Analiza rektifikacijskog uređaja za destilaciju etanola

Horvat, Anja

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:882981

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-20

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Anja Horvat

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori:

Doc. dr. sc. Nenad Ferdelji, dipl. ing.

Student:

Anja Horvat

Zagreb, 2020.

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Ovom prilikom željela bih se zahvaliti svima koji su me podržavali u pisanju ovog završnog zadatka, ponajviše doc.dr.sc. Nenadu Ferdeljiju na mentorstvu, susretljivosti, strpljenju i pomoći oko svih problema koji su se javljali prilikom pisanja.

Također, zahvaljujem roditeljima na potpori i razumijevanju tijekom cijelog školovanja.

Anja Horvat

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč Fakultet stro	ilište u Zagrebu njarstva i brodogradnje
Datum	Prilog
Klasa:	
Ur.broj:	

ZAVRŠNI ZADATAK

Student:

Anja Horvat

Mat. br.: 0035208498

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Analiza rektifikacijskog uređaja za destilaciju etanola

Analysis of rectification plant for ethanol distillation

Potrebno je analizirati potrošnju toplinske energije u postrojenju za rektifikaciju etanola iz smjese etanol-voda sljedećih karakteristika:

- kapacitet uređaja: 2000 kg/h komine
- volumni udio etanola u komini pri 25 °C: 13,5 %
- maseni udio etanola u proizvodu: > 75 %

Na raspolaganju stoji suhozasićena vodena para tlaka 6 bar te dovoljna količina rashladne vode

U okviru rada potrebno je:

- 1) Opisati teorijske osnove toplinskog proračuna rektifikacijske kolone
- 2) Odrediti broj plitica u koloni
- 3) Na temelju analize potrošnje ogrjevnog i rashladnog medija, odabrati pojni stupanj kolone

Za odabrani broj plitica i pojno mjesto u koloni, potrebno je izraditi:

- 4) Izraditi termodinamički proračun kotlića kolone
- 5) Izraditi tehnički crtež kotlića kolone

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

28. studenog 2019.

Zadatak zadao:

doc. dr. sc. Nenad Ferdelji

Datum predaje rada: 1. rok: 21. veljače 2020. 2. rok (izvanredni): 1. srpnja 2020. 3. rok: 17. rujna 2020.

Predviđeni datumi obrane: 1. rok: 24.2. - 28.2.2020. 2. rok (izvanredni): 3.7.2020. 3. rok: 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	III
POPIS TABLICA	IV
POPIS OZNAKA	VI
SAŽETAK	VIII
SUMMARY	IX
1. UVOD	1
2. TEORIJSKE OSNOVE	3
2.1. Sastav dvojne smjese	3
2.2. Rektifikacija	4
2.3. Spojena kolona	5
2.4. Dogrijavanje komine džibrom	9
2.5. Hlađenje deflegmatora kominom	11
2.6. Potrebni broj plitica prema postupku McCabea i Thielea	12
3. ANALIZA POTROŠNJE OGRJEVNOG I RASHLADNOG MEDIJA	18
3.1. Usporedba procesa sa i bez dogrijavanja komine	18
3.1.1. Slučaj bez dogrijavanja komine. Slučaj 1	20
3.1.2. Slučaj dogrijavanja komine u deflegmatoru. Slučaj 2	23
3.1.3. Slučaj dogrijavanja komine u deflegmatoru i vrućom džibrom. Slučaj 3	325
3.2. Utjecaj masenog udjela etanola u džibri na toplinski učin kotlića	29
3.3. Utjecaj refluksa na broj plitica, toplinski učin kotlića i rashladni učin	30
3.3.1. Utjecaj refluksa na toplinski učin kotlića i rashladni učin	30
3.3.2. Utjecaj refluksa na broj plitica	31
4. TERMODINAMIČKI PRORAČUN KOTLIĆA	37
4.1. Svojstva sudionika	39
4.2. Proračun	41
4.2.1. Koeficijent prijelaza topline unutar cijevi (isparivanje)	41
4.2.2. Koeficijent prijelaza topline s vanjske strane cijevi (kondenzacija)	42
5. PRORAČUN ČVRSTOĆE	44
5.1. Odabir vanjskog promjera	44
5.2. Dimenzioniranje priključaka	44
5.2.1. Ulaz džibre	44
Fakultet strojarstva i brodogradnje	Ι

5.2.	2.	Izlaz džibre	45
5.2.	3.	Ulaz ogrjevne pare:	45
5.2.4	4.	Izlaz kondenzata:	45
5.3.	Proi	računska čvrstoća i ispitni tlak	45
5.4.	Proi	račun debljine stijenke	46
5.5.	Proi	račun podnice	48
ZAKLJU	ČAK .		50
LITERA	TURA	Α	51

POPIS SLIKA

Slika 1.	Plitice s čaškama [1]	4
Slika 2.	Shematski prikaz spojene kolone [1]	6
Slika 3.	Glavna presječnica spojene kolone [1]	7
Slika 4.	Promjene stanja na pliticama spojene kolone [9]	8
Slika 5.	Shematski prikaz kolone sa dogrijačem [1]	10
Slika 6.	hξ-dijagram dogrijavanja vrućom džibrom [9]	10
Slika 7.	Dogrijač komine u deflegmatoru i džibrom [1]	11
Slika 8.	Hlađenje deflegmatora kominom [1]	12
Slika 9.	Pravac pojačavanja i pravac iscrpljivanja u $\psi_d\psi_f$ -dijagramu [1]	14
Slika 10.	Pravac napajanja ovisno o vrsti komine [9]	15
Slika 11.	Minimalni refluks [1]	15
Slika 12.	Teorijski broj plitica prema McCabe-Thieleovom postupku [9]	17
Slika 13.	McCabe-Thielov dijagram za slučaj 1	22
Slika 14.	McCabe-Thielov dijagram za slučaj 2	24
Slika 15.	McCabe-Thielov dijagram za slučaj 3	27
Slika 16.	Utjecaj udjela etanola u džibri ξ_s na toplinski učin kotlića Φ_i	29
Slika 17.	Ovisnost toplinskog toka $\Phi_{ m i}$ i $\Phi_{ m r}$ o povećanju refluksa i	31
Slika 18.	Rezultati iz tablice 10	35
Slika 19.	Rezultati iz tablice 11	35
Slika 20.	McCabe-Thielov dijagram za odabrani slučaj	36
Slika 21.	θ,A- dijagram kotlića	40

POPIS TABLICA

Tablica 1.	Početni podaci za slučajeve 1, 2 i 319		
Tablica 2.	Podaci očitani iz McCabe-Thielovog dijagrama za prvi slučaj21		
Tablica 3.	Podaci očitani iz McCabe-Thielovog dijagrama za drugi slučaj	.23	
Tablica 4.	Podaci očitani iz McCabe-Thielovog dijagrama za treći slučaj	.25	
Tablica 5.	Usporedba rezultata	.28	
Tablica 6.	Rezultati za $\xi_d = 0,75 \text{ kg/kg}$.32	
Tablica 7.	Rezultati za ξ _d =0,8 kg/kg	.32	
Tablica 8.	Rezultati za ξ _d =0,85 kg/kg	.32	
Tablica 9.	Slučajevi odabrani za detaljniju analizu	.33	
Tablica 10.	Rezultati nakon smanjenja masenog udjela etanola u džibri, maseni udio		
	etanola u destilatu $\xi_d{=}0{,}75~kg/kg{}$.34	
Tablica 11.	Rezultati nakon smanjenja masenog udjela etanola u džibri, maseni udio		
	etanola u destilatu $\xi_d=0,8~{\rm kg/kg}.$.34	
Tablica 12.	Odabrani podaci	.36	
Tablica 13.	Svojstva džibre	.39	
Tablica 14.	Svojstva vode	.40	
Tablica 15.	Ulazni podaci za proračun koeficijenta prijelaza topline	.41	
Tablica 16.	Koeficijent prijelaza topline α unutar cijevi	.42	
Tablica 17.	Svojstva čelika P265GH	.46	

POPIS TEHNIČKE DOKUMENTACIJE

BROJ CRTEŽA

Naziv iz sastavnice

1-2020

Grijalica

POPIS OZNAKA

Oznaka	Jedinica	Opis
A	m ²	Oplošje
$A_{ m pop}$	m ²	Površina poprečnog presjeka
С	J/kgK	specifični toplinski kapacitet
Ds	m	Vanjski promjer plašta
Du	m	Unutarnji promjer plašta
d_{u}	m	Unutarnji promjer cijevi
$d_{\rm v}$	m	Vanjski promjer cijevi
g	m/s ²	Ubrzanje sile teže
Н	m	Visina
h	J/kg	Entalpija
<i>h</i> d	J/kg	Entalpija destilata
<i>h</i> m	J/kg	Entalpija komine
<i>h</i> s	J/kg	Entalpija džibre
k	W/m ² K	Koeficijent prolaza topline
L	m	duljina
М	kmol/kmol	Molarna masa
n		Broj cijevi
р	bar	Tlak
Pr		Prandtlov broj
q	W/m^2	Gustoća toplinskog toka
$q_{ m m}$	kg/s	Maseni protok
qmd	kg/s	Maseni protok destilata
$q_{ m mm}$	kg/s	Maseni protok komine
$q_{ m mo}$	kg/s	Maseni protok ogrjevne pare
$q_{ m mrv}$	kg/s	Maseni protok rashladne vode
<i>q</i> ms	kg/s	Maseni protok džibre
R	m	Radijus kalote
r	m	Radijus torusnog dijela kalote

Re		Reynoldsov broj
Re	N/mm ²	Granica razvlačenja
R _m	N/mm ²	Vlačna čvrstoća
S	m	Debljina stijenke
W	m/s	Brzina strujanja
α	W/m ² K	Koeficijent prijelaza topline
δ	kg/kg	Udio pare u heterogenoj smjesi
θ	°C	Temperatura
ϑ_{m}	°C	Temperatura komine
λ	W/mK	Toplinska provodnost
μ	Pa∙s	Dinamička viskoznost
ξd	kg _{etanola} /kg _{smjese}	Maseni udio etanola u destilatu
ξm	kg _{etanola} /kg _{smjese}	Maseni udio etanola u komini
ξs	kg _{etanola} /kg _{smjese}	Maseni udio etanola u džibri
ρ	kg/m ³	Gustoća
Φ	W	Toplinski tok
$arphi_{ m m}$	kg/kg	Maseni refluks
$arphi_{ m n}$	kmol/kmol	Molarni refluks

SAŽETAK

U sklopu završnog rada bilo je potrebno analizirati potrošnju toplinske energije za kontinuiranu rektifikaciju etanola iz smjese etanol-voda. Provedena analiza temeljila se na promjeni refluksa, masenog udjela etanola u džibri i masenog udjela etanola u konačnom proizvodu, te je odabran optimalni slučaj. Za taj slučaj proveden je termodinamički proračun i proračun čvrstoće kotlića. Za potrebe grijanja na raspolaganju je suhozasićena para tlaka 6 bara, a za hlađenje na raspolaganju stoji dovoljna količina rashladne vode.

Ključne riječi: destilacija, rektifikacijska kolona, termodinamički proračun, proračun čvrstoće

SUMMARY

Task of this study was to analyse heat consumption of rectification plant for continuous ethanol production from ethanol-water mixture. This analyse was based on variation of the reflux, mass fraction of ethanol in distillate and in bottoms. The optimal case was chosen. Study contains thermodynamic and strength calculation of the boiler for optimal case. Saturated vapour with pressure of 6 bar is available for usage as a heat source. Enough cooling water is accessible for cooling.

Key words: distillation, rectifying column, thermodynamic calculation, strength calculation

1. UVOD

Destilacija je tehnološka operacija kojom se kapljevita smjesa hlapivih komponenata isparivanjem i naknadnim ukapljivanjem para razdvaja na relativno čiste komponente. Razdvajanje smjesa destilacijom poznato je već od davnina, a danas se upotrebljava u industriji u najširem opsegu. Rani dokazi primitivne destilacije pronađeni su na pločama ispisanima akadskim jezikom datiranima otprilike 1200 godina pr. Kr. Na području drevne Mezopotamije. Aristotel (384. do 322. g. pr. Kr.) u svojim spisima spominje isparivanje morske vode kako bi dobio slatku vodu. 1500. g. Njemački alkemičar Hieronymus Braunschweig objavio je knjigu Liber de arte destillandi (Knjiga umjetnosti destilacije)- prva knjiga posvećena samo postupku destilacije čime su postavljeni temelji suvremene destilacije [2]. Oprema korištena za destilaciju naglo je napredovala u Aleksandriji tijekom Rimskog Carstva i nije se puno mijenjala sve do 16. stoljeća pri čemu je bitno spomenuti Jeana Baptiste Cellier-Blumenthala koji je 1813.g. izradio prvu kolonu za kontinuiranu destilaciju [2].

U suvremenom životu destilacija je važan tehnološki postupak procesne industrije. Najmasovnija je frakcijska destilacija sirove nafte. Za prehrambenu industriju bitna je destilacija fermentiranih šećernih otopina kojom se dobiva etilni alkohol, neizostavni sastojak alkoholnih pića kao što su razne rakije, whiskey, votka i slično. Destilacija također ima važnu ulogu u kemijskoj i farmaceutskoj industriji, proizvodnji mirisa te dobivanju kisika i dušika iz ukapljenog zraka.

Razdvajanje se temelji na zagrijavanju smjese različitih vrelišta. Za razliku od otopina koje pri vrenju odaju kao suparu čisto otapalo, smjese će pri vrenju odavati paru koja sadrži sve sastojke smjese, ali različitog sastava kapljevitog ostatka. U pari će biti povećana koncentracija sastojka otopine nižeg vrelišta, dok će u kapljevitom ostatku biti povećana koncentracija sastojka otopine višeg vrelišta. Teorijske osnove destilacije temelje se na Raoultovom i Daltonovom zakonu te drugim termodinamičkim zakonitostima ponašanja dvojnih i višekomponentnih smjesa. Postupak se može provoditi šaržno (diskontinuirano) ili kontinuirano pri kojoj se stanja u uređaju vremenski ne mijenjaju zbog konstantnog napajanja kotlića svježom kominom i otpuštanja ostatka (džibre). Svrha destilacije može biti osiromašenje džibre na zadanu koncentraciju, no obično je to dobivanje traženog proizvoda na strani destilata, tj. pare. Jednostavni postupci mogu poslužiti za dobivanje proizvoda užeg raspona koncentracija, a usavršeni postupci (spojene rektifikacijske kolone) mogu se koristiti kako bi se dobile po želji visoke koncentracije destilata, no ipak smo

ograničeni u slučaju azeotropskih smjesa kod kojih nije moguće prekoračiti azeotropni sastav bez posebnih mjera (promjenom tlaka ili dodatkom trećeg sudionika).

2. TEORIJSKE OSNOVE

2.1. Sastav dvojne smjese

Dvojne smjese sastojat će se od dvije jednostavne tvari, ona tvar s višim vrelištem bit će označena kao tvar 1, a tvar s nižim vrelištem bit će označena kao tvar 2. Stanje neke smjese ne može se jednoznačno opisati samo sa tlakom i temperaturom kao kod jednostavnih tvari, već u tu svrhu mora biti poznat i kvantitativni sastav [1]. Omjer tih dvaju sudionika u smjesi izražavat će se pomoću pojma koncentracije tvari nižeg vrelišta, dakle tvari 2, u smjesi. Koncentracija može biti izražena u masenim udjelima:

$$\xi = \frac{m_2}{m} = \frac{m_2}{m_1 + m_2} \tag{1}$$

Gdje je *m* ukupna masa smjese, a m_1 i m_2 su mase tvari 1 odnosno tvari 2 u smjesi. ξ je ona masa tvari 2 koja se nalazi u ukupnoj masi smjese. Ostatak je tvar 1, pa se njezin maseni udio računa kao

$$1 - \xi = \frac{m_1}{m} = \frac{m_1}{m_1 + m_2} \tag{2}$$

Molni udio tvari 2, ψ , računa se kao omjer molne količine te tvari $n_2 = \frac{m_2}{M_2}$ u ukupnoj molnoj količini smjese.

$$\psi = \frac{n_2}{n_1 + n_2} = \frac{\frac{m_2}{M_2}}{\frac{m_1}{M_1} + \frac{m_2}{M_2}}$$
(3)

Pri čemu je *M* molarna masa.

Izraz za dobivanje molnog udjela preko masenog udjela i molarnih masa tvari u smjesi glasi:

$$\psi = \frac{\xi}{\frac{M_2}{M_1}(1-\xi) + \xi}$$
(4)

U prehrambenoj industriji udio tvari 2 često se izražava pomoću volumnih udjela. Izraz za izračunavanje volumnog udjela glasi:

$$\xi_V = \frac{V_2}{V} \tag{5}$$

Gdje je *V*² volumen lakše hlapive tvari, a *V* volumen smjese

Izraz za maseni udio preko volumnog udjela i gustoće tvari nižeg vrelišta ρ_2 te gustoće tvari 2 ρ_2 , ako se zanemari kontrakcija volumena, glasi:

$$\xi = \frac{\xi_{\rm V}}{\xi_{\rm V} + (1 - \xi_{\rm V})\frac{\rho_1}{\rho_2}}$$
(6)

Etanol (etilni alkohol, kemijske formule C_2H_5OH) primarni je alkohol sa dva ugljikova atoma. On ne postoji u prirodi u čistom obliku. U smjesi etanol-voda, etanol ima niže vrelište od vode, pa će, kao što je na početku odjeljka definirano, etanol biti označen kao tvar 2, a voda kao tvar 1.

2.2. Rektifikacija

tromost uređaja.

Ugradnjom rektifikacijske kolone (uređaj za pročišćavanje), koja je danas sastavni dio svih važnih destilacijskih aparata, postižu se bolji rezultati destilacije. Rektifikacijski aparat može se, prema različitim konstrukcijama kolone, podijeliti u dvije glavne skupine: kolone od rastresitih punila i kolone s pliticama. U praksi su brojnije kolone s pliticama [1]. Cilj im je da ulaznu paru i silaznu kapljevinu dovedu u što prisniji dodir, sa što većom razdvojnom površinom, da kontakt između pare i kapljevine bude što dugotrajniji, a poželjni su i što bolji koeficijenti prijelaza topline i tvari koji se pospješuju povećavanjem turbulencije. Na svakoj plitici para i kapljevina težit će ravnoteži, a posljedica toga je da se para obogaćuje lakše hlapivim sudionikom, tj. tvari 2, a kapljevina se osiromašuje. Tim težnjama prkose praktički razlozi, koji zahtijevaju jeftiniji uređaj s dobrom pristupačnošću za čišćenje, što brži protok, suzbijanje pjenušanja zbog primjesa i malu

Slika 1. Plitice s čaškama [1]

Fakultet strojarstva i brodogradnje

2.3. Spojena kolona

Kolona za jačanje traži sve više topline za pogon kako se smanjuje koncentracija džibre, a koncentracija destilata kolone za iscrpljivanje ograničena je nagibom izotermi zasićenog područja u rasponu ξ_s - ξ_{dm} . Kada se želi dobiti destilat visoke koncentracije i džibra niske koncentracije lakše hlapivog sudionika koristi se spojena kolona. Ona se sastoji od kolone za iscrpljivanje na koju je nadograđena kolona za jačanje bez kotlića. Za pogon kolone dovodi se toplina grijanja kotlića ϕ_i . Vodena para najčešći je ogrjevni medij koja kondenzira u grijalici.

Takva kolona shematski je prikazana na slici 2. Komina F_m dovodi se u rektifikacijski aparat na mjestu gdje prestaje dio za iscrpljivanje, a počinje dio za jačanje. Na slici 2 je to prikazano kao da su kolone razdvojene, no u stvarnom slučaju to nije tako. Na mjestu privoda komine ona se miješa s refluksom kolone za jačanje F_0 te ta mješavina predstavlja početnu oborinu F_{0i} na najgornjoj plitici kolone za iscrpljivanje. Iz donjeg dijela kolone dolazi para D_0 kojom se napaja kolona za jačanje. To znači da kolona za iscrpljivanje zamjenjuje kotlić kolone za jačanje. U deflegmatoru se odvodi toplina obaranja ϕ_R , zbog čega djelomično kondenzira para koja dolazi iz vrha rektifikacijskog aparata. Oborena kapljevina F gravitacijski teče na dolje prema kotliću u protustruji s parom D. Pri tome dolazi do intenzivnog miješanja između kapljevine Fi pare D, zbog čega se para obogaćuje lakše hlapivim sudionikom.

Na vrhu kolone izlazi destilat D_g entalpije h_g i koncentracije ξ_g , a na dnu se odvodi džibra entalpije h_s i koncentracije ξ_s .

Slika 2. Shematski prikaz spojene kolone [1]

Masena bilanca i bilanca energije za spojenu kolonu glase:

$$F_{\rm m} = D_{\rm g} + F_{\rm s} \tag{7}$$

$$F_{\rm m}\xi_{\rm m} = D_{\rm g}\xi_{\rm g} + F_{\rm s}\xi_{\rm s} \tag{8}$$

$$F_{\rm m}h_{\rm m} + \phi_{\rm i} = D_{\rm g}h_{\rm g} + F_{\rm s}h_{\rm s} + \phi_{\rm R} \tag{9}$$

Pri čemu je :

$$\phi_{\rm R} = q_{\rm R} D_{\rm g} \tag{10}$$

$$\phi_{\rm i} = q_{\rm i} F_{\rm s} \tag{11}$$

Izraz (9) sveden na 1 kg proizvoda i preuređen prema [1] glasi:

$$\frac{(h_{\rm g} + q_{\rm R}) - h_{\rm m}}{\xi_{\rm g} - \xi_{\rm m}} = \frac{h_{\rm m} - (h_{\rm s} - q_{\rm i})}{\xi_{\rm m} - \xi_{\rm s}}$$
(12)

 $(h_{\rm g} + q_{\rm R})$ i $\xi_{\rm g}$ koordinate su pola π kolone za jačanje, $(h_{\rm s} - q_{\rm i})$ i $\xi_{\rm s}$ su koordinate pola $\pi_{\rm i}$ kolone za iscrpljivanje, a $h_{\rm m}$ i $\xi_{\rm m}$ koordinate točke $F_{\rm m}$. Zbog linearnosti, točke π , $\pi_{\rm i}$ i $F_{\rm m}$ moraju biti na istom pravcu u $h\xi$ - dijagramu. To je glavni pravac spojene kolone prikazan na slici 3.

Slika 3. Glavna presječnica spojene kolone [1]

Na slici 3 toplinski tok za grijanje kotlića sveden na kilogram džibre q_i prikazan je kao dužina $F_s \pi_i$. Pravilom projiciranja taj isti toplinski tok sveden na kilogram komine prikazan je kao q_{im} . Toplinski tok deflegmatora sveden na kilogram destilata q_r prikazan je kao dužina $D_g \pi$, a sveden na kilogram komine prikazan je kao q_{Rm} . Iz slike 3 također se vidi da mijenjanjem temperature komine na ulazu u kolonu utječemo na potrošnju pogonske topline. Što je temperatura komine na ulazu veća, toplinski tok za grijanje kotlića q_i postaje manji. Džibra se odvodi iz kolone sa stanjem blizu ili na liniji vrenja stoga je učinkovito džibrom predgrijavati kominu. Hlađenje deflegmatora također se može obaviti djelom uz pomoć komine. Oba slučaja bit će detaljnije opisana u sljedećem poglavlju.

Na pojedinoj plitici kolone teorijski se može postići ravnoteža kapljevine i pare, no u stvarnom procesu to nije slučaj. Zbog toga pol razlučivanja π ne može ležati niže od presjecišta s linijom ξ_g koje daje bilo koja izoterma u području rektifikacije omeđenog koncentracijom džibre ξ_s i koncentracijom destilata ξ_g . Stvarni pol razlučivanja π mora se

podići za neku razumnu vrijednost nad π_{min} - određenog najnižim sjecištem produžetka izotermi zasićenog područja između \mathcal{P}_{s} i \mathcal{P}_{g} .

Para koja izlazi iz kolone za iscrpljivanje D_0 je para koja ulazi u kolonu za jačanje. To znači da se zadnja presječnica kolone za iscrpljivanje i prva presječnica kolone za jačanje moraju sječi u točci D_0 . Idealni slučaj bi bio kada bi se potonje presječnice poklopile s glavnom, no to u praksi nije slučaj. Na slici 4 prikazana je situacija kada je stanje D_0 smješteno desno jer je izoterma pretposljednje plitice presjekla glavnu presječnicu. Kolona za iscrpljivanje u tom slučaju daje previsoku koncentraciju, tj. komina se dovodi malo previsoko. Kada bi se komina dovodila pliticu niže, stanje D_0 bilo bi lijevo od glavne presječnice, tj. dovodila bi se prenisko. Realne kolone imaju puno plitica pa su ta odstupanja većinom zanemariva.

Slika 4. Promjene stanja na pliticama spojene kolone [9]

2.4. Dogrijavanje komine džibrom

Otpadna džibra koja se u h,ξ -dijagramu nalazi na liniji vrenja ili u blizini nje može se iskoristiti za grijanje komine. Prema slici 5 džibra u protustrujnom grijaču predaje onoliko topline q_d koliko komina prima. Promjene entalpija u dogrijaču dane su izrazima svedene na kilogram džibre, odnosno komine:

$$\Delta h_{\rm s} = h_{\rm s} - h_{\rm sd} \tag{13}$$

$$\Delta h_{\rm m} = h_{\rm md} - h_{\rm m} \tag{14}$$

Iz čega slijedi:

$$F_{\rm s}\Delta h_{\rm s} = F_{\rm m}\Delta h_{\rm m} \tag{15}$$

$$\frac{\Delta h_{\rm m}}{\Delta h_{\rm s}} = \frac{h_{\rm md} - h_{\rm m}}{h_{\rm s} - h_{\rm sd}} = \frac{F_{\rm s}}{F_{\rm m}} = \frac{\xi_{\rm dmd} - \xi_{\rm m}}{\xi_{\rm dmd} - \xi_{\rm s}}$$
(16)

Gdje je ξ_{dmd} sastav pare na vrhu kolone pri pogonu s dogrijavanjem komine. Količina komine je veća od količine džibre zbog čega će promjena temperature komine biti manja od promjene temperature džibre. Krajnji slučaj izjednačenja temperature komine i džibre, tj. $\vartheta_{sd} \approx \vartheta_m$, prikazan je na slici 6. Posljedica premještanja komine iz točke F_{md} u točku F_{md1} je premještanje točke D_0 u novu točku D_{01} i premještanje pola razlučivanja π i π . Kako se ovim dogrijavanjem komine mijenja koncentracija pare koja odlazi u dio kolone za jačanje potrebno je konstrukciju iterativno ponavljati sve dok točke D_{01} i F_{md1} ne padnu na novu glavnu presječnicu kolone. Potrebna toplina u kotliću se smanjuje, ali se smanjuje postiziva koncentracija destilata.

Shematski prikaz kolone sa dogrijačem [1]

Fakultet strojarstva i brodogradnje

2.5. Hlađenje deflegmatora kominom

Na slici 7 shematski je prikazana spojena kolona u kojoj se hlađenje deflegmatora dijelom obavlja svježom kominom. Komina se vodi kroz deflegmator gdje služi kao rashladna voda i dogrijava se do stanja F_{md} . Temperatura predgrijavanja ne može nadmašiti temperaturu deflegmacije \mathscr{B}_{D} , a najviši postizivi položaj F_{md} komine određen je izotermom deflegmacije. Postupak je prikazan u $h\xi$ -dijagramu na slici 8. Jedan kilogram komine preuzima toplinu dogrijavanja:

$$q_d = h_{md} - h_m \tag{17}$$

Slika 8. Hlađenje deflegmatora kominom [1]

Koristeći pravilo projiciranja možemo prenijeti toplinu q_d svedenu na kilogram komine na koncentraciju ξ_g (toplina predana u deflegmatoru na kominu svedenu na kilogram destilata). Posljedica grijanja komine jest pomicanje pola razlučivanja π prema gore, pa iako se na prvi pogled tako čini, q_{dg} nije stvarna ušteda topline. Stvarna ušteda topline dobiva se uspoređivanjem q_{ig} i (q_{ig})_d.

Zbog veće temperature džibre od temperature deflegmacije nužno je prvo provesti hlađenje deflegmatora kominom, a zatim dogrijavanje komine džibrom.

2.6. Potrebni broj plitica prema postupku McCabea i Thielea

Najbolja točnost prema postupku McCabe - Thielea dobiva se sa smjesama s jednakim toplinama isparivanja komponenti i s usporednim linijama vrenja i rošenja, no može se dovoljnom točnošću primijeniti i na smjese koje od toga odstupaju.

U dijagram sastava za p = konst. nanesen je molni sastav pare ψ_d iznad molnog sastava ψ_{df} . Osnovna pretpostavka McCabe - Thieleove metode je konstantnost tokova oborine i pare na svim pliticama kolone. Prema [1] možemo zapisati:

$$\varphi_{a} = \frac{\psi_{g} - \psi_{d}}{\psi_{d} - \psi_{f}} \tag{18}$$

$$\delta_{\rm a} = \frac{\psi_{\rm g} - \psi_{\rm f}}{\psi_{\rm d} - \psi_{\rm f}} \tag{19}$$

Ako međusobno podijelimo ta dva izraza dobijemo jednadžbu pravca pojačavanja:

$$\frac{\varphi}{1+\varphi} = \frac{\psi_{\rm g} - \psi_{\rm d}}{\psi_{\rm g} - \psi_{\rm f}} \tag{20}$$

Pri čemu je $\varphi = \frac{L}{D}$ refluks, udio kapljevine u heterogenoj smjesi. Ako na dijagram na slici 9 unesemo točke D_{g} na vrijednost molnog sastava kapljevine ψ_{g} i točku A na vrijednost molnog sastava kapljevine ψ_{fa} , vidimo da te dvije točke leže na pravcu kojemu je koeficijent nagiba $\frac{\overline{DDg}}{\overline{AD}} = \frac{\psi_{g} - \psi_{da}}{\psi_{g} - \psi_{fa}} = \frac{\varphi}{1 + \varphi}$. Vidimo da je nagib $\frac{\varphi}{1 + \varphi}$ uvijek manji od 1. Pravilo pravca pojačavanja vezano je na pretpostavku da je refluks konstantan duž kolone, $\varphi = \text{ konst.}$, što vrijedi samo kod smjesa kod kojih linije rošenja i vrenja teku pravocrtno i usporedno, a to vrijedi za zadanu smjesu; etanol-voda. Analogno pravcu pojačavanja, formula za pravac iscrpljivanja glasi:

$$\frac{\delta+1}{\delta} = \frac{\psi_{\rm d} - \psi_{\rm s}}{\psi_{\rm f} - \psi_{\rm s}} \tag{21}$$

Pravac iscrpljivanja $\overline{F_sA}$ također je vezan na pretpostavku $\varphi = konst$. Nagib pravca za iscrpljivanje je $\frac{\delta+1}{\delta}$ što je uvijek veće od 1.

Slika 9. Pravac pojačavanja i pravac iscrpljivanja u $\psi_{d}\psi_{f}$ -dijagramu [1]

Sjecište pravca pojačavanja i pravca iscrpljivanja određeno je dodatnim pravcem koji se naziva pravac napajanja (eng. feed). Jednadžba pravca napajanja glasi:

$$\psi_{\rm d} = \frac{m}{m-1} \psi_{\rm f} - \frac{1}{m-1} \psi_{\rm m} \tag{22}$$

Komina se u kolonu može uvoditi u kapljevitom stanju, pri čemu se može raditi o pothlađenoj ili vreloj kapljevini, u heterogenom stanju (para + kapljevina) ili u parovitom stanju, pri čemu se može raditi o zasićenoj ili čak pregrijanoj pari. Navedene mogućnosti mijenjaju pravac napajanja te su sve prikazane na slici 10.

Slika 10. Pravac napajanja ovisno o vrsti komine [9]

Nagib pravca napajanja m ovisi o ulaznoj entalpiji komine $h_{\rm m}$, a računa se prema:

$$m = \frac{h_{\rm szp} - h_{\rm m}}{h_{\rm szp} - h_{\rm kap}}$$
(23)

Pri čemu je h_{szp} entalpija suhozasićene pare, a h_{kap} entalpija vrele kapljevine.

Kako bi bilo moguće točno odrediti sjecište pravca za jačanje i pravca napajanja, a čime je naposljetku određen i pravac iscrpljivanja, potrebno je poznavati refluks φ . Ako je poznat pravac napajanja, može se kao i na slici 11 nacrtati pravac pojačavanja za minimalni refluks φ_{\min} kao sjecište pravca napajanja i ravnotežne linije ψ_{df} , pri čemu je utrošak topline najmanji, ali je broj potrebnih plitica postao beskonačan.

Slika 11. Minimalni refluks [1]

Stvarna vrijednost refluksa uzima se 30% do 50% veća od minimalnog kako bi se smanjio broj plitica [1].

Određivanje teorijskog broja plitica za spojenu kolonu prikazano je na slici 12. Najprije je potrebno u $\psi_{d}\psi_{f}$ - dijagram ucrtati pravac napajanja. Na slici 12 ucrtan je pravac napajanja nagiba m = 1, što predstavlja napajanje vrelom kominom. Potrebno je povući pravac iz točke D_{g} do sjecišta pravca napajanja i ravnotežne linije ψ_{df} . Time dobivamo pravac pojačavanja za minimalni refluks. Taj nagib potrebno je smanjiti za željeni postotak čime dobivamo stvarni pravac pojačavanja $\overline{D_{g}M}$. Spajajući točke F_{s} i M dobivamo pravac iscrpljivanja $\overline{F_{s}M}$. Najjednostavnije je teorijski broj plitica određivati posebno za donji dio (iscrpljivanje) i gornji dio kolone (jačanje).

Stanje silazne oborine i uzlazne pare ispod prve plitice nalazi se na pravcu iscrpljivanja u točki $F_{\rm s}$. Uzlazna para koju odaje vrela džibra u kotliću tada ima koncentraciju $\psi_{\rm ds}$. Ta će para na prvoj plitici (u idealnom slučaju) doći u ravnotežu s kapljevinom koja silazi s te plitice s koncentracijom $\psi_{\rm fs}$. Pri tome će postići koncentraciju $\psi_{\rm d1i}$ (stanje 1i) te će s njom krenuti prema sljedećoj plitici. U susret će joj s druge plitice dolaziti kapljevina koncentracije $\psi_{\rm f1i}$ zbog čega će para postići stanje 2i koncentracije $\psi_{\rm d2i}$. Jednake promjene će se dešavati i na daljnjim presjecima i pliticama kolone za iscrpljivanje. Svaka stepenica iscrtana na $\psi_{\rm d}\psi_{\rm f}$ -dijagramu između ravnotežne krivulje $\psi_{\rm df}$ i pravca iscrpljivanja predstavlja jednu pliticu idealne kolone za iscrpljivanje. Ucrtavanje plitica započinje s točkom $F_{\rm s}$, a završava kada stepenica premaši ili pogodi točku M. Stvarni broj plitica za kolonu za iscrpljivanje je veći od idealnog broja.

Analogno postupku za kolonu za iscrpljivanje određuje se i teorijski broj plitica dijela kolone za jačanje. Počinje se sa stanjem *M* na pravcu jačanja koji ovdje predstavlja stanje na presjeku spojene kolone između zadnje plitice dijela za iscrpljivanje i prve plitice dijela za jačanje. Uz pretpostavku da oborina s prve plitice dijela za jačanje ima istu koncentraciju ψ_{fm} kao i komina, koncentracija uzlazne pare prema prvoj plitici dijela za jačanje iznosit će ψ_{dm} koja će u idealnom slučaju doći u ravnotežu s oborinom s druge plitice koncentracije ψ_{fm} i pri tome postići koncentraciju ψ_{d1j} . Na jednak način određuju se stanja (s pretpostavkom postizanja potpune ravnoteže) 2j, 3j, itd. pri čemu svaka stepenica na tom dijelu dijagrama na slici 12 predstavlja jedan stupanj. Stepenice se crtaju sve dok koncentracija pare plitice ne dostigne ili premaši traženu vrijednost koncentracije destilata ψ_g . Na slici 12 to se desilo na trećem stupnju, koji predstavlja deflegmator, koja daje koncentraciju $\psi_{d3j} > \psi_g$. Za tu kolonu bit će potrebno pet idealnih plitica. Broj plitica moramo uvećati s obzirom na stupanj djelovanja plitice.

Slika 12. Teorijski broj plitica prema McCabe-Thieleovom postupku [9]

3. ANALIZA POTROŠNJE OGRJEVNOG I RASHLADNOG MEDIJA

U ovom poglavlju će se, na temelju analize potrošnje ogrjevnog i rashladnog medija, odrediti broj plitica i pojno mjesto u koloni.

Zadane vrijednosti:

- Kapacitet uređaja (maseni protok komine): $q_{mm} = 2000 \text{ kg/h}$
- Volumni udio etanola pri 25 °C: $\xi_V = 0,135 \text{ m}^3/\text{m}^3$
- Maseni udio etanola u proizvodu > 75%, ξ_g > 0,75 kg/kg

Na raspolaganju za grijanje stoji suhozasićena para tlaka 6 bara i dovoljna količina rashladne vode temperature 15 °C. Voda se smije zagrijati za 10 °C. Očitane vrijednosti:

- Molarna masa etanola: *M*₂=46,07 kg/kmol [5]
- Molarna masa vode: *M*₁=18,02 kg/kmol [5]
- Gustoća vode pri 25°C, *ρ*₁=997,05 kg/m³ [5]
- Gustoća etanola pri 25°C, *ρ*₂=785,7 kg/m³ [10]

Uz pomoć formule (5) možemo iz volumnog udjela dobiti maseni udio etanola u komini.

$$\xi_{\rm m} = \frac{\xi_{\rm V}}{\xi_{\rm V} + (1 - \xi_{\rm V})\frac{\rho_1}{\rho_2}} = 0,1095 \, {\rm kg/kg}$$

Uz pomoć formule (4) možemo dobiti molni udio etanola u komini:

$$\psi_m = \frac{\xi}{\frac{M_2}{M_1}(1-\xi)+\xi} = 0,0445 \text{ kmol/kmol}$$

3.1. Usporedba procesa sa i bez dogrijavanja komine

U ovom odjeljku izračunat će se potrebna količina rashladne vode i ogrjevnog medija za destilaciju komine $\xi_m = 0,1095 \text{ kg/kg}$, temperature 25°C za tri slučaja vođenja procesa. Uspoređivat će se vrijednost potrebnog ogrjevnog toplinskog toka Φ_i i rashladnog toplinskog toka Φ_r sa i bez dogrijavanja komine u deflagmatoru i s dogrijavanjem džibrom te potrebni broj plitica u takvim kolonama. Pretpostavlja se da nema izmjene topline između kolone i okoliša, tj. kolona je idealno izolirana. U prvom slučaju komina se neće dogrijavati, nego će se dovoditi u postrojenje sobne temperature. U drugom slučaju komina će se prvo dogrijavati u deflegmatoru, te će u njemu služiti kao rashladna voda. U trećem slučaju komina će se prvo dogrijavati u deflegmatoru, a potom će se dogrijavati i vrelom džibrom. Za sva tri slučaja jednaki su podaci zadani u tablici 1. Uvećanje minimalnog refluksa *i* iznosi 30%, jednaki su maseni udjeli etanola u komini, džibri i destilatu, zbog čega su jednaki i maseni protoci kroz postrojenje. Proces se vodi na tlaku od 1 bar. Pretpostavlja se da je džibra vrela kapljevina, te će se njena temperatura dobiti uz pomoć interpolacije podataka za liniju vrenja [11]. Proizvod izlazi iz postrojenja kao suhozasićena para te će se njegova temperatura dobiti interpolacijom podataka za liniju rošenja [11]. Entalpije za kapljevinu računaju se preko interpolacijske formule za smjese:

$$h_{\rm kap} = h_1 \cdot (1 - \xi_{\rm m,2}) + h_2 \xi_{\rm m,2} + q_{\rm T}$$
⁽²⁴⁾

pri čemu je $q_{\rm T}$ izotermna toplina mješanja koja ovisi o sastavu i temperaturi smjese-koja se očitava iz [8]. Entalpija za paru računa pomoću jednadžbe pravca se kao:

$$h_{p} = \left[c_{f2}\vartheta_{s2}' + c_{p2}(\vartheta - \vartheta_{s2}') + r_{2}\right) - c_{f1}\vartheta_{s1}' - c_{p1}(\vartheta - \vartheta_{s1}') - r_{1})\right] \cdot \xi + c_{f1}\vartheta_{s1}'$$
(25)
+ $r_{1} + c_{p1}(\vartheta - \vartheta_{s1}')$

 ϑ je temperatura pare smjese, r je specifična toplina isparivanja, a c_p specifični toplinski kapacitet. ϑ'_{s1} označava temperaturu zasićenja komponente 1, tj. vode, dok ϑ'_{s2} označava temperaturu zasićenja komponente 2,tj. etanola. ξ označava maseni udio etanola u smjesi. Protočne mase $q_{m,s}$ i $q_{m,d}$ računaju se pomoću masene bilance, uz pomoć formula:

$$q_{\rm md} = q_{\rm mm} \cdot \frac{\xi_{\rm m} - \xi_{\rm s}}{\xi_{\rm d} - \xi_{\rm s}} \tag{26}$$

$$q_{\rm ms} = q_{\rm mm} - q_{\rm md} \tag{27}$$

<i>i,</i> %	30
ξm, kg/kg	0,1095
ξs, kg/kg	0,0252
ξd, kg/kg	0,75
$q_{ m ms,} m kg/h$	1767,3
$q_{ m md}$, kg/h	232,7

Tablica 1.Početni podaci za slučajeve 1, 2 i 3

Odabrani maseni udio etanola u džibri ξ_s relativno je visok s obzirom na udio etanola u komini ξ_m . U stvarnim postrojenjima teži se što manjim masenim udjelima etanola u džibri te odabir takvoga ne bi imao smisla jer bi se velika količina etanola bacala zajedno s džibrom. Za potrebe sljedeće analize moguć je odabir takvog masenog udjela etanola u džibri ξ_s jer se provodi samo usporedba između različitih načina vođenja komine u postrojenje. Detaljnija analiza o utjecaju masenog udjela etanola u džibri na potrebni toplinski tok u kotliću i rashladni učin u deflegmatoru bit će provedena u poglavljima 3.2. i 3.3.

3.1.1. Slučaj bez dogrijavanja komine. Slučaj 1.

Pomoću formula iz prethodnog poglavlja, izračunat će se svi parametri za spojenu kolonu s udjelima etanola navedenima u tablici 1. Komina se u ovom slučaju neće dogrijavati. Shema tog procesa prikazana je na slici 2. Prvo se određuju maseni protoci džibre i destilata uz pomoć masenih bilanci. Nakon određivanja svih potrebnih entalpija, unose se točke u McCabe-Thielov dijagram iz kojeg se dobiva refluks φ_n - omjer količine oborine i destilata. Kako bi se odredio minimalni refluks $\varphi_{n,min}$ potrebno je odrediti sjecište pravca napajanja i linije zasićenja u McCabe-Thielovom dijagramu. Nagib pravca pojačavanja koji prolazi kroz tu točku određuje minimalni refluks. φ_n je potrebno pretvoriti u φ_m , tj. omjer masenih protoka oborine i destilata. Pri refluksu $\varphi_{n,min}$ potrebna je minimalna toplina grijanja kotlića $\Phi_{i,min}$ i minimalni rashladni učin, $\Phi_{r,min}$, no beskonačan broj plitica. Pomoću stvarnog refluksa dobiva se potrebni rashladni učin Φ_r i potrebni protok rashladne vode $q_{m,rv}$. Svodeći ga na kilogram destilata, zbrajajući ga s njegovom entalpijom destilata h_{d} dobiva se vrijednost pola razlučivanja π . Znajući da je glavna presječnica destilacijskog postrojenja u h,ξ -dijagramu pravac koji prolazi kroz π , M i π_i , lako se može saznati i vrijednost pola razlučivanja dijela za iscrpljivanje π_i . Pomoću toga se može dobiti potrebni ogrjevni učin, Φ_i , a time i potrebni protok suhozasićene pare namijenjene za grijanje džibre u kotliću $q_{m,o}$. Rezultati su prikazani u proračunu. Na slici 13. prikazan je McCabe-Thielov dijagram za prvi slučaj. U tablici 2 prikazani su očitani podaci iz McCabe-Thielovog dijagrama za prvi slučaj.

$arphi_{ m n,min}$, kmol/kmol	0,372
arphin, kmol/kmol	0,4837
Пì	4
Пj	2
n _{uk}	6

 Tablica 2.
 Podaci očitani iz McCabe-Thielovog dijagrama za prvi slučaj

Proračun 1.

- Entalpija komine, 25 °C, (24): $h_m = 73,42 \text{ kJ/kg}$
- Temperatura destilata: $\vartheta_d = 78,65 \degree C$
- Entalpija destilata, (25): $h_d = 1454.8 \text{ kJ/kg}$
- Entalpija vrele kapljevine destilata, (24): $h_{d,kap} = 254,04 \text{ kJ/kg}$
- Temperatura džibre: $\theta_s = 94,74$ °C
- Entalpija džibre, (24): *h*_s = 394,57 kJ/kg
- Ulazna temperatura rashladne vode: $\vartheta_{rv,ul} = 15$ °C
- Ulazna entalpija rashladne vode [5]: $h_{\rm rv,ul} = 62,84 \text{ kJ/kg}$
- Izlazna temperatura rashladne vode: $\vartheta_{rv,izl} = 25 \text{ °C}$
- Izlazna entalpija rashladne vode [5]: $h_{rv,izl} = 104,55 \text{ kJ/kg}$
- Specifična toplina isparivanja suhozasićene vodene pare [5]:
 r_{szp,6bar} = 2085,64 kJ/kg
- Molarna masa proizvoda: $M_d = \psi_d M_2 + (1 \psi_d) M_1 = 33,12 \text{ kg/kmol}$
- Molarna masa refluksa: $M_{\rm f} = \psi_{\rm f} M_2 + (1 \psi_{\rm f}) M_1 = 24,54 \, {\rm kg/kg}$
- Pretvorba molarnog refluksa u maseni: $\varphi_{\rm m} = \varphi_n \cdot \frac{M_{\rm f}}{M_{\rm d}} = 0.35845 \text{ kg/kg}$
- Rashladni učin deflegmatora sveden na kilogram destilata:

$$q_{\rm r} = \varphi_{\rm m} \cdot (h_{\rm d} - h_{\rm d,kap}) = 0.35845 \cdot (1454.8 - 254.04) = 431.48 \, \text{kJ/kg}$$

- Rashladni učin deflegmatora: $\Phi_r = q_r \cdot q_{md} = 27,89 \text{ kW}$
- Pol razlučivanja dijela kolone za jačanje: $\pi = h_{\rm d} + q_{\rm r} = 1886,3 \text{ kJ/kg}$
- Pol razlučivanja dijela kolone za iscrpljivanje: $\pi_i = -165,285 \text{ kJ/kg}$
- Toplinski učin kotlića svedena na kilogram džibre:

$$q_{\rm i} = (h_{\rm s} - \pi_{\rm i}) = 394,57 - (-165,285) = 559,438 \, \text{kJ/kg}$$

- Toplinski učin: $\Phi_i = q_i \cdot q_{m,s} = 274,64 \text{ kW}$
- Potrebna protočna masa rashladne vode:

$$q_{\rm m,rv} = \frac{\Phi_{\rm r}}{h_{\rm rv,izl} - h_{\rm rv,ul}} = \frac{27,89}{104,55 - 62,84} = 0,669 \text{ kg/s}$$

• Potrebna protočna masa pare za zagrijavanje:

$$q_{m,o} = \frac{\Phi_{\rm i}}{r_{\rm szp,6bar}} = \frac{274,64}{2085,64} = 0,1317 \,\rm kg/s$$

Slika 13. McCabe-Thielov dijagram za slučaj 1

Nagib pravca napajanja *m* koji se dobiva prema formuli (23) iznosi 1,15. Zbog toga je refluks φ_m malen i iznosi 0,35845 kg/kg. On se množi razlikom entalpija destilata i vrele kapljevine destilata, čime se dobiva potrebni rashladni učin u deflegmatoru sveden na 1 kg destilata. Iznos toplinskog toka je 27,89 kW. Taj tok je malen zbog malog refluksa φ_m . Nasuprot tome toplinski tok u kotliću je velik zbog velike razlike pola razlučivanja π_i i entalpije džibre h_s . Iz tog razloga provodi se jedan od načina uštede energije opisanih u poglavljima 3.1.2. i 3.1.3.

3.1.2. Slučaj dogrijavanja komine u deflegmatoru. Slučaj 2.

U drugom slučaju ponovit će se postupak za kolonu s početnim podacima napisanima u tablici 1, no sa štednjom energije na način da se hladna komina vodi kroz deflegmator, gdje služi dijelom umjesto rashladne vode i dogrijava se do temperature

$$\vartheta_{md} = \vartheta_{\text{defleg.}} - 10$$

Shema takvog procesa prikazana je na slici 7 (bez dogrijača džibrom). Očitani podaci iz McCabe-Thielovog dijagrama za slučaj 2, prikazanog na slici 14, napisani su u tablici 3.

Tablica 3. Podaci očitani iz McCabe-Thielovog dijagrama za drugi slučaj

$arphi_{ ext{n,min}}$ kmol/kmol	0,8330
$arphi_{ m n}$, kmol/kmol	1,0829
Пì	3
Пј	2
n _{uk}	5

Proračun 2.

- Entalpija komine, 25 °C, (24): $h_{\rm m} = 73,42 \text{ kJ/kg}$
- Temperatura destilata: $\vartheta_d = \vartheta_{defleg.} = 78,65 \ ^{\circ}C$
- Temperatura komine nakon deflegmatora: $\vartheta_{md} = \vartheta_{defleg} 10 = 68,65 \text{ °C}$
- Entalpija komine nakon deflegmatora (24): $h_{md} = 269,0442 \text{ kJ/kg}$
- Temperatura džibre: $\theta_s = 94,77$ °C
- Entalpija džibre (24): *h*s = 394,28 kJ/kg
- Entalpija destilata (25): $h_{\rm d} = 1454,8 \text{ kJ/kg}$
- Entalpija vrele kapljevine destilata (24): $h_{d,kap} = 254,04 \text{ kJ/kg}$
- Specifična toplina isparivanja suhozasićene vodene pare, 6 bar [5]:
 r_{szp} = 2085,64 kJ/kgK
- Stvarni refluks : $\varphi_{\rm m} = \varphi_n \cdot \frac{M_{\rm f}}{M_{\rm d}} = 0,802 \text{ kg/kg}$
- Rashladni učin deflegmatora sveden na kilogram destilata:

$$q_{\rm r} = \varphi_{\rm stv} \cdot (h_{\rm d} - h_{\rm d,kap}) = 0,802 \cdot (1454,8 - 254,04) = 963 \, \text{kJ/kg}$$

• Rashladni učin deflegmatora: $\Phi_r = q_r \cdot q_{md} = 62,25 \text{ kW}$

• Toplinski tok koji prima komina u deflegmatoru:

$$\Phi_{\rm md} = (h_{\rm md} - h_{\rm m}) \cdot q_{\rm m} = (269,0442 - 73,42) \cdot \frac{2000}{3600} = 108,68 \,\rm kW$$

- Pol razlučivanja dijela kolone za jačanje: $\pi = h_d + q_r = 2417.8 \text{ kJ/kg}$
- Pol razlučivanja dijela kolone za iscrpljivanje: $\pi_i = -22,43 \text{ kJ/kg}$
- Toplinski učin kotlića svedena na kilogram džibre:

$$q_{\rm i} = (h_{\rm s} - \pi_{\rm i}) = 394,57 - (-22,43) = 417 \text{ kJ/kg}$$

- Toplinski učin kotlića: $\Phi_i = q_i \cdot q_{m,s} = 204,71 \text{ kW}$
- Potrebna količina pare za zagrijavanje:

$$q_{\rm m,o} = \frac{\Phi_{\rm i}}{r_{\rm szp}} = \frac{204,71}{2085,64} = 0,09815 \text{ kg/s}$$

Slika 14. McCabe-Thielov dijagram za slučaj 2

Vrijednost nagiba pravca napajanja *m*, dobivenog iz formule (23), je 1,058. Njegova vrijednost je bliža 1 za slučaj 2. nego za slučaj 1. To znači da je pravac napajanja za ovaj slučaj vertikalniji. Time se povećava iznos refluksa φ_m i on iznosi 0,802. Vrijednost potrebnog rashladnog toka se također povećava i iznosi 62,25 kW. Komina na sebe može

primiti 108,68 kW toplinskog toka zbog čega rashladna voda nije potrebna. Položaj pola razlučivanja dijela kolone za iscrpljivanje se, zbog zagrijavanja komine u deflegmatoru, pomiče prema gore što se slaže s literaturom [1] i $h\xi$ dijagramom prikazanim na slici 8. Zbog toga se potrebni toplinski tok u kotliću smanjuje i njegova vrijednost je 204,71 kW. Uspoređivanjem dijagrama sa slika 13. i 14. vidimo da je potreban broj teorijskih plitica manji u slučaju 2, nego u slučaju 1.

3.1.3. Slučaj dogrijavanja komine u deflegmatoru i vrućom džibrom. Slučaj 3.

U trećem slučaju ponovit će se postupak za kolonu s početnim podacima napisanima u tablici 1, no sa štednjom energije na način da se komina sobne temperature prvo vodi kroz deflegmator, gdje služi dijelom umjesto rashladne vode i dogrijava se do temperature

$$\vartheta_{\rm md} = \vartheta_{\rm defleg.} - 10$$

Nakon toga se dogrijava na temperaturu

$$\vartheta_{\rm ms} = \vartheta_{\rm s} - 5$$

Shema takvog procesa prikazana je na slici 7. Očitani podaci iz McCabe-Thielovog dijagrama za slučaj 3, prikazanog na slici 15, napisani su u tablici 4.

Tablica 4.	Podaci očitani iz McCabe-Thielovog dijagrama za tre	ći slučaj
------------	---	-----------

$arphi_{ ext{n,min}}$, kmol/kmol	1,134
$arphi_{ m n}$, kmol/kmol	1,508
Пì	2
Пj	2
<i>n</i> uk	4

Proračun 3.

- Entalpija komine, 25 °C, (24): $h_{\rm m} = 73,42 \text{ kJ/kg}$
- Temperatura destilata: $\vartheta_{d} = \vartheta_{defleg.} = 78,65 \ ^{\circ}C$
- Temperatura komine nakon deflegmatora: $\vartheta_{md} = \vartheta_{defleg} 10 = 68,65 \ ^{\circ}C$
- Entalpija komine nakon deflegmatora (24): $h_{md} = 269,0442 \text{ kJ/kg}$
- Temperatura džibre: $\theta_{s} = 94,74$ °C
- Temperatura komine nakon dogrijavanja džibrom: $\vartheta_{ms} = \vartheta_s 5 = 89,74$ °C

- Entalpija komine nakon dogrijavanja džibrom (24): $h_{\rm ms} = 361,32 \text{ kJ/kg}$
- Entalpija destilata (25): $h_{\rm d} = 1454,8 \text{ kJ/kg}$
- Entalpija vrele kapljevine destilata (24): $h_{d,kap} = 254,04 \text{ kJ/kg}$
- Entalpija džibre (24): *h*_s = 394,57 kJ/kg
- Ulazna temperatura raslahne vode: $\vartheta_{rv,ul} = 15 \degree C$
- Ulazna entalpija rashladne vode [5]: $h_{\rm rv,ul} = 62,84 \text{ kJ/kg}$
- Izlazna temperatura raslahne vode: $\vartheta_{rv,izl} = 25 \degree C$
- Izlazna entalpija rashladne vode [5]: $h_{rv,izl} = 104,55 \text{ kJ/kg}$
- Specifična toplina isparivanja suhozasićene vodene pare [5] :
 r_{szp,6bar} = 2085,64 kJ/kg
- Stvarni refluks : $\varphi_{\rm m} = \varphi_{\rm n} \cdot \frac{M_{\rm f}}{M_{\rm d}} = 1,1173 \text{ kg/kg}$
- Rashladni učin deflegmatora sveden na kilogram destilata:

$$q_{\rm r} = \varphi_{\rm stv} \cdot (h_{\rm d} - h_{\rm d,kap}) = 1,117 \cdot (1454,8 - 254,04) = 1341,25 \, \rm kJ/kg$$

- Rashladni učin deflegmatora: $\Phi_{\rm r} = q_{\rm r} \cdot q_{\rm md} = 86,7 \, {\rm kW}$
- Toplinski tok koji prima komina u deflegmatoru:

$$\Phi_{\rm md} = (h_{\rm md} - h_{\rm m}) \cdot q_{\rm m} = (269,0442 - 73,42) \cdot \frac{2000}{3600} = 108,76 \,\rm kW$$

- Pol razlučivanja dijela kolone za jačanje: $\pi = h_d + q_r = 2796,05 \text{ kJ/kg}$
- Pol razlučivanja dijela kolone za iscrpljivanje: $\pi_i = 40,685 \text{ kJ/kg}$
- Toplinski učin kotlića svedena na kilogram džibre:

$$q_{\rm i} = (h_{\rm s} - \pi_{\rm i}) = 394,57 - (-32,947) = 353,47 \text{ kJ/kg}$$

- Toplinski učin kotlića: $\Phi_i = q_i \cdot q_{m,s} = 173,52 \text{ kW}$
- Potrebna protočna masa pare za zagrijavanje:

$$q_{\rm m,o} = \frac{\Phi_{\rm i}}{r_{\rm szp,6bar}} = \frac{173,52}{2085,64} = 0,0832 \text{ kg/s}$$

Slika 15. McCabe-Thielov dijagram za slučaj 3

U slučaju 3 dogrijavamo kominu i u deflegmatoru i džibrom. Entalpija komine na ulazu u kolonu se zbog toga dodatno povećava, što mijenja vrijednost *m* (23). Nagib pravca napajanja *m* za taj slučaj iznosi 1,01. U tom slučaju pravac napajanja gotovo je vertikalan. Refluks φ_m veći je nego za prethodna dva slučaja i iznosi 1,1173 kg/kg. Povećanje refluksa uzrokuje povećanje potrebnog rashladnog toka u deflegmatoru te on iznosi 86,7 kW što je manje od toplinskog toka koji komina može primiti na sebe sa zadanim početnim uvjetima, pa ni u slučaju 3 rashladna voda nije potrebna. Kao što je prikazano na slici 6, a zaključuje se i iz rezultata proračuna, potrebni toplinski tok se smanjuje zbog pomicanja pola razlučivanja π_i dijela kolone za iscrpljivanje prema gore. Vrijednost potrebnog toplinskog toka u kotliću Φ_i je 173,52 kW.

U tablici 5 prikazana je usporedba rezultata iz prethodnih proračuna za slučaj 1, slučaj 2 i slučaj 3.

	Bez dogrijavanja	Dogrijavanje	Dogrijavanje komine
	komine	komine u	u deflegmatoru i
		deflegmatoru	džibrom
Stvarni refluks,	0,35845	0,802	1,1173
kg/kg			
Toplinski tok u	274,64	204,71	173,52
kotliću, kW			
Toplinski tok u	559,438	417	353,47
kotliću sveden na			
kilogram destilata,			
kJ/kg			
Odveden toplinski	39,04	62,25	86,7
tok u deflegmatoru,			
kW			
Odvedeni toplinski	39,04	0	0
tok u deflegmatoru			
odveden rashladnom			
vodom, kW			
potrebni broj plitica	6	5	4

Tablica 5.Usporedba rezultata

Dogrijavanjem komine povećava se refluks u koloni jer vrijednost nagiba pravca napajanja *m* postaje poprima vrijednost bližu 1, tj. postaje uspravniji. To je uzrok većem nagibu pravca pojačavanja kao što se vidi uspoređivanjem slika 13, 14, i 15. Posljedično povećanju refluksa, povećava se i toplinski tok odveden u deflegmatoru. No ipak, u drugom i trećem slučaju rashladna voda nije potrebna jer komina, za zadane početne uvjete, može primiti na sebe veću količinu topline u deflegmatoru nego što je to potrebno, umjesto rashladne vode. Zbog dogrijavanja komine samo u deflegmatoru potrebni toplinski učin kotlića se smanjio za 25,4%, a dogrijavanjem komine u deflegmatoru i džibrom potrebni toplinski učin kotlića smanjio se za 36,8%. Također je dogrijavanjem komine smanjen teorijski broj plitica, što smanjuje visinu postrojenja, a samim time i potrebne investicijske troškove. Negativna strane dogrijavanja komine džibrom je to što, iako smanjuje potrebni toplinski učin kotlića, povećava potrebnu rashladnu energiju, a i komplicira upravljanje procesom. Zbog toga će se u daljnjem proračunu u obzir uzimati samo grijanje komine u deflegmatoru.

3.2. Utjecaj masenog udjela etanola u džibri na toplinski učin kotlića

Sljedeći proračun proveden je u programu MATLAB. Maseni udio etanola džibri ξ_s variran je od 0,005 do 0,03 kako bi se vidjelo kako njegova promjena utječe na potrebni toplinski učin kotlića i toplinski tok sveden na kilogram destilata. Komina masenog udjela $\xi_m = 0,1095 \text{ kg/kg}$, sobne temperature, provedena je kroz deflegmator radi štednje energije gdje se zagrijava na $\vartheta_m = 68,65^{\circ}$ C. Proračun će se provoditi za masene udjele etanola u džibri $\xi_d = 0,75 \text{ kg/kg}$, $\xi_d = 0,80 \text{ kg/kg}$ i $\xi_d = 0,85 \text{ kg/kg}$. Refluks φ je uvećan za 30%. Pri proračunu pretpostavlja se da je kolona idealno izolirana, tj. da nema izmjene toka između kolone i okoliša.

Slika 16. Utjecaj udjela etanola u džibri ξ_s na toplinski učin kotlića Φ_i

Iz slike 16 vidljivo je povećanje masenog udjela etanola u džibri naglo smanjuje potrebni toplinski učin u kotliću. To je i očekivano jer se položaj pola razlučivanja π_i u h,ξ dijagramu pomiče prema gore povećanjem masenog udjela etanola u džibri što rezultira smanjenjem razlike između entalpije džibre i entalpije pola razlučivanja. Povećanje masenog udjela ξ_s uzrokuje povećanje masenog protoka džibre, što se zaključuje iz masene bilance postrojenja. Povećanje protoka džibre povećava i potrebni toplinski učin kotlića, no utjecaj smanjenja razlike između entalpije džibre i entalpije pola razlučivanja ipak prevladava. Što je maseni udio etanola u džibri veći, na kraju destilacije dobiva se manja protočna masa proizvoda. Iz tih razloga će odabran maseni udio etanola u džibri ξ_s za daljnji proračun biti 2,5%.

3.3. Utjecaj refluksa na broj plitica, toplinski učin kotlića i rashladni učin

3.3.1. Utjecaj refluksa na toplinski učin kotlića i rashladni učin

Variranjem povećanja refluksa *i*, uz iznos stvarnog refluksa:

$$\varphi_n = \varphi_{n,\min} + \varphi_{n,\min} \cdot i \tag{28}$$

dobivaju se različite vrijednosti potrebnih toplinskih tokova u kotliću i u deflegmatoru. Na slici 17 prikazana je ovisnost toplinskog toka u kotliću i rashladnog toka u deflegmatoru u ovisnosti o povećanju refluksa *i* za različite vrijednosti masenog udjela etanola u proizvodu ξ_d . Vidimo da oba toka povećanjem *i* rastu. Možemo primijetiti da su pravci toplinskog toka dovedenog u kotlić i odvedenog iz deflegmatora paralelni za određeni ξ_d , tj. razlika između toplinskog toka kotlića i rashladnog učina deflegmatora konstantna za jednaki ξ_d . Također što je maseni udio etanola u veći, pravci su sve strmiji. Iz tog razloga slučaj u kojem je $\xi_d = 0,9$ kg/kg smatra se neisplativim i u daljnjem proračunu se neće razmatrati.

Slika 17. Ovisnost toplinskog toka Φ_i *i* Φ_r *o povećanju refluksa i*

3.3.2. Utjecaj refluksa na broj plitica

Proračun je proveden u programu MATLAB. Držeći maseni udio etanola u džibri $\xi_s = 0,025 \text{ kg/kg}$ i maseni udio etanola u komini $\xi_m = 0,1095 \text{ kg/kg}$ konstantnim, varirat će se maseni udio etanola u proizvodu ξ_d od 0,75 kg/kg do 0,85 kg/kg s korakom od 0,05. Varirat će se i refluks kako bi se vidio njegov utjecaj na broj plitica, toplinski učin kotlića i na potrebni rashladni učin u koloni. U tablici 6 prikazani su rezultati za slučaj u kojem je maseni udio etanola u proizvodu $\xi_d = 0,75 \text{ kg/kg}$, u tablici 7 su rezultati za $\xi_d = 0,8 \text{ kg/kg}$, a u tablici 8 su rezultati za $\xi_d = 0,85 \text{ kg/kg}$. Rezultati su izračunati kao u proračunu 2.

φ , kg/kg	<i>i</i> , %	ni	Ŋ	<i>I</i> nuk	Ør, kW	arPhi, kW
0,6296	0,02	4	2	6	48,96	187,145
0,7037	0,14	3	3	6	54,725	192,9
0,7284	0,18	3	2	5	56,6457	194,83
0,9321	0,51	2	3	5	72,487	210,67
0,9506	0,54	2	2	4	73,9256	212,11
1,667	1,7	1	2	3	129,6382	267,82

Tablica 6. Rezultati za $\xi_d = 0,75 \text{ kg/kg}$

*Tablica 7. Rezultati za ξ*_d=0,8 kg/kg

φ , kg/kg	<i>i</i> , %	nì	Лj	<i>I</i> nuk	Ør, kW	<i>Ф</i> i, kW
0,93079	0,02	4	3	7	63,45	192,92
1,0312	0,13	3	3	6	70,32	199,78
1,232	0,35	3	2	5	83,75	213,21
1,323	0,45	2	3	5	90,2	219,65
1,606	0,76	2	2	4	109,07	238,54
2,838	2,11	1	2	3	192,92	322,39

Tablica 8.Rezultati za $\xi_d = 0,85 \text{ kg/kg}$

φ , kg/kg	<i>i</i> , %	ni	nj	<i>n</i> uk	₽r, kW	Фi, kW
1,3205	0,02	4	4	8	79,28	200,96
1,437	0,11	3	5	8	86,2747	207,95
1,4887	0,15	3	4	7	89,38	211,058
1,7995	0,39	2	5	7	108,0385	229,72
1,8125	0,4	2	4	6	108,82	230,499
2,317	0,79	2	3	5	139,108	260,79

Povećanjem refluksa smanjuje se potreban ukupni broj plitica, no iz tablica je vidljivo, što je refluks φ veći, to je potrebno dovoditi više topline za zagrijavanje kotlića i odvoditi više topline u deflegmatoru, kao što se pokazalo u poglavlju 3.3.1. Udio etanola u proizvodu

povećava broj plitica u koloni za jačanje. Iz tablica 6, 7, i 8 vidi se da je za jednako povećanje refluksa *i*, u slučaju kada destilat ima najmanji maseni udio etanola, potrebno najmanje teorijskih plitica. Također, iz tablica se očitava da je za jednak broj potrebnih teorijskih plitica kod viših udjela etanola u destilatu potreban veći toplinski tok u koloni. Poželjno je da kolona nema više od 5 teorijskih plitica kako rektifikacijski aparat ne bi bio previsok. Zbog početno odabranog previsokog udjela etanola u džibri za sve slučajeve u prethodnoj analizi s brojem teorijskih plitica manjim od 5 smanjivat će se maseni udio etanola u džibri i provjeravat će se kako on utječe na ukupni broj teorijskih plitica i na potrebne toplinske tokove u koloni. Refluks će biti jednak refluksu dobivenom u prethodnoj analizi za pojedini slučaj. Pri tome će se paziti da broj potrebnih teorijskih plitica ne prelazi 5. U tablici 9 prikazani su svi slučajevi iz prethodne analize u kojima je broj plitica manji od 5.

ξđ	arphi, kg/kg	<i>I</i> uk	₽r, kW	₽i, kW
0,75	0,9506	4	73,9256	212,11
0,75	1,667	3	129,6382	267,82
0,8	1,606	4	109,07	238,54
0,8	2,838	3	192,92	322,39

Tablica 9. Slučajevi odabrani za detaljniju analizu

Maseni udio etanola u džibri će se smanjivati sve dok potrebni broj teorijskih plitica ne bude 5. Proračun će također biti proveden u programu MATLAB. U tablici 10 prikazani su rezultati proračuna za maseni udio etanola u destilatu $\xi_d = 0,75$ kg/kg, a u tablici 11 prikazani su rezultati proračuna za maseni udio etanola u destilatu $\xi_d = 0,8$ kg/kg.

ξs, kg/kg	arphi, kg/kg	Пi	Лj	<i>n</i> uk	₽r, kW	Ø₁, kW
0,025	0,9506	2	2	4	73,9256	212,11
0,0121	0,9506	3	2	5	83,72	236,74
0,025	1,667	1	2	3	129,6382	267,82
0,0071	1,667	2	2	4	153,31	312,47
0,0036	1,667	3	2	5	157,8	321,2

Tablica 10.Rezultati nakon smanjenja masenog udjela etanola u džibri, maseni udio
etanola u destilatu $\xi_d = 0,75 \text{ kg/kg}$

Tablica 11.Rezultati nakon smanjenja masenog udjela etanola u džibri, maseni udio
etanola u destilatu $\xi_d = 0.8 \, \mathrm{kg/kg}$

ξs, kg/kg	φ , kg/kg	ni	Лj	<i>n</i> uk	Ф _r , kW	Ф _i , kW
0,025	1,606	2	2	4	109,07	238,54
0,012	1,606	3	2	5	124,5	267,97
0,025	2,838	1	2	3	192,92	322,39
0,0086	2,838	2	2	4	226,69	374,13
0,0031	2,838	3	2	5	237,4	391,07

Iz slika 18 i 19 vidi se nagli porast potrebnog toplinskog učina Φ_i i potrebnog rashladnog učina u deflegmatoru Φ_r smanjivanjem masenog udjela etanola u džibri. To se slaže s rezultatima dobivenima u poglavlju 3.2.

Slika 18. Rezultati iz tablice 10.

Slika 19. Rezultati iz tablice 11.

Fakultet strojarstva i brodogradnje

Za daljnji proračun odabran je slučaj iz tablice 10. Podaci za odabrani slučaj prikazani su u tablici 12, a McCabe-Thielov dijagram za taj slučaj prikazan je na slici 20.

ξ _d kg/kg	0,75
ξ _s kg/kg	0,0121
$q_{ m md}~ m kg/h$	264,08
$q_{ m ms} m kg/h$	1735,92
$arphi\mathrm{kg}/\mathrm{kg}$	0,9506
$\delta_{ m i}{ m kg/kg}$	0,2138
ni	3
nj	2
$n_{ m uk}$	5
Фi kW	236,74
	83,72

Tablica 12. Odabrani podaci

Fakultet strojarstva i brodogradnje

4. TERMODINAMIČKI PRORAČUN KOTLIĆA

Kotlić je izveden kao vertikalni shell and tube izmjenjivač kod kojeg suhozasićena para kondenzira na vanjskoj površini vertikalnih cijevi pritom odajući toplinu za isparivanje smjese etanol-voda, tj. džibre, na unutarnjoj površini cijevi.

Prijenos topline na vanjskoj strani stijenke modelira se kao filmska kondenzacija. Osnove za taj proračun postavio je Nusselt. Pretpostavlja se da je otjecanje kondenzata niz stijenku laminarno te da para nema primjetnu brzinu u smjeru otjecanja kondenzata, nego se on slijeva zbog vlastite težine. Formula po kojoj se računa po površini srednji koeficijent prijelaza topline dan je izrazom [3]:

$$\alpha_m = \frac{4}{3} \cdot \sqrt[4]{\frac{\rho^2 \lambda^3 g \Delta h}{4\eta (\vartheta' - \vartheta_{\rm s})L}}$$
(29)

 ϑ' označava temperaturu zasićenja pare, a ϑ_{s} temperaturu stijenke. L je oznaka za duljinu cijevi. U formuli (29) ρ označava gustoću nastalog kondenzata, λ koeficijent toplinske vodljivosti kondenzata, a η koeficijent dinamičke žilavosti kondenzata za srednju temperaturu:

$$\vartheta_m = \frac{(\vartheta' - \vartheta_s)}{2} \tag{30}$$

 Δh je specifična toplina koju oslobađa 1 kg pare pri kondenzaciji. Kod suhozasićene pare ona se označava kao r i iznosi:

$$r = h_{\rm szp} - h_{\rm vk} \tag{31}$$

Koeficijent prijelaza topline s unutarnje strane proračunat je Gungur - Wintertonovom modelom. Osnovna forma G - W modela je [4]:

$$\alpha_{\rm gw} = \alpha_{\rm c} + \alpha_{\rm nb} \tag{32}$$

Korelacija uključuje dva mehanizma prijelaza topline - konvektivno isparivanje i mjehurasto isparivanje. Oni imaju najveći utjecaj u određivanju koeficijenta prijelaza topline kod isparivanja u vertikalnoj cijevi. Mjehurasto isparivanje karakterizirano je nastajanjem mjehurića pare na grijanoj stijenki dok konvektivno isparivanje karakterizira kondukcija i konvekcija između grijane stijenke i grijanog filma. Koeficijent prijelaza topline konvektivnim isparivanjem α_c , prema [4], računa se kao: Fakultet strojarstva i brodogradnje

37

$$\alpha_{\rm c} = E\alpha_{\rm l} \tag{33}$$

Pri čemu je α_1 koeficijent prijelaza topline unutar cijevi za tekućinu koji se prema Dittus-Boelterovoj jednadžbi računa kao [4]:

$$\alpha_l = 0.023 \cdot Re_l^{0.8} Pr_l^{0.4} \frac{\lambda_l}{d}$$
(34)

$$Re_{\rm l} = \frac{\dot{G}(1-x)d}{\mu_{\rm l}}$$
(35)

Masena brzina Ġ računa se kao:

$$\dot{G} = \rho \cdot w \tag{36}$$

Kod isparivanja postoji dvofazno strujanje, brzine strujanja su veće i granični sloj je tanak. Zbog toga koeficijent prijelaza α_1 mora biti uvećan za faktor poboljšanja E[4]:

$$E = 1 + 24000Bo^{1,16} + 1,37\frac{1}{X_{\rm tt}}^{0,86}$$
(37)

Faktor poboljšanja ovisi o sadržaju pare xi o omjeru gustoća pare i tekućine. Martinelliev parametar X_{tt} to uzima u obzir [4]:

$$X_{\rm tt} = \frac{1 - x^{0,9}}{x} \frac{\rho_{\rm v}^{0,5}}{\rho_{\rm l}} \frac{\mu_{\rm l}^{0,1}}{\mu_{\rm v}}$$
(38)

Nije samo velika aksijalna brzina bitna za prekidanje graničnog sloja i poboljšavanje prijenosa topline. Sama generacija pare predstavlja značajni poremećaj graničnog sloja. Bezdimenzijska veličina koja mjeri utjecaj tog efekta je boiling number - utjecaj gustoće toplinskog toka na mjehurasto isparivanje i računa se kao [4]:

$$Bo = \frac{q}{r\dot{G}} \tag{39}$$

Gdje je *q* gustoća toplinskog toka, a *r* specifična toplina isparivanja.

Pretpostavljajući da je hrapavost cijevi 1 μ m, koeficijent prijelaza topline mjehurastim isparivanjem α_{nb} računa se kao [4]:

$$\alpha_{\rm nb} = \alpha_{\rm pool} \cdot S \tag{40}$$

$$\alpha_{\text{pool}} = 55P_{\text{r}}^{0,12} (-log_{10}P_{\text{r}})^{-0.55} M^{-0.5} q^{0.67}$$
(41)

*P*_r u formuli označava reducirani tlak, *M* molekularnu masu, a *q* je gustoća toplinskog toka. Koeficijent mjehurastog isparivanja pomnožen je supresijskim faktorom *S*, koji uzima u obzir činjenicu da je granični sloj pregrijane tekućine u kojoj raste mjehurić pare tanji u prisilnoj konvekciji i računa se prema formuli:

$$S = \frac{1}{1 + 1,15 \cdot 10^{-6} E^2 R e_{\rm l}^{1,17}} \tag{42}$$

4.1. Svojstva sudionika

Zbog malog masenog udjela etanola u džibri, njegov utjecaj na svojstva kondenzata i pare će se zanemariti i uzimat će se svojstva vode za temperaturu zasićenja džibre, $\vartheta_s = 97,13$ °C. U tablici 13 prikazana su svojstva džibre. Indeks l označava svojstva kondenzata, a indeks v označava svojstva pare.

$ ho_{\rm l}$ kg/m ³	960,42
$ ho_{ m v}{ m kg}/{ m m}^3$	0,545
μ10 ⁶ , Pa·s	290,66
$\mu_{ m v}\cdot 10^6$, Pa \cdot s	12,17
Pri	1,806
<i>p</i> _r [12]	0,00453227
<i>M,</i> kg/kmol	18
λ_{l} , W/mK	0,678
r, J/kg	2270273,92

Tablica 13.	Svojstva	džibre
10.01100 201	0,0,00,0	

Na raspolaganju za osiguravanje toplinskog učinka stoji suhozasićena para tlaka 6 bara. Kako para ne bi oštetila dijelove izmjenjivača, prvo paru prigušujemo na tlak od 2 bara. Ona potpuno kondenzira, odajući toplinu džibri koja tu toplinu prima. Temperatura zasićenja pare iznosi $\vartheta'_{2bar} = 120,21$ °C. U jednadžbama za određivanje koeficijenta prijelaza topline s vanjske strani cijevi (3.1.2.) pojavljuju se fizikalna svojstva nastalog kondenzata za srednju temperaturu zasićenja i stijenke:

$$\vartheta_m = \frac{\vartheta' + \vartheta_s}{2} = \frac{120,21 + 102,3}{2} = 111,26 \,^{\circ}\text{C}$$

Fakultet strojarstva i brodogradnje

Svojstva su izračunata uz pomoć seta funkcija koristeći industrijski standard IAPWS-IF97 [13]. Funkcije vrijede za temperature između 273,15 K i 1073,15K i tlakove između 0 i 1000 bara. Potrebna svojstva vode prikazana su u tablici 14.

$ ho_{ m l}$ kg/m ³	950,23
<i>μ</i> , Pa·s	0,00024876
λ_{l} , W/mK	0,6824
r, J/kg	2201560

Tablica 14. Svojstva vode

Na slici 21. prikazan je ∂A -dijagram kotlića. S vanjske strane cijevi suhozasićena para kondenzira pri stalnoj temperaturi $\partial_p = 120,21$ °C i tlaku od $p_p = 2$ bara. Unutar cijevi struji džibra i isparuje pri stalnoj temperaturi od $\partial_s = 97,13$ °C i tlaku od $p_s = 1$ bar.

Slika 21. ϑ ,A- dijagram kotlića

Za proračun će još biti potrebna vrijednost toplinske provodnosti bakra λ_{cu} pri 110 °C. Ona iznosi λ_{cu} =378,4 W/mK [5].

4.2. Proračun

4.2.1. Koeficijent prijelaza topline unutar cijevi (isparivanje)

Ulazni podaci zadani za proračun koeficijenta prijelaza topline unutar cijevi zadani su u tablici 15.

$q_{ m ms} m kg/s$	0,4822
δ_{i}	0,2138
<i>Ф</i> i k₩	236,74
n	37
<i>L</i> , m	1,45
<i>d</i> _u , m	0,0173
d _v , m	0,0213

Tablica 15. Ulazni podaci za proračun koeficijenta prijelaza topline

Odabrane su cijevi izmjenjivača DN15 [7]. Duljina L = 1,45 m je pretpostavljena i provjeravat će se u sljedećem odjeljku.

Uparivač je podijeljen na deset dijelova L_i i koeficijenti α_{L_i} izračunati su za prosječne vrijednosti udjela pare x_{sr} unutar dijelova prema navedenom modelu.

- Površina poprečnog presjeka: $A_{\text{pop}} = \frac{d_u^2 \pi \cdot n}{4} = \frac{0.0173^2 \cdot \pi \cdot 37}{4} = 0.0087 \text{ m}^2$
- Unutarnja površina cijevnih stijenki: $A = d_u \cdot \pi \cdot L \cdot n = 0,0173 \cdot \pi \cdot 1,45 \cdot 37 = 2,92 \text{ m}^2$
- Gustoća toplinskog toka: $q = \frac{\phi_i}{A} = \frac{236740}{2,92} = 81190,64 \text{ W/m}^2$
- Masena brzina: $\dot{G} = \frac{q_{\rm ms}}{A_{\rm pop}} = \frac{0.4822}{0.0087} = 55.43 \text{ kg/(m}^2\text{s})$
- Boilling number: $Bo = \frac{81190,64}{55,43\cdot2270273,92} = 0,000645$

Ostale veličine variraju s promjenom srednjeg udjela pare te će njihove vrijednosti biti izračunate prema formulama navedenima u prošlom odjeljku. Rezultati su prikazani u tablici 16.

X _{sr}	Re	αι	X _{tt}	E	α _c	S	$lpha_{\sf nb}$	α
0.05	3134.929896	715.4524776	0.463079295	8.435088	6034.905	0.498006	11487.2526	17522.16
0.15	2804.937276	654.5412904	0.155873405	12.55434	8217.333	0.337787	7791.55003	16008.88
0.25	2474.944655	592.1761587	0.087939958	16.86352	9986.175	0.246586	5687.86578	15674.04
0.35	2144.952034	528.1199738	0.057113385	21.84559	11537.09	0.187373	4322.04058	15859.13
0.45	1814.959414	462.0532819	0.039193341	27.98939	12932.59	0.14587	3364.70082	16297.29
0.55	1484.966793	393.5246296	0.027311274	36.08058	14198.6	0.115022	2653.14384	16851.74
0.65	1154.974172	321.8520971	0.018742018	47.66777	15341.97	0.090841	2095.38665	17437.36
0.75	824.9815517	245.8973875	0.01217217	66.49504	16350.96	0.070733	1631.56985	17982.53
0.85	494.988931	163.4086022	0.00686724	105.1106	17175.98	0.052472	1210.33619	18386.31
0.95	164.9963103	67.85438385	0.002311527	259.1561	17584.88	0.03189	735.597809	18320.48

Tablica 16. Koeficijent prijelaza topline α unutar cijevi

Tako izračunati koeficijenti prijelaza topline osrednjeni su pomoću relacije:

$$\alpha_{u_sr} = \frac{\sum_{i=1}^{10} \alpha_{Li} \cdot L_i}{L}$$

$$\alpha_{u_sr} = 17034 \text{ W/m}^2 \text{K}$$

$$(43)$$

4.2.2. Koeficijent prijelaza topline s vanjske strane cijevi (kondenzacija)

U proračunu je temperatura stijenke ϑ_s nepoznata. Ona se pretpostavlja nakon čega možemo dobiti koeficijent prijelaza topline s vanjske strane cijevi α_v . Temperatura se mora provjeriti na način da se pomoću dobivenog koeficijenta prijelaza topline α_v odredi koeficijent prolaza topline kroz stijenku i granični sloj unutar cijevi. Dijeleći potrebni toplinski tok koeficijentom prolaza topline pomnoženim površinom i dodavajući temperaturu zasićenja unutar cijevi mora se dobiti ista vrijednost temperature ϑ_s koja je u početku bila pretpostavljena. U nastavku će biti prikazan zadnji korak iteracije. Također, uz pomoć koeficijenta prolaza kroz cijevnu stijenku može se provjeriti pretpostavljena duljina izmjenjivača. Dobivena duljina *L* mora biti jednaka pretpostavljenoj duljini iz prošlog odjeljka.

• Pretpostavljena vrijednost temperature stijenke: $\vartheta_s = 102,3^{\circ}C$

- Vanjska površina cijevne stijenke: $A = d_v \cdot \pi \cdot L \cdot n = 0,0213 \cdot \pi \cdot 1,45 \cdot 37 = 3,59 \text{ m}^2$
- Koeficijent prijelaza topline za pretpostavljenu temperaturu:

$$\alpha_{\rm v} = \frac{4}{3} \cdot \sqrt[4]{\frac{\rho^2 \lambda^3 g \Delta h}{4\eta (\vartheta' - \vartheta_{\rm s})L}} = \frac{4}{3} \sqrt[4]{\frac{950,23^2 \cdot 0,68242^3 \cdot 9,80665 \cdot 2201560}{4 \cdot 0,00024876 \cdot (120,21 - 102,3) \cdot 1,45}}$$
$$\alpha_{\rm v} = 5246,6 \frac{W}{m^2 {\rm K}}$$

Koeficijent prijelaza topline umanjuje se za 30% zbog utjecaja nekondenzirajućih plinova

$$\alpha_{\rm v,nkp} = \alpha_{\rm v} \cdot 0.7 = 3672.65 \frac{\rm W}{\rm m^2 \rm K}$$

• Otpor prijelazu topline sveden na vanjsku površinu kroz unutarnji granični sloj i stijenku:

$$k_{s_v} = \frac{1}{\frac{d_v}{d_u \cdot \alpha_{u_sr}} + \frac{d_v}{2\lambda} ln \frac{d_v}{d_u}} = 12721,19 \text{ W/m}^2\text{K}$$

- Provjera temperature: $\vartheta_{s} = \frac{\phi_{i}}{A_{v} \cdot k_{s_{v}}} + \vartheta'_{s} = 102,3 \text{ °C}$
- Keficijent prolaza topline sveden na vanjsku površinu:

$$k_{\rm v} = \frac{1}{\frac{d_{\rm v}}{d_{\rm u} \cdot \alpha_{\rm u_sr}} + \frac{d_{\rm v}}{2\lambda} ln \frac{d_{\rm v}}{d_{\rm u}} + \frac{1}{\alpha_{\rm v}}} = 2849.9 \,\mathrm{W/m^2K}$$

• Potrebna duljina izmjenjivača: $L = \frac{\phi_i}{k \cdot (\vartheta' - \vartheta'_s)} = 1,45 \text{ m}$

5. PRORAČUN ČVRSTOĆE

5.1. Odabir vanjskog promjera

Izmjenjivač mora zadovoljiti uvjet

$$\frac{L}{D_{\rm v}} = 3 - 7$$

Sljedeće formule i faktori uzeti su iz VDI Heat Atlasa [12]:

Vanjski promjer izmjenjivača računa se prema formuli:

$$0TL = \sqrt{f_1 \cdot n \cdot t^2 + f_2 \cdot n^{0.5} \cdot t + d_v}$$

$$\tag{44}$$

- konstanta za trokutasti raspored $f_1 = 1,1$
- faktor za broj prolaza $f_2=0$
- Razmak između cijevi za vanjski promjer $d_v = 21,3$ mm iznosi: t = 37 mm

$$OTL = \sqrt{1,1 \cdot 37 \cdot 37^2 + 0 \cdot 37^{0,5} \cdot 25 + 21,3} = 236,1 \text{mm}$$

Promjer plašta izmjenjivača mora biti veći od izračunatog OTL D_u > OTL Odabran je promjer plašta prema normi DIN 2605-T2/91, čelična bešavna cijev DN250 Ø273 *x* 2,9 mm [7], odabrana duljina cijevi je *L* = 1500 mm.

$$\frac{L}{D_{\rm v}} = \frac{1500}{273} = 5,5$$

Uvjet je zadovoljen.

5.2. Dimenzioniranje priključaka

5.2.1. Ulaz džibre

- Brzina vode: w = 1 m/s
- Promjer priključka

$$d = \sqrt{\frac{4 \cdot q_{\rm ms}}{\rho_1 \cdot w \cdot \pi}}$$

$$= \sqrt{\frac{4 \cdot 0.4822}{960.42 \cdot 1 \cdot \pi}} = 0.0253 \,\mathrm{m}$$
(45)

• Odabran je priključak D32 [7]

d

5.2.2. Izlaz džibre

- Brzina pare: w = 15 m/s
- Protok pare: $q_{mD} = q_{ms} \cdot \delta_i = 0,103 \text{ kg/s}$
- Promjer priključka

$$d = \sqrt{\frac{4 \cdot 0,103}{0,5 \cdot 15 \cdot \pi}} = 0,127 \text{ m}$$

Odabrani priključak DN150 [7].

5.2.3. Ulaz ogrjevne pare:

- Brzina pare: w = 15 m/s
- $\rho_0 = 1,129 \text{ kg/m}^3$
- $q_{\rm mo} = 0,1075 \ \rm kg/s$
- Promjer priključka

$$d = \sqrt{\frac{4 \cdot 0,1075}{1,129 \cdot 15 \cdot \pi}} = 0,0899 \text{ m}$$

Odabrani priključak DN100 [7].

5.2.4. Izlaz kondenzata:

- Brzina kondenzata: w = 1 m/s
- Promjer priključka:

$$d = \sqrt{\frac{4 \cdot 0,1075}{950,21 \cdot 1 \cdot \pi}} = 0,012 \text{ m}$$

• Odabran je priključak DN15 [7].

5.3. Proračunska čvrstoća i ispitni tlak

Najveća temperatura koja se javlja u kotliću je ϑ =120,21 °C. Proračunska temperatura ne smije biti manja, stoga se odabire T_d =125 °C. Proračunski tlak također ne smije biti manji od najvećeg radnog tlaka *PS*. Odabire se proračunski tlak p_d = 2 bar.

Za konstrukciju kotlića odabran je čelik P265GH sljedećih svojstava [15]:

	<i>R</i> p0,2/125, MPa	<i>R</i> _m /20, MPa	<i>R</i> p0,2/20, MPa
P265GH	232	410	265

Tablica 17.Svojstva čelika P265GH

Proračunska čvrstoća za sitnozrnati konstrukcijski čelik računa se prema sljedećem izrazu [6]:

$$f_{\rm d} = \min\left(\frac{R_{\rm p0,2/125}}{1,5}; \frac{R_{\rm m/20}}{2,4}\right)$$

$$f_{\rm d} = \min\left(\frac{R_{\rm p0,2/125}}{1,5}; \frac{R_{\rm m/20}}{2,4}\right)$$
(46)

$$f_{\rm d} = \min(154,67;170,83) = 154,67 \,\text{MPa}$$
 (47)

$$f_a = min\left(\frac{R_{\rm p0,2/20}}{1,5}; \frac{R_{\rm m/20}}{2,4}\right)$$

$$f_{\rm a} = \min(176,67,170,83) = 170,83$$
 MPa

Ispitni tlak *PT* se prema [6] računa kao:

$$PT = \max\left(1,25 \cdot p_{d} \cdot \frac{f_{a}}{f_{d}}; 1,43 \cdot PS\right)$$

$$\tag{48}$$

PT = 2,92 bar

5.4. Proračun debljine stijenke

Norma HRN M.E2.253 koristi se za proračun cilindričnih plašteva izvrgnutih djelovanju unutarnjeg tlaka.

- Vanjski promjer plašta: $D_{\rm s} = 273 \text{ mm}$
- Unutarnji promjer plašta: $D_{\rm u} = 267,2 \text{ mm}$
- Debljina stijenke plašta: $s_e = 2,9 \text{ mm}$
- Dodatak za dopušteno odstupanje materijala za bešavne cijevi: $c_1 = 0,37$ mm
- Dodatak zbog smanjenja lima korozijom i trošenjem za feritni čelik: $c_2 = 1 \text{ mm}$
- Koeficijent oslabljenja za bešavne cijevi: v = 1
- Promjer priključka za dovod pare DN100: $d_u = 114,3 \text{ mm}$

• Debljina stijenke priključka: $s_s = 2,6 \text{ mm}$

Norma vrijedi ako:

$$\frac{D_{\rm s}}{D_{\rm u}} \le 1,2$$

Provjera područja primjene:

$$\frac{273}{267,2} = 1,022 < 1,2$$

Potrebna duljina stijenke cilindričnog plašta računa se kao [6]:

$$s = \frac{D_{\rm V} \cdot p}{20 \cdot f_{\rm d} \cdot \nu + p} + c_1 + c_2$$

$$s = \frac{273 \cdot 2}{20 \cdot 154,67 \cdot 1 + 2} + 0,37 + 1 = 1,55 \text{ mm}$$

$$s_{\rm ispitno} = \frac{273 \cdot 2,92}{20 \cdot 170,83 \cdot 1 + 2,92} + 0,37 + 1 = 1,603 \text{ mm}$$
(49)

Potrebna debljina stijenke manja je od odabrane stoga se usvaja s = 2,9 mm. Odabrana je čelična bešavna cijev Ø273 mm x 2,9. Na plaštu se nalaze dva priključka, za dovod ogrjevne pare i za odvod kondenzata. Potrebno je proračunati izreze. Proračun izreza u cilindrima izvrgnutim djelovanju unutarnjeg tlaka računa se prema normi HRN M.E2.256 [6]. Potrebna debljina provjerava se za veći promjer - izrez za priključak dovoda ogrjevne pare.

$$v_{\rm A} = f(\frac{s_{\rm s} - c_1 - c_2}{s_{\rm e} - c_1 - c_2}, \frac{d_{\rm u}}{\sqrt{(D_{\rm u} + s_{\rm e} - c_1 - c_2) \cdot (s_{\rm A} - c_1 - c_2)}})$$
(50)

$$\nu_{\rm A} = f(\frac{2,6-0,37-1}{2,9-0,37-1}, \frac{114,3}{\sqrt{(273+2,9-0,37-1)\cdot(2,9-0,37-1)}}$$

 $v_{\rm A} = f(0,804,5,577)$

Približnim očitavanjem iz dijagrama [6] koeficijent oslabljenja iznosi:

$$v_{\rm A} = 0,35$$

Potrebna debljina stijenke se računa prema normi HRN M.E2.253 [6].

$$s = \frac{D_{\rm V} \cdot p}{20 \cdot f_{\rm d} \cdot v_{\rm A} + p} + c_1 + c_2 \tag{51}$$

Fakultet strojarstva i brodogradnje

$$s = \frac{273 \cdot 2}{20 \cdot 154,67 \cdot 0,35 + 2} + 0,37 + 1 = 1,87 \text{ mm}$$
$$s_{\text{ispitno}} = \frac{273 \cdot 2,92}{20 \cdot 170,83 \cdot 0,35 + 2,92} + 0,37 + 1 = 2,035 \text{ mm}$$

Usvojena debljina plašta zadovoljava.

Uzajamni utjecaj izreza može se zanemariti ako je udaljenost između izreza *t*[6]:

$$t \ge 2 \cdot \sqrt{(D_{\rm u} - s_{\rm e} - c_1 - c_2) \cdot (s_{\rm e} - c_1 - c_2)}$$
(52)
$$t \ge 2 \cdot \sqrt{(273 - 2,9 - 0,37 - 1) \cdot (2,9 - 0,37 - 1)} = 40,55 \,\rm{mm}$$

Udaljenost između izreza je veća stoga se uzajamni utjecaj može zanemariti.

5.5. Proračun podnice

Proračun podnica izvrgnutih unutarnjem tlaku proveden je prema normi HRM M.E2.252. Područje primjene za plitke i duboke podnice je [6]:

$$0,001 \le \frac{s_{\rm e} - c_1 - c_2}{D_{\rm s}} \le 0,1$$

$$0,001 \le \frac{2,9 - 0,37 - 1}{273} = 0,0056 \le 0,1$$
(53)

Podaci za podnicu

- Unutrašnji radijus: R = 218,4 mm
- Unutrašnji radijus torusnog dijela: r = 42,042 mm

S obzirom da je materijal isti za podnicu kao i za plašt, dozvoljena vrijednost naprezanja jednaka je, kao i dodaci *c*₁ i *c*₂.

Proračunski koeficijent β određuje se iz dijagrama za plitke podnice [6] te je definiran kao sljedeća funkcija [6]:

$$\beta = \beta(\frac{d_{\rm u}}{D_{\rm s}}, \frac{s_{\rm e} - c_1 - c_2}{D_{\rm s}})$$
(54)

Na svakoj podnici postoji jedan izrez, izrez za dovod kapljevite džibre i izrez za odvod pare smjese etanol-voda. Proračun će se provoditi za podnicu s izrezom za odvod pare.

$$\beta = \beta \left(\frac{168,3}{273}, \frac{2,9-0,37-1}{273} \right)$$
$$\beta = \beta(0,6,0,0056)$$

Očitani proračunski koeficijent iznosi $\beta = 8,3$

Fakultet strojarstva i brodogradnje

Potrebna debljina stijenke kalote računa se prema [6] formuli:

$$s = \frac{D_{\text{kalote}} \cdot p}{40 \cdot f_{\text{d}} \cdot \nu + p} + c_1 + c_2$$

$$s = \frac{2 \cdot (218, 4 + 2, 9) \cdot 2}{40 \cdot 154, 67 \cdot 1 + 2} + 0,37 + 1 = 1,513 \text{ mm}$$

$$s_{\text{ispitno}} = \frac{2 \cdot (218, 4 + 2, 9) \cdot 2,92}{40 \cdot 170, 83 \cdot 1 + 2,92} + 0,37 + 1 = 1,56 \text{ mm}$$
(55)

Potrebna debljina stijenke torusnog dijela podnice računa se prema [6]:

$$s = \frac{D_s \cdot p \cdot \beta}{40 \cdot f_d \cdot \nu} + c_1 + c_2$$
(56)

$$s = \frac{273 \cdot 2 \cdot 8.3}{40 \cdot 154.67 \cdot 1} + 0.37 + 1 = 2.1 \text{ mm}$$

$$s_{\text{ispitno}} = \frac{273 \cdot 2.92 \cdot 8.3}{40 \cdot 170.83 \cdot 1} + 0.37 + 1 = 2.34 \text{ mm}$$

Odabrana debljina stijenke zadovoljava.

S

ZAKLJUČAK

Provođenjem energijske analize rektifikacijske kolone može se zaključiti da je destilacija proces za koji je potrebno dovoditi puno topline za grijanje kotlića te odvoditi puno topline iz deflegmatora. Što su zahtijevane više koncentracije gotovog proizvoda, a niže koncentracije džibre, potrebni toplinski tokovi su veći. Više koncentracije destilata i niže koncentracije džibre također zahtijevaju i veći broj plitica, što povećava visinu kolone. Povećanjem refluksa povećavaju se toplinski tokovi u kotliću i u deflegmatoru, no smanjuje se potrebni broj teorijskih plitica. Destilaciju je moguće provoditi sa i bez predgrijavanja komine koje se u radu pokazalo isplativim jer komina na sebe prima toplinu iz deflegmatora, zbog čega je potrebna manja količina rashladne vode, te se smanjuje potrebna količina energije dovedena kotliću. Za svaki postupak potrebno je postići optimum kako bi ukupna potrošnja postrojenja bila minimalna.

Prilikom konstrukcije izmjenjivača bilo je potrebno zadovoljiti određene omjere dimenzija i težilo se korištenju standardnih dijelova kako bi se konstrukcija pojednostavila.

LITERATURA

- [1] Bošnjaković, F.: Nauka o toplini III. dio, Tehnička knjiga, Zagreb, 1986.
- [2] Forbes, R. J.: Distillation: The invention of the Rectifying Column, London, 1948.
- [3] Galović, A.: Termodinamika II, FSB, Zagreb, 2011.
- [4] Gungor, K. E.; Winterton, R.H.S.: A general correlation for flow boiling in tuber and annuli, University of Birmingham, 1986.
- [5] Halasz, B. Galović A.; Boras, I.: Toplinske tablice, Fakultet strojarstva i brodogradnje, Zagreb, 2010
- [6] I.Boras, S. Švaić: Podloge za predavanja iz kolegija Gradnja aparata
- [7] IPIM: Tehnički priručnik za procesnu tehniku, IPIM, Zagreb, 1993.
- [8] Larkin J. A., Thermodynamic properties of aqueous non-electrolyte mixtures,, Journal of Chem. Thermodynamics, 7, 137-148, 1975
- [9] M. Andrassy: Podloge za predavanja iz kolegija toplinske operacije
- [10] Pečar, D., Doleček, V., Volumetric properties of ethanol–water mixtures under high temperatures and pressures, Fluid Phase Equilibria 230, 36-44, 2005.
- [11] Perry, R. H.; Chilton C. H.; Kirkpatrick, S. O.; Chemical Engineering Handbook, 4th ed. New York, 1963.
- [12] VDI Heat Atlas: Sprenger-Verlag, Berlin Heidelberg, 2010.
- [13] <u>www.ddbst.com</u>, (8.2.2020.)
- [14] <u>www.steelnumber.com</u>, (8.2.2020.)
- [15] <u>www.salzgitter-flachstahl.de/</u>, (8.2.2020.)

PRILOZI

- I. CD-R disc
- II. Tehnička dokumentacija

