. Polymerization 

 

6.3.1. General procedure for the preparation of gel-type polymer SP 

 

 A three neck round bottom cylinder shaped glass vessel (Figure  27) was filled with 

a solution of acacia gum (4.80 g, 4% w) and NaCl (3.60 g, 3% w) in distilled water (120 

mL) and stirred for 30 minutes under room temperature. A mixture of styrene (6.55 g, 

63.04mmol), cross-linker 4 (0.395 g, 1.26 mmol), chlorobenzene (8 mL) and benzoyl 

proxide ( 131.12 mg, 0.54 mmol) represents the organic phase, which was added to the 

aqueous solution under stirring. Then, the reaction was warmed up to 85 oC under 

mechanical stirring. After 24 h, the reaction was allowed to reach room temperature 

and the polymer beads were filtred. The product was washed in a Soxhlet extractor for 

24 h with water, THF and hexanes and vacuum dried overnight (yield 71 %). 
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Figure 27. Suspension polymerization reactor used in laboratory 

 

6.3.2. General procedure for the preparation of macroporous resin m-SP 

 

 A reaction vessel immersed in an oil bath, equipped with condenser, 

mechanical stirrer and nitrogen inlet/outlet was charged with water (80ml), poly(vinyl 

alcohol) (MW 85.000-124.000, 99% hydrolysed) (2%) and NaCl (g) and stirred for 24 

h at room temperature. A mixture of styrene (6.55g, 63.04 mmol), croos-linker (0.395 

g, 0.54 mmol), chlorobenzene (0,4 ml) and benzoyl proxide ( 131.12 mg,0.54 mmol) 

represents the organic phase, which was added to the aqueous solution under stirring. 

The system was kept under stirring and purged with nitrogen for 30 min. Then, the 

reaction was warmed up to 85 oC under mechanical stirring. After 24 h, the reaction 

was allowed to reach room temperature and the polymer beads (Figure 28 ) were filtred. 

The product was washed in a Soxhlet extractor for 24 h with water, THF and hexanes 

and vacuum dried overnight (yield 71 %).  
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Figure 28. Synthesized polymer beads. 

 

6.4. Synthesis of catalysts SP-SO3H and m-SP-SO3H 

 

A series of partially sulfonated resins were prepared. In order to achieve low-to-

high sulfonation degrees, 300 mg of the selected polymer beads were placed in 2 mL 

of concentrated sulfuric acid and afterwards, the mixture was stirred and heated for 6 h 

at a temperature selected to achieve the desired degree of sulfonation (T = 0–60 oC). 

The sulfonation reaction time and temperature (to control the conversion) were selected 

with the aim of limiting differences in the sulfonation degree at the periphery and center 

of the polymer beads. The product was washed with deionised water until neutral pH 

of the eluent. If gel-type polymer were sulphonated, the polymer was pre-swollen in 2 

mL of dichloromethane. 

Table 19. General elemental analysis date for the two type of catalysts: 

Catalyst N (%) C (%) H (%) S (%) Loading(mmol/g) 

SP-SO3H 0 38.73 4.50 13.70 4.68 

m-SP-SO3H 0 47 5 14.5 4.7 
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6.5. Representative esterification reaction of Levulinic acid with ethanol in 

optimal condition 

 

In a screw capped vial equipped with a magnetic stirrer Levulinic acid (0.174 g, 

1.50 mmol), ethanol (330 μL) and synthesized polymer, as acid catalyst were 

consecutively added and the resulting mixture was left under stirring at 70 oC. After 24 

h, dichloromethane was added, the catalyst recovered by filtration and the organic 

solvent evaporated under vacuum to give ethyil levulinate. Conversion value was 

determined by NMR Spectroscopy. All the other reaction were carried out in the same 

way. 

1H NMR (CDCl3) δ (ppm) 1.23-1.26 (m, 3H, CH3), 2.19 (s, 3H, CH3), 2.55-2.64 

(m, 2H, CH2), 2.74-2.77 (m, 2H,CH2), 4.10-4.16 (m, 2H, CH2). 

 

6.6. Representative esterification reaction of Levulinic acid in water solution 

conditions with pentanol 

 

In a screw capped vial equipped with a magnetic stirrer Levulinic acid (0.174 g, 

1.50 mmol), pentanol (811 μL), distilled water (248 μL) and synthesized polymer, as 

acid catalyst were consecutively added and the resulting mixture was left under stirring 

at 70 oC. After 24 h, dichloromethane was added, the catalyst recovered by filtration 

and the organic solvent evaporated under vacuum to give ethyil levulinate. Conversion 

value was determined by NMR Spectroscopy. All the other reaction were carried out in 

the same way. 

1H NMR (CDCl3) δ (ppm) 0,80-0,83 (m, 3H, CH3), 1,24 (m, 4H, CH2), 1.52-

1.55 (m, 2H, CH2), 2.02 (s, 3H, CH3), 2.46-2.49 (m, 2H,CH2), 2.65-2.68 (m, 2H, CH2), 

3.96-4.03 (m, 2H, CH2). 
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7. Conclusion 

 

During the work of this thesis a series of novel polystyrene based gel-type acid 

catalysts namely SP-SO3H, containing the 1,4-bis(4-vinylphenoxy)benzene cross-

linker, and featuring three different loadings has been prepared. Additionally, a high 

loading macroporous polystyrene-based resin (m- SP-SO3H) has been developed, by 

employing the same cross-linking agent. Full structural/morphological characterization 

is in due course. The activity of this catalytic systems has been preliminary evaluated 

in esterification reaction of levulinic acid with different alcohols to give the 

corresponding alkyl levulinates. The best conversion yield was, indeed, obtain with the 

use of newly synthesized macroporous SP-SO3H, in the esterification reaction of 

levulinic acid with pentanol, but remarkable results were obtained with the both of the 

synthesized catalysts. Conversion yields obtained with the use of synthesized ones were 

generally higher than the ones with the use of commercially available catalysts hence, 

good efficiency of gel-type catalyst and macroporous resin was proved. Esterification 

reaction of levulinic acid in water solution conditions were also conducted in order to 

broaden the catalyst scope. As expected, better results were obtained in condition with 

less amount of water content. Futher investigations are due in course. 
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