Tehnologije polaganja podmorskih cjevovoda u priobalnom području

Kablar, Ivan

Master's thesis / Diplomski rad

2007

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:001276

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-25

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Mentor

Prof. dr. sc. Većeslav Čorić

Ivan Kablar

Zagreb, 2007

IZJAVA

Izjavljujem da sam ovaj rad izradio samostalno, primjenom znanja stečenih na Fakultetu strojarstva i brodogradnje, te uz korištenje navedene literature.

Želim zahvaliti mentoru prof. dr. sc. Većeslavu Čoriću na pružanju prilike da učim iz meni dosad nepoznatih područja i širenju svoje perspektive. Posebno se zahvaljujem dipl. ing. Ivi Čatipoviću i dipl. ing. Marinu Reljiću na nesebičnoj i vrlo korisnoj pomoći.

Na kraju, posebna zahvala mojoj obitelji, djevojci i prijateljima bez čije podrške ne bi priveo ovaj studij kraju.

Ivan Kablar

Zagreb, 25. travnja 2007.

Ι

SADRŽAJ

I. POPIS SLIKA	v
II. POPIS TABLICA	VIII
III. POPIS OZNAKA I MJERNIH JEDINICA FIZIKALNIH VELIČINA	IX
1. UVOD	1
1.1. Povijest	1
1.2. Namjena podmorskih cjevovoda	1
1.3. Materijali podmorskih cjevovoda	2
1.3.1. Odabir materijala	2
1.3.2. Cenche cijevi 1.3.3. Polietilenske cijevi	3 4
1.3.4. Stakloplastične cijevi	4
2. NAČINI POLAGANJA CJEVOVODA	5
2.1. Tipovi barži za polaganje	5
2.2. S – tip polaganja cjevovoda	8
2.3. J – tip polaganja cjevovoda	10
2.4. Specifične metode polaganja u domaćim uvjetima	12
2.4.1. Metoda povlačenja po dnu 2.4.2. Metoda kontroliranog povlačenja iznad morskog dna	12
2.4.3. Metoda površinskog tegljenja	13
3. PROBLEMI ČVRSTOĆE VEZANI UZ POLAGANJE CJEVOVODA	17
3.1. Uvod	17
3.2. Normalna radijalna naprezanja	17
3.3. Normalna uzdužna naprezanja	18
3.4. Ekvivalentno naprezanje	19
3.5. Analiza nepoduprtog raspona	19
3.6. Analiza stabilnosti na morskom dnu	21
3.7. Analiza uzdužnog širenja na dnu	22

	3.8. Problem krutosti čeličnog cjevovoda obloženog cementom oblogom	23
	3.9. Zakrivljenost morskog dna	25
4.	MATEMATIČKI MODEL CJEVOVODA I NJEGOVO RJEŠAVANJE	26
	4.1. Metoda uplivnih koeficijenata	26
	4.2. Model za metodu polaganja kontroliranim povlačenjem iznad morskog dna	28
	 4.3. Analitičko rješenje 4.3.1. Nadvodni kontinuirano opterećeni dio 4.3.2. Podvodni dio kontinuirano opterećen uzgonom 4.3.3. Cjevovod pod utjecajem balastnih utega 4.3.4. Cjevovod pod utjecajem težine lanaca 4.3.5. Položaj deformiranog cjevovoda 4.3.6. Proračun naprezanja 	29 29 31 32 32 34 34
	4.4. Metoda konačnih elemenata4.4.1. Model cjevovoda pri proračunu sa MKE	35 36
	4.5. Model za metodu polaganja cjevovoda u segmentima4.5.1. Statika prostorne nerastezljive lančanice4.5.2. Rješenje statički ovješene nerastezljive lančanice	38 39 41
5.	PRIMJERI	43
	 5.1. Polaganje PEHD cjevovoda u segmentima kanalizacijskog sustava Kaštela – Trogir 5.1.1. Uvod 5.1.2. Karakteristike podmorskog ispusta 5.1.3. Krutost cjevovoda na savijanje 5.1.4. Ravnotežni položaj podmorskog cjevovoda tijekom polaganja 5.1.5. Zaključak 	43 43 46 47 49 54
	 5.2. Polaganje cjevovoda na relaciji Vlaška vela – Koromačina metodom kontroliranog povlačenja iznad morskog dna 5.2.1. Uvod 5.2.2. Geometrijske značajke cjevovoda 5.2.3. Krutost cjevovoda na savijanje 5.2.4. Trasa cjevovoda 5.2.5. Zakrivljenost morskog dna 5.2.6. Sastav morskog dna 5.2.7. Rezultati proračuna metodom konačnih elemenata (programski paket SESAM) 	56 56 57 57 60 60 63 63
	 5.3. Usporedba rezultata proračuna pri polaganju cjevovoda na relaciji Punta Oštro (Kraljevica) – Mala Sršica (Urinj) 5.3.1. Rezultati naprezanja i progiba metodom uplivnih koeficijenata 5.3.2. Rezultati naprezanja i progiba metodom konačnih elemenata 	71 71 74
<u>SADRŽAJ</u>		III

	5.3.3. Usporedba naprezanja	77
6.	ZAKLJUČNO RAZMATRANJE	78
7.	LITERATURA	79

I. POPIS SLIKA

Slika 1.1 Detalj spoja dvaju segmenata cijevi	3
Slika 2.1 Pregled opreme na modernoj barži za polaganje cjevovoda	6
Slika 2.2 Položaj konvejera i kolotura u neposrednoj blizini stanice za centraciju	7
Slika 2.3 Shematski prikaz S – tipa polaganja	8
Slika 2.4 Castoro Sei – barža za polaganje cjevovoda S - tipom	8
Slika 2.5 Tenzioner	9
Slika 2.6 Shematski prikaz barže za J – tip polaganje cjevovoda	10
Slika 2.7 Najveća plovna dizalica na svijetu Saipem 7000 kapaciteta dizanja 7000t.	
Na krmi vidimo instaliranu rampu za polaganje cjevovoda J – tipom	11
Slika 2.8 Metoda povlačenja po dnu	12
Slika 2.9 Instalacija na čelu cijevi za povlačenje sa uzgonskim tankom da ne bi	
došlo do zabadanja u dno	13
Slika 2.10 Postolje za ulaz cijevi u more	13
Slika 2.11 Princip metode kontroliranog povlačenja iznad dna	13
Slika 2.12 Metoda povlačenja cjevovoda po površini	14
Slika 2.13 Metoda povlačenja cjevovoda ispod površine	14
Slika 2.14 Presjek plutače na vodnoj liniji	15
Slika 3.1 Radijalno opterećenje cijevi	18
Slika 3.2 Utjecaji na normalna uzdužna naprezanja	18
Slika 3.3 Nepoduprti raspon cijevi	19
Slika 3.4 Vrtloženje oko cilindričnog tijela uslijed morskih struja	20
Slika 3.5 Sile koje djeluju na cjevovod pri morskom dnu	21
Slika 3.6 Širenje cijevi na morskom dnu uslijed utjecaja strujanja i eksploatacijskih	
parametara	23
Slika 3.7 Geometrijske karakteristike čelične cijevi obložene cementom,	24
Slika 4.1 Određivanje pomaka linearno-elastične konstrukcije metodom	
superpozicije	27
Slika 4.2 Statički model cjevovoda (upeta konzola) sa lancima i balastom	28
Slika 4.3 Stvarni položaj cjevovoda	28
Slika 4.4 Rješavanje metodom superpozicije	29
OPIS SLIKA	V

Slika 4.5 Nadvodni dio	30
Slika 4.6 Podvodni dio	31
Slika 4.7 Položaj balasta	32
Slika 4.8 Sile od ovješenih lanaca	32
Slika 4.9 Gredni element složenog savijanja	35
Slika 4.10 Model pri proračunu s MKE	37
Slika 4.11 Segment cijevi modeliran kao lančanica	38
Slika 4.12 Prostorni model obješene lančanice	39
Slika 5.1 Kanalizacijski sustav Kaštela – Trogir (1. faza)	44
Slika 5.2 Profil trase ispusta Čiovo sa označenim segmentima cjevovoda	45
Slika 5.3 Plutanje neopterećenog cjevovoda	47
Slika 5.4 Ravnotežni položaj cjevovoda (minimalna dozvoljena sila):	
potapanje/podizanje – Sekcija I	52
Slika 5.5 Naprezanje u cjevovodu (kod minimalne dozvoljene sile):	
potapanje/podizanje – Sekcija I	53
Slika 5.6 Radijus zakrivljenosti (kod minimalne dozvoljene sile):	
potapanje/podizanje – Sekcija I	53
Slika 5.7 Granični kut cjevovoda $a_{I,N}$ kod polaganja/podizanja s morskog dna	54
Slika 5.8 Položaj cjevovoda u Velebitskom kanalu	56
Slika 5.9 Raspored naprezanja na čeličnoj cijevi sa betonskim oblogama	59
Slika 5.10 Batimetrija dna i njena aproksimacija polinomom 8-og stupnja	61
Slika 5.11 Radijusi zakrivljenosti dna	62
Slika 5.12 Reakcije u osloncima na rampi za porinuće u prvoj fazi polaganja	63
Slika 5.13 Naprezanje u cijevi u prvoj fazi polaganja	64
Slika 5.14 Reakcije u točkama u drugoj fazi polaganja	64
Slika 5.15 Naprezanje u cijevi u drugoj fazi polaganja	65
Slika 5.16 Neutralan položaj cjevovoda u drugoj fazi polaganja	65
Slika 5.17 Reakcije u točkama u trećoj fazi polaganja	66
Slika 5.18 Naprezanje u cijevi u trećoj fazi polaganja	66
Slika 5.19 Neutralan položaj cjevovoda u trećoj fazi polaganja	67
Slika 5.20 Reakcije u točkama u četvrtoj fazi polaganja	67
Slika 5.21 Naprezanje u cijevi u četvrtoj fazi polaganja	68

Slika 5.22 Neutralan položaj cjevovoda u četvrtoj fazi polaganja	68
Slika 5.23 Reakcije u točkama u petoj fazi polaganja	69
Slika 5.24 Naprezanje u cijevi u petoj fazi polaganja	69
Slika 5.25 Neutralan položaj cjevovoda u petoj, završnoj fazi polaganja	70
Slika 5.26 Položaj cjevovoda u završnoj fazi polaganja	72
Slika 5.27 Naprezanje u cjevovodu	73
Slika 5.28 Položaj cjevovoda u zadnjoj fazi polaganja	75
Slika 5.29 Naprezanje u cjevovodu	76

II. POPIS TABLICA

Tablica 5.1 Geometrijske i fizikalne značajke cijevi podmorskog ispusta	47
Tablica 5.2 Fizikalne i geometrijske značajke presjeka	48
Tablica 5.3 Balastiranje cjevovoda	48
Tablica 5.4 Opterećenje cjevovoda (uronjena cijev ispunjena morem, r=1030	
kg/m^3)	48
Tablica 5.5 Statička ravnoteža cjevovoda podmorskog ispusta prilikom	
potapanja/podizanja: Sekcija I	50
Tablica 5.6 Prikaz djela tablice koja se koristila pri rješavanju statičke ovješene	
lančanice teorijski opisane u 4.5.2.	51
Tablica 5.7 Granične vrijednosti prilikom montaže podmorskog ispusta Čiovo (vidi	
sliku 5.7)	55
Tablica 5.8 Opterećenje cjevovoda (ispunjenog zrakom)	58
Tablica 5.9 Svojstva čeličnog cjevovoda obloženog cementnom oblogom	59
Tablica 5.10 Koordinate polazne i završne točke	60
Tablica 5.11 Razlika u progibima	77
Tablica 5.12 Razlika u naprezanjima	77

III. POPIS OZNAKA I MJERNIH JEDINICA FIZIKALNIH VELIČINA

<u>Oznaka</u>	<u>Mjerna jedinica</u>	<u>Fizikalna veličina</u>
$ au_{_{lh}}$	N/m ²	Tangencijalno smično naprezanje
μ		Koeficijent trenja
$x_j(s)$	m	Položaj lančanice u funkciji s
$lpha_{_{ij}}$	m/N, rad/Nm	Uplivni koeficijent na mjestu <i>i</i> od sile <i>j</i>
$\left\{ W_{el} \right\}$		Vektor elastičnih progiba cjevovoda
$\left\{ W_{suho} \right\}$		Vektor progiba od opterećenja na rampi za porinuće
$\left\{w\right\}_{R_0}$		Vektor progiba od imaginarnih sila u točkama;
Ū		iznosa razlike položaja neutralne linije cjevovoda i dna
$\left\{ W_{uzgon} \right\}$		Vektor progiba od uzgonskog opterećenja
$\left\{ w_{\mathcal{Q}} \right\}$		Vektor progiba od sila balasta
$\{w_L\}$		Vektor progiba od sila lanaca
$\{w_0\}$		Vektor položaja neutralne linije
$\{y_c\}$		Vektor stvarnog položaja cjevovoda
$\sigma_{_i}$	N/m ²	Naprezanje u točci i
$M_{_i}$	Nm	Moment savijanja u točci i
$[k]_{s}$		Matrica krutosti elementa na savijanje
$[k]_{G}$		Matrica geometrijske krutosti
$[f]_{qe}$		Matrica vanjskog opterećenja
$\left[\delta ight]_{\!e}$		Matrica pomaka
$[F]_{e}$		Matrica poprečnih čvornih sila i momenata
а	m/s^2	Ubrzanie
	~	

<u>Oznaka</u>	Mjerna jedinica	<u>Fizikalna veličina</u>
a	m	Pomak neutralne osi presjeka
a(z;t)	m/s ²	Ubrzanje strujanja u poprečnom smjeru
A_C	m ²	Površina poprečnog presjeka betonske obloge
		izloženog tlačnom naprezanju čelične cijevi
A_S	m ²	Površina poprečnog presjeka čelične cijevi
A_{VL}	m ²	Površina vodne linije
<i>C</i> _{1,2,3n}		Konstanta integracije
C_D		Koeficijent sile otpora
C_L		Koeficijent sile dizanja
C_M		Koeficijent inercijske sile
D	m	Promjer cijevi
Ε	N/m^2	Modul elastičnosti
e_c	N/m^2	Raspored normalnih tlačnih naprezanja i čeličnog
		i cementnog dijela cijevi
e_s	N/m^2	Raspored normalnih vlačnih naprezanja u čeličnoj
		cijevi (bez utjecaja cementne obloge)
E_C	N/m^2	Modul elastičnosti betonske obloge
E_S	N/m^2	Modul elastičnosti čelika
$f_{\scriptscriptstyle D}$	Ν	Sila otpora
F_i	Ν	koncentrirana sila
$f_{\scriptscriptstyle L}$	Ν	Sila dinamičkog dizanja
$f_{\scriptscriptstyle L}$	Ν	Inercijska sila
g	m/s ²	Gravitacijsko ubrzanje
Н	Ν	Reakcija u smjeru osi x u objesištu
Ι	m ⁴	Moment inercije
l	m	Duljina lančanice
L_i	Ν	Težina lanaca
т	kg	Masa
M	Nm	Moment savijanja
M_0	Nm	Reakcija momenta u osloncu

<u>Oznaka</u>	<u>Mjerna jedinica</u>	<u>Fizikalna veličina</u>
p_e	N/m ²	Vanjski tlak
p_i	N/m ²	Unutrašnji tlak
q	N/m	Distribuirana težina
q(x)	N/m	Uzgonsko opterećenje
q_i	m, rad	Poopćeni pomak
Q_i	Ν	Uzgon balasta
R	m	Radijus zakrivljenosti presjeka
R	m	Radijus zakrivljenosti
R_0	Ν	Reakcija sile u osloncu
S	m	Lagrangeova koordinata duž lančanice
s_c	N/m^2	Raspored smičnih naprezanja
s_s	N/m^2	Stvarni raspored normalnih naprezanja
\boldsymbol{s}_b	N/m ²	Normalno savojno naprezanje
$\boldsymbol{S}_{\mathcal{C}}$	N/m^2	Normalno naprezanje u cementnoj oblozi
\boldsymbol{S}_{e}	N/m ²	Ekvivalentno normalno naprezanje
S_{ec}	N/m ²	Normalna naprezanja zbog završetka cijevi
$oldsymbol{s}_h$	N/m ²	Normalno radijalno naprezanje
\boldsymbol{s}_l	N/m ²	Normalno uzdužno naprezanje
\boldsymbol{S}_{S}	N/m^2	Normalno naprezanje u čeliku
\boldsymbol{s}_t	N/m ²	Normalno temperaturno naprezanje
Т	S	Period poniranja
t	S	Vrijeme
t	m	Debljina stjenke
T_x	Ν	Sila u lančanici u smjeru osi x
T_y	Ν	Sila u lančanici u smjeru osi y
T_z	Ν	Sila u lančanici u smjeru osi z
U	Ν	reakcija u smjeru osi y u objesištu
u(z;t)	m/s	Ukupna brzina strujanja u poprečnom smjeru
		uslijed morske struje i vala
V	Ν	Reakcija u smjeru osi z u objesištu

<u>Oznaka</u>	<u>Mjerna jedinica</u>	<u>Fizikalna veličina</u>
W	m	Progib
Х	m	Amplituda poniranja
Ζ	m	Vertikalna ordinata presjeka
ρ	kg/m ³	Gustoća

1. UVOD

1.1. Povijest

Nafta je znana ljudima već više od 5000 godina te je korištena prvenstveno kao mast ili kao lijek, ali ne kao gorivo. U Bibliji se spominje korištenje katrana u svrhu cementiranja zidova u Babilonu.

Prvi izvor zemnog plina probušen je 1820 godine u Fredonii, NY, USA, na dubini od 10 metara. Prva je plinska lampa bila postavljena na gradsku vjećnicu. Uvidjevši prednosti građani toga grada više nisu htjeli biti u mraku i izgradili su cijelu infrastrukturu i osvjetlili Fredoniu plinskim lampama putem olovnih cijevi. Nedugo zatim svi su veći gradovi u SADu imali uličnu rasvjetu.

Prvi je moderni, bušeni izvor nafte nastao u Poljskoj 1854. godine od strane Poljskog apotekara Ignacyja Lukasiewicza. Na to ga je nagnala potreba za čistim kerozinom. Naime, do tada se kerozin dobivao iz skupog kitovog ulja.

Kako je vrijeme prolazilo, naftaši su uočili da što su bliže obali, to su nalazišta bila bogatija. H.L. Williams je došao 1887. godine na ideju da sagradi gat te na njega stavi opremu za bušenje. U prvim bušenjima udaljenost od obale je bila 90 metara, dok se najdulji gat protezao do dužine od 400 metara. Zbog tehnološke revolucije, potreba za ugljikovodicima je rasla pa je tako i ideja o širenju industrije na more imala sve više smisla. Tako je 1947.g. sagrađena prva offshore platforma pod Kerr-McCgee korporacijom te je taj događaj označio novu eru u naftnoj industriji. Do 1949.g. u Meksičkom zaljevu je nađeno 11 rezervoara nafte i zemnog plina sa 44 istraživačke bušotine.

1.2. Namjena podmorskih cjevovoda

Osnovne namjene podmorskih cjevovoda su:

- transport ugljikohidrata (nafta i plinovi)
- transport vode
- transport ispusta u priobalnom području

Kao što znamo Hrvatska je zemlja sa mnoštvo otoka kojima je u ovo doba rastućeg turizma sve potrebnija pitka voda. Naime, otoci se u ljetnim vremenima sve više susreću sa nestašicom vode zbog pretjeranog trošenja, što zahtijeva izradu nove podmorske infrastrukture. Kako raste potreba za vodom, tako raste i potreba za odlaganje otpadnih voda. Uvjet ispusta otpadnih voda je da se nalazi na dubini na kojoj neće doći do miješanja sa gornjim slojem (na minimalnoj dubini od 35 – 40 metara) i time ugroziti izgled i miris akvatorija. Problem našeg priobalja te naših otoka je taj što je dubina mora mala te se cijevi moraju protezati na velike udaljenosti prema otvorenom moru.

1.3. Materijali podmorskih cjevovoda

1.3.1. Odabir materijala

Pri odabiru materijala moramo uzeti u obzir okolinu, uvjete rada te načine instalacije. Pod tim podrazumijevam slijedeća svojstva koja moramo uzeti u obzir:

- mehanička svojstva
- svojstva fluida i njihova radna temperatura
- korozivna svojstva
- utjecaj okoline i opterećenja
- instalacijske metode i procedure
- težina
- zavarljivost
- otpornost lomu te na zamor materijala

Danas, kako je tehnologija napredovala, dostupni su nam mnogi materijali za izradu cijevi, kao što slijedi:

- čelik (te razne legure)
- polietilen
- stakloplastika
- beton
- kompoziti čelika i neoprena i dr.

Slijedi opis najkorištenijih materijala za podmorske instalacije.

1.3.2. Čelične cijevi

Čelik je najzastupljeniji materijal u izradi cjevovoda. Promjeri cijevi se obično kreću od 75 mm do 1800 mm. Čelik korišten u transportu ugljikohidrata je najčešće veće vlačne čvrstoće (350 do 500 MPa) te je izabran zbog lake zavarljivosti. Skoro svi cjevovodi su zavareni punim zavarom (do nutarnje stjenke) gdje se tlakovi kreću obično oko 10 MPa, a bilo kakvo curenje nafte ili plina je nedopustivo. Kako se cijevi najčešće polažu prazne, izložene su velikim tlačnim te kombiniranim opterećenjima koja mogu rezultirati izvijanjem. Zbog toga se pri proračunu polaganja vodi računa o uzdužnoj sili te o tolerancijama cijevi (ekscentricitet i debljina stjenke).

Od vanjske korozije cijev je najčešće zaštićena bitumenom ili epoxy smolom i cink protektor anodama. Sa nutarnje strane može biti bez zaštite ukoliko se transportira plin ili može biti obložena epoxy smolom, poliuretanskom smolom, polietilenom ili cementom ukoliko služi za transport vode ili korozivne supstance.

Vanjski omotač može biti zaštićen od abrazije sa betonskim ili stakloplastičnim omotačem. Cijevi koje se za svog radnog vijeka moraju prazniti ili prenose plinove, moraju imati negativan uzgon što je još jedan cilj cementne obloge. U praksi se pokazalo da cementne obloge znaju erodirati te stvoriti pozitivan uzgon na dijelovima cijevi rezultirajući dizanjem cijevi iznad dna. Erozija cementne obloge se spriječava pravilnim odabirom armaturnih mreža.

Slika 1.1 Detalj spoja dvaju segmenata cijevi

1.3.3. Polietilenske cijevi

Polietilen se koristi za visoko fleksibilne cijevi koje su postojane na kemijske medije te imaju mali koeficijent trenja. Polietilen ima manju gustoću od mora, tako da se pri instalaciji cijevi moraju balastirati. Pošto su težine balasta, ovisno o razmacima na koje se stavljaju, velike, cijevi su na tim dijelovima konstantno jako napregnute pa se moraju izvesti dodatna ojačanja. Pri potapanju cijevi (s velikim iznosima balasta), dolazi do postupnog izvijanja, ali još uvijek se zadržava cirkularni presjek tako da pri kraju polaganja nema nikakve trajne deformacije. Koncentracije se naprezanja kod polietilenskih cijevi moraju izbjeći, jer pri konstatno visokim naprezanjima dolazi do zamora materijala.

Još jedna prednost polietilenskih cijevi je ta da na sebe ne primaju ione željeza (za razliku od čeličnih cijevi) pa se mogu koristiti u akvakulturnim aktivnostima.

1.3.4. Stakloplastične cijevi

Stakloplastične cijevi dostižu promjere do oko 2 metra. Koriste se najčešće za kanalizacijske ispuste te za transport soli u "mokrom" stanju. Otporne su na kemijske agense, te mogu biti omotane ili pigmentirane za zaštitu od ultraljubičastog zračenja. Ove cijevi su zahtjevne za polaganje zbog male gustoće. Naime, kao i kod polietilena, sedla za balaste (velikih iznosa) moraju biti dobro projektirana da ne bi došlo do prekomjernih lokalnih naprezanja.

2. NAČINI POLAGANJA CJEVOVODA

2.1. Tipovi barži za polaganje

Barže za polaganje se najčešće karakteriziraju kao barže prve, druge, treće ili četvrte generacije. Generacije se razlikuju u kvaliteti tehnološkog procesa i dubinama mora. Do sada su se polagale cijevi do dubine od oko 600 metara, a to se izvelo kod Sicilije i na Sjevernom moru.

Prva generacija barži se sastoji od konvencionalnog trupa sa opremom za polaganje cijevi instaliranom na boku i nepomičnim stingerom.

Druga generacija ima poluuronjiv trup sa opremom za polaganje također na boku, ali je stinger zglobno učvršćen i elastičan.

Treća generacija polaže cijevi kroz sredinu trupa preko fiksiranog stingera.

Četvrta generacija barži ima trustere za dinamičko pozicioniranje i fiksirani stinger. Ove barže su najčešće opremljene za J i S tip polaganja.

Ove razlike opisuju napredak u tehnologiji polaganja cjevovoda.

Barža za polaganje je sustav koji mora ujediniti sljedeća svojstva:

- platformu za rad na moru
- sisteme za pozicioniranje, bilo sidrena vitla ili dinamičko pozicioniranje
- dostavu, transport te skladištenje cijevi
- konvejere za centriranje cijevi
- zavarivanje
- rendgen
- zaštita spojeva
- vršenje uzdužne napetosti na cijev
- podršku za ulaz cijevi u more, bilo stingerom, bilo konzolom
- inspekciju i navigaciju

Najčešći načini polaganja cjevovoda su S i J tip, dok se kod manjih udaljenosti i dubina koriste druge specifične metode koje ću naknadno opisati.

Slika 2.1 Pregled opreme na modernoj barži za polaganje cjevovoda

NAČINI POLAGANJA CJEVOVODA

Slika 2.2 Položaj konvejera i kolotura u neposrednoj blizini stanice za centraciju

NAČINI POLAGANJA CJEVOVODA

2.2. S – tip polaganja cjevovoda

Osnovno svojstvo ove metode je da ovdje cijev kreće sa barže horizontalno te se savija u obliku slova S, nakon čega se pozicionira na morsko tlo.

Slika 2.3 Shematski prikaz S – tipa polaganja

Slika 2.4 Castoro Sei – barža za polaganje cjevovoda S - tipom

Zavarivanje, kontrola zavara, obrada zavara te omatanje cijevi vrši se na barži koja je prikladno opremljena za te postupke. Potom se cijev pušta na dno kako se barža pomiče u smjeru polaganja. Barže se u novije vrijeme pozicioniraju GPS, laserskim i raznim navigacijskim uređajima zbog velike zahtijevane točnosti polaganja. Sama mehanika pomicanja barže odvija se putem sidara, obično između 8 i 12 komada. Sidra se pozicioniraju s pomoćnim brodom u koracima od 500 do 600 metara. U trenutku kada sidro dotakne dno, njegova lančanica počinje služiti kao nit za koju se barža povlači i napreduje. Upravo tako veliki broj sidara služi da se pozicioniranje može vršiti u svim smjerovima sa vrlo velikom preciznošću. Uzdužna napetost cjevovoda održava se pomoću sidrenih vitala barže, a sama cijev se drži tenzionerom (slika 2.5) projektiranim tako da ne oštećuje cementnu i/ili bilo kakvu drugu oblogu. Na izlaznom dijelu nalazi se stinger, koji je izveden pod određenim radijusom zakrivljenosti koji osigurava dovoljnu početnu zakrivljenost cijevi.

Slika 2.5 Tenzioner

2.3. J – tip polaganja cjevovoda

Za ovaj način polaganja koriste se barže četvrte generacije i pogodan je za velike dubine. Pri ovom polaganju cijev skoro vertikalno napušta baržu pa prema tome nema ni pregiba preko kojega cijev prelazi. Ova metoda koristi krutu rampu, samo malo pomaknutu iz vertikalnog položaja na kojoj se spajaju prethodno spojeni tro ili četverosegmentni dijelovi cijevi. Spajanje cjevovoda sa segmentima vrši se tek nešto iznad palube. Da bi se postigle velike brzine polaganja, moraju se koristiti napredne automatske tehnike zavarivanja. Uzdužna sila se ovdje postiže čistom težinom podvodnog dijela cijevi, a time se plovilo rasterećuje od nepotrebnih sidrenih sistema te ostaju samo trusteri za pozicioniranje. Naime, trusteri su dovoljni za svladavanje ono malo horizontalne sile u smjeru napredovanja plovila, jer cijev ne ulazi u more pod pravim kutom. Ovaj način polaganja omogućuje polaganje pri puno težim uvjetima jer više nisu bitna lateralna ubrzanja, već je brzina spajanja cijevi ograničavajući faktor.

Slika 2.6 Shematski prikaz barže za J – tip polaganje cjevovoda

Slika 2.7 Najveća plovna dizalica na svijetu Saipem 7000 kapaciteta dizanja 7000t. Na krmi vidimo instaliranu rampu za polaganje cjevovoda J – tipom

2.4. Specifične metode polaganja u domaćim uvjetima

S obzirom da se Hrvatski otoci ne nalaze daleko od obalnog dijela, ne izvode se prije navedena polaganja. Ta polaganja ne koriste se iz čisto ekonomskih razloga jer takve barže imaju vrlo visoki dnevni najam. Zbog toga se koriste slijedeće metode:

- metoda povlačenja po dnu,
- metoda kontroliranog povlačenja iznad dna,
- metoda površinskog tegljenja,

2.4.1. Metoda povlačenja po dnu

Metoda povlačenja cijevi po dnu je razvijena za polaganje cjevovoda u priobalnom području zbog ekstenziranja zone utovara i istovara u duboko more. Metoda se prošlih godina nastavila razvijati pa se danas postižu velike udaljenosti i dubine.

Slika 2.8 Metoda povlačenja po dnu

Ulaz cijevi u more, zavarivanje, kontrola i omatanje u segmentima od tristotinjak metara vrši se na šinama koje su opremljene kotačima (slika 2.10). Kotači služe za smanjenje trenja pri porinjavanju cijevi. Na samo se čelo cjevovoda zavari oprema na koju će se pričvrstiti sajla koju povlači plovilo ili vitlo sa suprotne obale (slika 2.9). Osim sajle, na početak se instalira i plovak koji signalizira položaj čela cijevi. Duljina povlačenja koja može dostići više tisuća metara ovisi o čvrstoći cijevi, trenju podloge, vučnoj sili vitala i utjecaja zone valova (priobalna zona male dubine). Vučna vitla moraju biti sposobna za veliku vučnu silu, čak do 1350 kN. Koeficijenti trenja pri dnu su izmjereni i u prosjeku iznose od 0.4 do 0.5 za vrijeme vuče te od 0.6 do 0.8 na početku vuče. Pri projektiranju, za koeficijent trenja

se zna uzimati i vrijednost jedinice. Cijev se proračunava tako da ima malen negativan uzgon i time održi lateralnu stabilnost. Upravo taj negativan uzgon uzrokuje rast otpora trenja sa duljinom što je ograničavajući faktor.

Slika 2.9 Instalacija na čelu cijevi za povlačenje sa uzgonskim tankom da ne bi došlo do zabadanja u dno

Slika 2.10 Postolje za ulaz cijevi u more

2.4.2. Metoda kontroliranog povlačenja iznad morskog dna

Metodu je razvio poznati inženjer u području morske tehnike R. J. Brown. Metoda se zasniva na malom pozitivnom uzgonu samog cjevovoda, tj. približnoj neutralnoj ravnoteži gravitacijskih i uzgonskih sila koje djeluju na uronjeni cjevovod (slika 2.11).

Slika 2.11 Princip metode kontroliranog povlačenja iznad dna

Kratki segmenti uronjenog lanca obješeni su na odgovarajućim intervalima o cjevovod čineći negativan uzgon konstrukcije. Dio lanca je položen na morsko dno. Lanac automatski kontrolira uronjenu težinu kombiniranog sustava (lanci + cijev), povećavajući gravitacijsko

PLOVILO ZA

opterećenje konstrukcije tek kod njenog pokušaja izranjanja, tj. vertikalnog pomaka cijevi od morskog dna. Ako cijev potone, smanjuje se dio težine ovješenog lanca i uspostavlja se ravnoteža gravitacijskog i uzgonskog opterećenja. Sila trenja je određena uronjenom težinom repova lanca koji se vuku po morskom dnu. Duljina lanca je određena promjenom batimetrije morskog dna i savitljivosti cjevovoda pod opterećenjem (razlika gravitacijskog i uzgonskog opterećenja). Sam cjevovod nema dodira s morskim dnom što rezultira u smanjenoj horizontalnoj sili povlačenja i smanjenom riziku oštećenja cemente obloge o hrapavo morsko dno. Lanci se pričvršćuju slabijom karikom tako da pukne ukoliko dođe do zapinjanja o morsko dno.

2.4.3. Metoda površinskog tegljenja

Ova metoda ima dvije varijante. Jedna je da se cijev povlači po samoj površini (slika 2.12), dok se u drugoj cijev održava na određenoj dubini (slika 2.13).

Slika 2.13 Metoda povlačenja cjevovoda ispod površine

Prva metoda ima mnoge nedostatke. Jedan od njih je da se cijev pri valovitom moru jako opterećuje što može rezultirati otpadanjem cementnih i/ili bilo kakvih drugih obloga. Druga metoda izbjegava utjecaj valova spuštanjem cijevi na određenu dubinu te će biti tema narednog razmatranja.

Ova metoda je razvijena upravo zato da bi se izbjegli nedostaci metode povlačenja po samoj površini. Cijev se povlači na dubini od oko 5 metara zbog smanjenog utjecaja valova. Utjecaj vjetra nije smanjen zbog plutača kojima vršci vire iznad površine. Plutače su konstruirane tako da imaju mali presjek vodne linije (slika 2.14).

Slika 2.14 Presjek plutače na vodnoj liniji

Kao što znamo period poniranja je recipročan presjeku vodne linije:

$$T = 2\pi \sqrt{\frac{m}{A_{VL} \cdot g \cdot \rho}}$$
(2.1)

gdje je:

T - period poniranja [s]

m - masa sistema [kg]

 A_{VL} - presjek vodne linije [m²]

- g gravitacijsko ubrzanje [m/s²]
- ρ gustoća mora [kg/m³]

iz vibracija znamo također i slijedeću relaciju za ubrzanje:

$$a = \left(\frac{2\pi}{T}\right)^2 X \cos\left(\frac{2\pi}{T}t\right)$$
(2.2)

gdje je:

- *T* period poniranja [s]
- *X* amplituda poniranja [m]
- *a* ubrzanje $[m/s^2]$
- *t* vrijeme [s]

Ovim se htjelo pokazati da što više uspijemo povećati period poniranja, to će nam ubrzanje, a time i inercijske sile biti manje što će rezultirati manjim naprezanjima.

3. PROBLEMI ČVRSTOĆE VEZANI UZ POLAGANJE CJEVOVODA

3.1. Uvod

Ograničenje pri polaganju cjevovoda je njegova čvrstoća. Nalaženje rješenja svodi se na kompromis mnogih utjecaja.

Analizu naprezanja provodimo da bi vidjeli prelaze li se dopuštena naprezanja. Postupak koji se provodi sastoji se od niza analiza kao što slijedi:

- analiza naprezanja u stjenci
- analiza uzdužnog naprezanja
- analiza ekvivalentnog naprezanje
- analiza stabilnosti
- analiza uzdužnog širenja (između upetih segmenata)
- analiza izvijanja
- analiza premošćivanja prepreka

Prve tri analize tvore osnovu za određivanje debljine stjenke, a te se vrijednosti moraju uskladiti pri analizi izvijanja kod polaganja.

3.2. Normalna radijalna naprezanja

Radijalna naprezanja (slika 3.1) u cijevi se mogu utvrditi sljedećom relacijom;

$$\sigma_h = (p_i - p_e) \frac{D - t}{2t} \tag{3.1}$$

gdje je:

- p_i unutrašnji tlak [Pa]
- p_e vanjski tlak [Pa]
- *D* vanjski promjer cijevi [m]
- *t* minimalna debljina stjenke [m]

Slika 3.1 Radijalno opterećenje cijevi

3.3. Normalna uzdužna naprezanja

Normalno uzdužno naprezanje nastaje kao funkcija sljedećih normalnih naprezanja (slika 3.2):

- savojnih naprezanja
- radijalnih naprezanja
- termičkih naprezanja
- naprezanja uzrokovanih završetkom cijevi

Slika 3.2 Utjecaji na normalna uzdužna naprezanja

Vrijednost normalnog uzdužnog naprezanja utvrđuje se sljedećom formulom:

$$\sigma_l = 0.3\sigma_h + \sigma_b + \sigma_t + \sigma_{ec} \tag{3.2}$$

gdje je:

 σ_l - normalno uzdužno naprezanje [Pa]

 σ_h - normalno radijalno naprezanje [Pa]

- σ_h normalno savojno naprezanje [Pa]
- σ_t temperaturno naprezanje [Pa]
- σ_{ec} normalna naprezanja zbog utjecaja završetka cijevi [Pa]

Pri korištenju ove formule predznak za vlačno naprezanje mora biti pozitivan.

3.4. Ekvivalentno naprezanje

Ukupno naprezanje na koje se cijev ili bilo kakva struktura proračunava, ovisi o propisima nadležnih klasifikacionih ustanova. U ovom slučaju ga računamo kao:

$$\sigma_e = \sqrt{\sigma_h^2 + \sigma_l^2 - \sigma_h \sigma_l + \tau_{lh}^2}$$
(3.3)

gdje je:

 σ_e - ekvivalentno normalno naprezanje [Pa]

 σ_h - radijalno normalno naprezanje [Pa]

 σ_l - uzdužno normalno naprezanje [Pa]

 τ_{lh} - tangencijalno smično naprezanje [Pa]

3.5. Analiza nepoduprtog raspona

Pošto se cijev polaže na morsko dno, velika je vjerojatnost, ako je grubo i neravno tlo, da će doći do lokalnog savijanja (slika 3.3). U tim slučajevima se ispituje slučaj na slijedeće efekte;

- puzanje materijala
- zamor materijala
- ljudski utjecaj (sidrenje)

Slika 3.3 Nepoduprti raspon cijevi

Svi ovi gore navedeni efekti zahtijevaju od nas da, ako je potrebno, ponovno evaluiramo vrijednosti nepoduprtog raspona. Ukoliko se dogodi da pravi (in situ) nepoduprti raspon bude veći od maksimalnog, moramo pribjeći smanjenju istoga. Takvi zahvati su vrlo skupi, pa se analiza nepoduprtog raspona mora izvesti što je moguće točnije. Često se pri takvim analizama mora uzeti u obzir ponašanje morskog dna i morskih struja.

Slika 3.4 Vrtloženje oko cilindričnog tijela uslijed morskih struja

Tok strujanja oko cijevi ili bilo kakvog cilindričnog oblika rezultirati će stvaranjem vrtloga (slika 3.4). Vrtlozi će se izmjenjivati između gornje i donje strane cijevi te će se stvarati oscilatorno gibanje na slobodnom rasponu. Ukoliko se frekvencija uzbude vrtloga izjednači sa prirodnom frekvencije cijevi, dolazi do pojave rezonancije. Rezonancija uzrokuje pad cementne obloge i gubitak cijevi uslijed zamora materijala.

Razmatranje slobodnog raspona se svodi na traženje prirodne frekvencije cijevi pri različitim rasponima, nakon čega se uspoređuje sa frekvencijom vrtloga. U ovom razmatranju mora se također uzeti u obzir udaljenost cijevi od dna.

3.6. Analiza stabilnosti na morskom dnu

Kao što je navedeno, cjevovod je nakon instalacije podložan utjecajima valova i morskih struja (slika 3.4). Na područjima dna gdje se pretpostavlja da bi cijev mogla biti opterećena u lateralnom i/ili vertikalnom smjeru do granice pomicanja, osiguravamo dovoljnu masu odnosno veći negativan uzgon koji bi rezultirao većom stabilnošću. To se u većini slučajeva osigurava cementnim blokovima na cjevovodu. U nekim slučajevima se dopušta lateralno gibanje pod uvjetom da se ne prekorače dozvoljene vrijednosti naprezanja.

Slika 3.5 Sile koje djeluju na cjevovod pri morskom dnu

$$\sum f_x = f_D + f_I - f_\tau + q \sin \theta \tag{3.4}$$

$$f_{\tau} = \mu f_N \tag{3.5}$$

$$\sum f_z = f_N \cos \theta + f_L - q \cos \theta \tag{3.6}$$

gdje je:

 f_L - sila dinamičkog dizanja:

$$f_L = \frac{1}{2}\rho C_L Du |u| \tag{3.7}$$

 f_D - sila otpora:

$$f_D = \frac{1}{2} \rho C_D Du |u| \tag{3.8}$$

 f_{I} - inercijska sila:

$$f_I = \frac{1}{2} \rho C_M \left(\frac{D^2 \pi}{4} \right) \frac{du}{dt}$$
(3.9)

21

gdje je:

- C_D koeficijent sile otpora,
- C_M koeficijent inercijske sile,
- C_L koeficijent sile dizanja,
- u(z;t)- ukupna brzina strujanja u poprečnom smjeru uslijed morske struje i vala,
- a(z;t) ubrzanje strujanja u poprečnom smjeru,
- q težina cjevovoda,
- μ koeficijent trenja.

Uvjet stabilnosti na morskom dnu glasi:

$$q \ge f_L \mu + \frac{1}{\mu} (f_D + f_I)$$
(3.10)

Proračun stabilnosti se provodi jednostavnim sumiranjem svih sila koje djeluju na cijev kako smo sad prikazali ili se provodi detaljniji proračun putem metode konačnih elemenata.

3.7. Analiza uzdužnog širenja na dnu

Analizom saznajemo izduženje cijevi između dvije čvrste točke cijevi i maksimalna uzdužna opterećenja pri najvećim mogućim eksploatacijskim opterećenjima (slika 3.6). Analiza nam daje uvid u slijedeće aspekte proračuna:

-	uzdužno opterećenje	- pokazuje nam da li će doći do izvijanja i je li potrebna
		nova analiza,
-	krajnja širenja	- govore nam da li dotadašnji načini upetosti (granični
		uvjeti) odgovaraju ili se moraju ponovo analizirati i
		promijeniti.

 stupanj širenja cjevovoda - funkcija radnih uvjeta i ograničenosti kretanja (upetosti u točkama).

Slika 3.6 Širenje cijevi na morskom dnu uslijed utjecaja strujanja i eksploatacijskih parametara

3.8. Problem krutosti čeličnog cjevovoda obloženog cementom oblogom

Pri savijanju cijevi jedan dio omotača je izložen rastezanju, dok je drugi izložen sabijanju. Kako je vlačna čvrstoća betona zanemariva, dio omotača izloženog rastezanju ne sudjeluje u čvrstoći i dolazi do pomaka neutralne osi kompozitnog presjeka koji se sastoji od čeličnog i cementnog dijela. Maksimalno normalno naprezanje u cijevi se zbog toga povećava na vlačnoj i smanjuje na tlačnoj strani (slika 3.7). Pomak neutralne osi "*a*" računa se iz ravnoteže svih sila na presjeku (slika 3.7). Uzdužna sila (po poprečnom presjeku cijevi) računa se prema sljedećoj formuli;

$$\sum F_{x} = \int_{A_{s}} \sigma_{s} dA_{s} + \int_{A_{c}} \sigma_{c} dA_{c} = \int_{A_{s}} \frac{E_{s}}{R} (z+a) dA_{s} + \int_{A_{c}} \frac{E_{c}}{R} (z+a) dA_{c} = 0 \quad (3.11)$$

gdje je:

- z vertikalna ordinata presjeka,
- *a* pomak neutralne osi presjeka,
- *R* radijus zakrivljenosti presjeka,
- A_S površina poprečnog presjeka čelične cijevi,
- E_S modul elastičnosti čelika, $E_S = 2.1 \times 10^{11} \text{ N/m}^2$
- A_C površina poprečnog presjeka betonske obloge izloženog tlačnom naprezanju čelične cijevi,
- E_C modul elastičnosti betonske obloge E_C = 25000 kN/mm²

Naprezanje je određeno modulom elastičnosti i radijusom zakrivljenosti:

$$\sigma_s = \frac{z+a}{R} E_s \tag{3.12}$$

$$\sigma_c = \frac{z+a}{R} E_c \tag{3.13}$$

Slika 3.7 Geometrijske karakteristike čelične cijevi obložene cementom,

gdje su:

- s_c raspored smičnih naprezanja,
- e_s raspored normalnih vlačnih naprezanja u čeličnoj cijevi (bez utjecaja cementne obloge),
- e_c raspored normalnih tlačnih naprezanja i čeličnog i cementnog dijela cijevi,
- s_s stvarni raspored normalnih naprezanja.

Kako uzdužna unutarnja sila mora biti jednaka nuli, površine rasporeda tlačnih i vlačnih naprezanja cjevovoda moraju biti jednaka. Zato se pribjegava iterativnom traženju rješenja do određene točnosti. Površina se traži tako da pomičemo neutralnu os u vlačnom smjeru, pošto su tamo naprezanja veća.

3.9. Zakrivljenost morskog dna

Jedan od kriterija polaganja podmorskog cjevovoda je minimalni radijus globalne zakrivljenosti dna - R_{dmin} . Krutost cijevi na savijanje *EI* omogućuje pod danim okolnostima polaganja premošćivanje lokalnih neravnina. Pod pretpostavkom da je u presjeku podmorskog cjevovoda zanemarena uzdužna sila F_x , zakrivljenost morskog dna i elastična deformacija cjevovoda, mogu se postaviti u sljedeći odnos:

$$\frac{1}{R(x)} = \frac{d^2}{dx^2} w(x) = -\frac{M(x)}{EI} \qquad \frac{1}{R(x)} = \frac{(1+w^2)^{2/3}}{w^*} \approx \frac{d^2w}{dx^2}$$
(3.14)

gdje su:

M(x) - moment savijanja, w(x) - progibna linija, R(x) - radijus zakrivljenosti

Na temelju dozvoljenog minimalnog radijusa zakrivljenosti cijevi, koji slijedi iz dozvoljenog naprezanja σ_d određenog u odnosu na kriterij naprezanja ili izvijanja:

$$\frac{1}{R_{\min}(x)} \ge \frac{EI}{W_{\min} \cdot \sigma_d}$$
(3.15)

određuje se potrebno balastiranje cjevovoda prema geometriji morskog dna. U tu svrhu se vrši numerička aproksimacija morskog dna, preko koje dobijemo radijus zakrivljenosti.

4. MATEMATIČKI MODEL CJEVOVODA I NJEGOVO RJEŠAVANJE

S pomoću matematičkog modela opisujemo, pojednostavljujemo i idealiziramo ponajprije geometrijske značajke konstrukcije te njezine unutrašnje i vanjske veze. Uvođenje proračunske sheme tek je jedan korak u oblikovanju modela konstrukcije.

Matematički model je umjetna tvorevina čije rješenje aproksimira stanje ili ponašanje stvarnog sistema; obično je to algebarska, diferencijalna ili integralna jednadžba ili sustav takvih jednadžbi. Osim geometrije i veza, za matematički opis konstrukcije pojednostaviti treba i strukturu, svojstva i ponašanje elemenata, a uvodi se i niz drugih pojednostavljujućih pretpostavki; uvijek, naime, želimo naći kompromis između vjerodostojnosti i jednostavnosti opisa i potrebnih proračunskih postupaka. Izbor matematičkoga modela jedno je od najvažnijih, najtežih i najodgovornijih zadaća konstruktora–projektanta. O izboru modela neposredno ovisi vjerodostojnost proračuna.

4.1. Metoda uplivnih koeficijenata

Na slici 4.1a prikazana je greda koja je opterećena s tri poopćene sile tj. S dvije sile Q_1 i Q_3 te spregom Q_2 . Na slici 4.1b prikazana je elastična linija grede punom crtom te prvobitno ravna uzdužna os. Označena su tri poopćena pomaka q_1 , q_2 i q_3 koji odgovaraju poopćenim silama Q_1 , Q_2 i Q_3 . Budući da je Q_2 spreg, njemu odgovara kutni pomak. Zamislimo sad da smo gredu opteretili samo npr. jediničnom silom Q_1 . Pomaci koji nastaju u točkama 1, 2 i 3 kao rezultat te jedinične sile odgovaraju uplivnim koeficijentima α_{11} , α_{21} i α_{31} .

Definicija uplivnih koeficijenata glasi:

Uplivni koeficijent α_{ij} jednak je poopćenom pomaku q_i koji nastaje pod djelovanjem jedinične poopćene sile $Q_j = 1$.

Slika 4.1 Određivanje pomaka linearno-elastične konstrukcije metodom superpozicije

Dakle za stvarne pomake možemo pisati:

$$q_{1} = \alpha_{11}Q_{1} + \alpha_{12}Q_{2} + \alpha_{13}Q_{3}$$

$$q_{2} = \alpha_{21}Q_{1} + \alpha_{22}Q_{2} + \alpha_{23}Q_{3}$$

$$q_{3} = \alpha_{31}Q_{1} + \alpha_{32}Q_{2} + \alpha_{33}Q_{3}$$
(4.1)

Gornji izraz u matričnom obliku glasi;

$$\begin{cases} q_1 \\ q_2 \\ q_3 \end{cases} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \begin{cases} Q_1 \\ Q_2 \\ Q_3 \end{cases}$$
(4.2)

ili sažeto;

$$\{q_i\} = \left[\alpha_{ij}\right] \{Q_j\} \tag{4.3}$$

4.2. Model za metodu polaganja kontroliranim povlačenjem iznad morskog dna

Model pri proračunavanju cjevovoda je upeta konzola. Upeta konzola je bila opterećena distribuiranom težinom cijevi (različito iznad i ispod površine), lanaca i betonskih jarmova (slika 4.2).

Slika 4.3 Stvarni položaj cjevovoda

U analitičkom rješavanju, koristio se model konzole bez oslonaca kolotura u svrhu olakšanja računanja. Naime, pozicije cijevi (odnosno uplivni koeficijenti u tim točkama) koji su oslonjeni na rampu za porinuće bili su aproksimirani jako velikom krutošću, tako da na tim mjestima nema pomaka, odnosno jako su mali.

Prilikom korištenja softvera (SESAM) za rješavanje takvih problema putem metode konačnih elemenata oslonci se nisu izostavili, a krutost je stvarna po cijeloj dužini.

4.3. Analitičko rješenje

Opterećenja na konzolu smo rastavili po segmentima i tražimo njihove progibe i momente nakon čega ćemo sve zbrojiti i dobiti cjelokupno rješenje. Dijelove sa kontinuiranim opterećenjem ćemo integrirati i tražiti rješenje, dok ćemo za koncentrirane sile koristiti metodu uplivnih koeficijenata.

4.3.1. Nadvodni kontinuirano opterećeni dio

Opterećenje q(x) je postavljeno kao zbroj uzgona i "suhog" opterećenja cijevi zato da imamo kontinuirani integral kada računamo uzgonski dio u drugom dijelu proračuna. Naime tada će se uzgon pretpostaviti cijelom dužinom cijevi (i suhom djelu) tako da kad superponiramo pomake dobijemo stvaran iznos, no o tome će biti riječi u narednom odlomku.

Slika 4.5 Nadvodni dio

Iz teorije savijanja grede slijedi:

$$\frac{d^2w}{dx^2} = -\frac{M(x)}{EI} \tag{4.4}$$

za naš slučaj moment M(x) uz reakciju $R_0 = ql$ i reaktivni moment $M_0 = \frac{ql^2}{2}$ iznosi;

$$M_{(0 \to l_q)} = \frac{qx^2}{2} - R_0 x + M_0 = \frac{qx^2}{2} - qxl_q + \frac{ql_q^2}{2}$$
(4.5)

$$M_{(x_{ul} \to l)} = 0 \tag{4.6}$$

slijedi za dio prije ulaza u more;

$$EI\frac{d^2 w_{(0 \to l_q)}}{dx^2} = \frac{qx^2}{2} - qxl_q + \frac{ql_q^2}{2}$$
(4.7)

nakon prve integracije za dio iznad vode dobivamo kut u točci;

$$EI\frac{dw_{(0\to l_q)}}{dx} = \frac{q}{6}x^3 - \frac{ql_q}{2}x^2 + \frac{ql_q^2}{2}x + C_1$$
(4.8)

nakon druge integracije za dio iznad vode dobivamo progib;

$$EIw_{(0 \to l_q)} = \frac{q}{24}x^4 - \frac{ql_q}{6}x^3 + \frac{ql_q^2}{4}x^2 + C_1x + C_2$$
(4.9)

Kako bi riješili konstante integracije, moramo uvrstiti rubne uvjete za;

- progib na početku konzole,

$$w(0) = 0 \Longrightarrow C_2 = 0 \tag{4.10}$$

- kut nagiba na početku konzole

$$\frac{dw(0)}{dx} = 0 \Longrightarrow C_1 = 0 \tag{4.11}$$

30

Konačna jednadžba savijanja glasi:

$$w_{(0 \to l_q)} = \frac{1}{EI} \left(\frac{q}{24} x^4 - \frac{q l_q}{6} x^3 + \frac{q l_q^2}{4} x^2 \right)$$
(4.12)

Za dio nakon djelovanja opterećenja koristimo se kutom nagiba u zadnjoj točci djelovanja opterećenja;

$$\frac{dw(l_q)}{dx} = \frac{ql_q^3}{6EI} \tag{4.13}$$

progib nakon djelovanja opterećenja glasi;

$$w_{(l_q \to l)} = \frac{1}{EI} \left(\underbrace{\frac{3}{24}ql_q^4}_{\text{progib}} + \underbrace{\frac{ql_q^3}{6EI}}_{\substack{\text{kut nagiba}\\ w'(l_q)}} \left(x_{l_q \to l} - l_q \right) \right)$$
(4.14)

gdje je:

l

duljina cijevi [m],

 l_q - duljina cijevi pri ulasku u more [m],

 $x_{0 \rightarrow l_a}$ - duljina cijevi do ulaska u more [m],

 $x_{l_q \rightarrow l}$ - duljina cijevi nakon ulaska u more [m],

EI - savojna krutost cijevi [Nm²]

4.3.2. Podvodni dio kontinuirano opterećen uzgonom

Slika 4.6 Podvodni dio

Postupak je jednak kao i u prošlom odlomku pa na kraju imamo:

$$w(x) = \frac{1}{EI} \left(\frac{q}{24} x^4 - \frac{ql}{6} x^3 + \frac{ql^2}{4} x^2 \right)$$
(4.15)

4.3.3. Cjevovod pod utjecajem balastnih utega

Slika 4.7 Položaj balasta

Progib uslijed sila balastnih oteživača računamo po metodi uplivnih koeficijenata;

$$\begin{cases} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \\ y_{Q} \end{cases} = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \vdots & \alpha_{1,n} \\ \alpha_{2,1} & \alpha_{2,2} & \vdots & \alpha_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n,1} & \alpha_{n,2} & \vdots & \alpha_{n,n} \end{bmatrix}_{Q} \begin{cases} Q_{1} \\ Q_{2} \\ \vdots \\ Q_{n} \end{cases}$$
(4.16)

gdje je:

$$\begin{split} &\{w\}_{\varrho} & \text{-vektor progiba uslijed balasta [m],} \\ &\{Q\} & \text{-vektor uronjenih težina balasta [N],} \\ &[\alpha]_{\varrho} & \text{-matrica uplivnih koeficijenata za položaje balasta [m/N],} \end{split}$$

Matricu $[\alpha]_o$ smo dobili po postupku iz 4.1.

4.3.4. Cjevovod pod utjecajem težine lanaca

Slika 4.8 Sile od ovješenih lanaca

Za ovaj slučaj pri određivanju progiba koristiti ćemo se uplivnim koeficijentima kao što je objašnjeno u 4.1.

Prvi korak u ovakvom slučaju sa lancima je da se odredi sila kojom bi se trebalo opteretiti točke gdje su lanci da se cijev iz neutralnog položaja polegne na dno;

$$\{R_0\} = [k](\{w_0\} - \{p_d\})$$
(4.17)

gdje je:

 $\{w_0\}$ - neutralni položaj cijevi [m],

 $\{p_d\}$ - dubina mora [m],

 $\{R_0\}$ - početna sila [N],

 $\{k\}$ - krutost lanca (distribuirana uronjena težina) [N/m].

Nakon toga računamo progibe uslijed tih sila putem uplivnih koeficijenata;

$$\left\{w_{R_0}\right\} = \left[\alpha\right]\left\{R_0\right\} \tag{4.18}$$

Nakon toga nam ostaje izračunati silu od lanaca $\{L\}$. To ćemo napraviti tako da zbrojimo sve do sada poznate progibe u jednadžbi uplivnih koeficijenata;

$$\left[\alpha^{u}\right]\left\{L\right\} = \left\{w\right\}_{R_{0}} + \left\{w\right\}_{suho} + \left\{w\right\}_{uzgon} + \left\{w\right\}_{Q}$$
(4.19)

S obzirom da je krutost lanca *k* proporcionalna uplivnom koeficijentu u zadanoj točci imamo malo modificiranu matricu uplivnih koeficijenata;

$$\begin{bmatrix} \alpha^{u} \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} + \frac{1}{k_{1}} & \alpha_{1,2} & . & \alpha_{1,n} \\ \alpha_{2,1} & \alpha_{2,2} + \frac{1}{k_{2}} & . & \alpha_{2,n} \\ . & . & . & . \\ \alpha_{n,1} & \alpha_{n,2} & . & \alpha_{n,n} + \frac{1}{k_{n}} \end{bmatrix}$$
(4.20)

Kako jednadžba (4.19) ima matricu elastičnosti sa lijeve strane moramo je pomnožiti sa inverznom matricom $\left[\alpha^{u}\right]^{-1}$ kako bi dobili jediničnu matricu uz $\{L\}$ što nam daje;

$$\{L\} = \left[\alpha^{u}\right]^{-1} \left(\{w\}_{R_{0}} + \{w\}_{suho} + \{w\}_{uzgon} + \{w\}_{Q}\right)$$
(4.21)

Na mjestu kolotura na rampi za porinuće uplivnim koeficijentima dodali velike vrijednosti kako bi dobili iznos reakcija.

I na kraju se računa progib uslijed dobivenih sila od lanaca;

$$\{w_L\} = [\alpha]\{L\} \tag{4.22}$$

4.3.5. Položaj deformiranog cjevovoda

Krajnji iznos elastične deformacije izlazi iz superponiranja (zbroja) svih dobivenih progiba;

$$\{w_{el}\} = \{w\}_{R_0} + \{w\}_{suho} + \{w\}_{uzgon} + \{w\}_{Q} + \{w\}_{L}$$
(4.23)

a za stvaran progib moramo dodati i položaj neutralne linije;

$$\{y_c\} = \{w\}_0 + \{w_{el}\}$$
(4.24)

4.3.6. Proračun naprezanja

Nakon izračunavanja progiba slijedi proračun momenata koje računamo kao;

$$EI\frac{d^2w}{dx^2} = -M(x) \tag{4.25}$$

ili se na početnu konzolu dodaju sve sile (pošto ih sada sve znamo) i izradimo momenti dijagram.

Kako ne znamo funkciju w(x) potrebno je provesti numeričko deriviranje duž krivulje, a to ćemo izvesti po metodi konačnih diferencija kako slijedi;

$$\frac{d^2 w_i}{dx_i^2} = \frac{w_{i+1} - 2w_i + w_{i-1}}{\Delta x^2}$$
(4.26)

gdje je:

w_i - progib cijevi na i-tom mjestu lanca [m],

 Δx - razmak između lanaca [m],

Nakon što smo dobili momente u točkama računamo i pripadna naprezanja po formuli

$$\sigma_i = \frac{M_i}{EI} \tag{4.27}$$

uz uvjet da je cijev iste krutosti cijelom duljinom. Ukoliko nije (kao što je objašnjeno u 3.8), moramo pribjeći iterativnom rješavanju, odnosno traženju mjesta infleksije (prijelaz vlak/tlak) zbog odstupanja neutralne osi savijanja od neutralne osi presjeka cijevi. Naime, na mjestu gdje se mijenja predznak naprezanja mijenja se i položaj neutralne osi na suprotnu stranu u istom iznosu.

4.4. Metoda konačnih elemenata

U ovom slučaju opisuje se model savijanja grede sa linearno promjenjivim opterećenjem i linearno promjenjivim uzdužnim silama (slika 4.9). Pošto se u ovom razmatranju ne bavim teorijom konačnih elementa izložiti ću samo zadnji dio izvoda elemenata potrebnih za izračun.

Slika 4.9 Gredni element složenog savijanja

$$([k]_{S} + [k]_{G})_{e} \{\delta\}_{e} = \{F\}_{e} + \{f\}_{qe} \quad e = 1, ..., n$$
(4.28)

gdje je;

 $[k]_{s}$ - krutost elementa na savijanje;

$$\begin{bmatrix} k \end{bmatrix}_{s} = \frac{2EI}{l^{3}} \begin{bmatrix} 6 & 3l & -6 & 3l \\ & 2l^{2} & -3l & l^{2} \\ sim. & 6 & -3l \\ & & & 2l^{2} \end{bmatrix}$$
(4.29)

 $[k]_{G}$ - matrica geometrijske krutosti;

$$[k]_{G} = [k]_{G1} + [k]_{G2}$$
(4.30)

$$\begin{bmatrix} k \end{bmatrix}_{G1} = -\frac{N_1}{30l} \begin{bmatrix} 36 & 3l & -36 & 3l \\ & 4l^2 & -3l & l^2 \\ \sin & 36 & -3l \\ & & 4l^2 \end{bmatrix}$$
(4.31)

$$[k]_{G2} = \frac{N_1 - N_2}{60l} \begin{bmatrix} 36 & 6l & -36 & 0\\ & 2l^2 & -6l & -l^2\\ \text{sim.} & 36 & 0\\ & & & 6l^2 \end{bmatrix}$$
(4.32)

 $[f]_{qe}$ - matrica vanjskog opterećenja;

$$\{f\}_{qe} = \frac{q_1 l_e}{12} \begin{cases} 6\\l_e\\6\\-l_e \end{cases} + \frac{(q_2 - q_1) l_e}{60} \begin{cases} 9\\2l_e\\21\\-3l_e \end{cases}$$
(4.33)

 $[\delta]_{e}$ - matrica pomaka;

$$\{\delta\}_{e} = \begin{cases} w_{1} \\ \varphi_{1} \\ w_{2} \\ \varphi_{2} \end{cases} - \text{progib u prvom čvoru} \\ - \text{kut zakreta u prvom čvoru} \\ - \text{progib u drugom čvoru} \\ - \text{kut zakreta u drugom čvoru} \end{cases}$$
(4.34)

 $[F]_{e}$ - matrica poprečnih čvornih sila i momenata savijanja;

$$\{F\}_{e} = \begin{cases} Q_{1} \\ M_{1} \\ Q_{2} \\ M_{2} \end{cases}$$
 - poprečna sila u prvom čvoru
- moment savijanja u prvom čvoru
- poprečna sila u drugom čvoru
- moment savijanja u drugom čvoru
- moment savijanja u drugom čvoru

4.4.1. Model cjevovoda pri proračunu sa MKE

Analiza u slučaju polaganja čeličnog cjevovoda se računa na modelu grednog konačnog elementa. Ravnotežni položaj cjevovoda određen je za relaksirani položaj u kojem ne djeluje horizontalna sila povlačenja F_{H} .

Model cjevovoda pri ovakvom proračunu je neutralna linija (smjer porinuća cjevovoda) sa svojstvima koja smo prije odredili (npr. čelična cijev iz 3.8), balastom i lancima koji su bili modelirani kao prednapregnute opruge u iznosu razlike dubine mora i neutralne linije w_0 (slika 4.10).

Slika 4.10 Model pri proračunu s MKE

4.5. Model za metodu polaganja cjevovoda u segmentima

Kod polaganja ostalih tipova cijevi (npr. PEHD) ravnotežni položaj cjevovoda određen je za podignuti položaj kraja cjevovod na površinu mora (slika 4.11). Taj položaj odgovara završnoj fazi potapanja, koje počine sa strane kopna, ili podizanja s morskog dna, neposredno prije spajanja završetka sekcije sa slijedećom.

Slika 4.11 Segment cijevi modeliran kao lančanica

Položaj je određen za minimalnu vrijednost horizontalne sile povlačenje F_H . Sila je određena prema kriteriju dozvoljenog maksimalnog naprezanja, odnosno minimalnog radijusa savijanja, vidi jednadžbe (3.15). Kako je cijev izrađena od PEHD materijala, vrlo je savitljiva na većim rasponima pa je model njenog potapanja/podizanja analiziran na modelu nerastezljive prostorne lančanice opterećene koncentriranim silama. Analitički model je opisan u slijedećem odlomku. Takav pristup je na strani sigurnosti jer je stvarna zakrivljenost manja (radijus zakrivljenosti je veći), zbog male, a ipak realne krutost cijevi na savijanje. Lokalne deformacije cjevovoda pod djelovanjem koncentriranih sila i rubnih uvjeta analizirani su metodom konačnih elemenata, na modelu složenog savijanja grede, vidi 4.4.

4.5.1. Statika prostorne nerastezljive lančanice

Slika 4.12 Prostorni model obješene lančanice

gdje je:

- *V* reakcija u smjeru osi z u objesištu (F_{z0}),
- *H* reakcija u smjeru osi x u objesištu (F_{x0}),
- U reakcija u smjeru osi y u objesištu (F_{y0}),
- F_{xn} sila u lančanici u točci P_n , u smjeru osi x,
- F_{yn} sila u lančanici u točci P_n , u smjeru osi y,
- F_{zn} sila u lančanici u točci P_n , u smjeru osi z,
- q kontinuirano opterećenje ($q_x(s), q_y(s), q_z(s)$),
- F_i koncentrirana sila u točci *i* ($F_x(s)$, $F_y(s)$, $F_z(s)$)

Geometrija neelastične lančanice opisana je koordinatama x,y,z, kojem pripada Lagrangeova koordinata s.

$$x = x(s)$$

$$y = y(s)$$

$$z = z(s)$$

(4.36)

Težina lančanice i kontinuirano opterećenje je q(s; x, y, z), a njena je dužina l_0 .

Statičku ravnotežu na presjeku *s* lančanice opisuju jednadžbe ravnoteže sila u smjeru koordinatnih osi:

$$F_{xn} = H - \sum_{i=1}^{n} F_{xi} - q_{x}s$$

$$F_{yn} = U - \sum_{i=1}^{n} F_{yi} - q_{y}s$$

$$F_{zn} = V - \sum_{i=1}^{n} F_{zi} - q_{z}s$$
(4.37)

Komponente sile F mogu se izraziti po komponentama kao

$$F_{x} = F \frac{dx}{ds}$$

$$F_{y} = F \frac{dy}{ds}$$

$$F_{z} = F \frac{dz}{ds}$$
(4.38)

Geometrija diferencijalnog elementa lančanice, određena je kao;

$$\left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2 + \left(\frac{dz}{ds}\right)^2 = 1$$
(4.39)

pa možemo pisati;

$$F_n^2 = F_{xn}^2 + F_{yn}^2 + F_{zn}^2$$
(4.40)

Rješenje za koordinate presjeka po 4.38 glasi;

$$x = \int_{0}^{s} \frac{F_{xn}}{F_n} ds + C_x$$

$$y = \int_{0}^{s} \frac{F_{yn}}{F_n} ds + C_y$$

$$z = \int_{0}^{s} \frac{F_{zn}}{F_n} ds + C_z$$
(4.41)

Konstante integracije C_x , C_y , C_z , ovise o gornjoj granici integrala, odnosno o veličini Lagrangeove koordinate *s*. Ovisno o toj koordinati mijenja se i broj koncentriranih sila, tj. vrijednost indeksa n(s) u njihovoj sumi. Koristeći činjenicu da je lančanica neprekinuta, mogu se u svakom od presjeka s_n , n = 1...N, izraziti rubni uvjeti.

4.5.2. Rješenje statički ovješene nerastezljive lančanice

Za poznatu geometriju $P_0(x_0, y_0, z_0)$ tražimo silu u lančanici u točci $P_n(x_n, y_n, z_n)$, pa se tako problem svodi na rješavanje tri nelinearne jednadžbe sa tri nepoznanice $(H_0 = F_{01}, U_0 = F_{02}, V_0 = F_{03})$. Problem (4.42) se rješava pomoću Rješavača^{*} GRG2 (lit. [13]) koji se nalazi u programskom paketu Microsoft Excel. Alat Rješavač Microsoft Excela koristi nelinearni optimizacijski kod Generalized Reduced Gradient (GRG2) koji su razvili Leon Lasdon, University of Texas u Austinu i Allan Waren, Cleveland State University.

Linearni i cjelobrojni problemi koriste pojednostavljeni postupak sa skokovima varijabli i postupak grananja i skokova, koji su primijenili John Watson i Dan Fylstra iz Frontline Systems, Inc.

Geometrija lančanice određuje se prema;

$$x_{j}(s) = C_{j,n} + \frac{q_{j}}{q^{2}} \sqrt{A_{n}^{2} - 2B_{n}s + q^{2}s^{2}} + \dots$$

$$\dots + f_{j,QB}(n) \ln \left[2 \left(-\frac{B_{n}}{q} + qs + \sqrt{A_{n}^{2} - 2B_{n}s + q^{2}s^{2}} \right) \right]; \quad \text{za } s_{n-1} \le s < s$$

$$(4.42)$$

notacija;

$$q_j = \left\{ q_x, q_y, q_z \right\} \tag{4.43}$$

$$q^{2} = \sum_{j=1}^{3} q_{j}^{2}$$
(4.44)

$$Q_{j,n} = F_{j,0} - \sum_{k=1}^{n} F_{j,k}$$
(4.45)

$$B_n = \sum_{j=1}^{3} q_j \left(F_{j,0} - \sum_{k=1}^{n} F_{j,k} \right) = \sum_{j=1}^{3} q_j Q_{j,n}$$
(4.46)

$$A_n^2 = \sum_{j=1}^3 Q_{j,n}^2$$
(4.47)

Rješavač je dio paketa naredbi koje se ponekad zovu i alati za analizu što-ako. Pomoću Rješavača možete pronaći optimalnu vrijednost za formulu, koja se zove ciljna formula. Rješavač radi s grupom formula koje su povezane ili izravno ili neizravno, s formulom u ciljnoj ćeliji. Rješavač podešava vrijednosti u navedenim formulama u kojima se mijenja vrijednost — koje se zovu podesive formule — kako bi napravio navedeni rezultat iz formule ciljne ćelije. Mogu se primijeniti i ograničenja kako bi se ograničile vrijednosti koje Rješavač može koristiti u tom modelu, a ograničena mogu upućivati prema drugim funkcijama koje utječu na rezultat (lit. [13]).

uz pomoćne funkcije;

$$f_{SQ}(n) = \sqrt{A_n^2 - 2B_n s_n + q^2 s_n^2}$$
(4.48)

$$f_{SQ}(n-1) = \sqrt{A_{n-1}^{2} - 2B_{n-1}s_{n} + q^{2}s_{n}^{2}}$$
(4.49)

$$f_{j,QB}(n) = \frac{Q_{j,n}}{q} - \frac{B_n q_j}{q^3} ; \qquad \text{za } j = 1, 2, 3$$
(4.50)

$$f_{j,QB}(n-1) = \frac{Q_{j,n-1}}{q} - \frac{B_{n-1}q_j}{q^3}; \quad \text{za } j = 1, 2, 3$$
(4.51)

$$f_{\rm LN}(n) = \ln \left[2 \left(-\frac{B_n}{q} + qs_n + f_{SQ}(n) \right) \right]$$
(4.52)

$$f_{\rm LN}(n-1) = \ln\left[2\left(-\frac{B_{n-1}}{q} + qs_n + f_{SQ}(n-1)\right)\right]$$
(4.53)

Konstante integracije;

$$C_{j,0} = \frac{q_j}{q^2} (f_{SQ}(0)) - [f_{j,QB}(n) f_{LN}(0)]; \quad \text{za } s_0 = 0; \ j = 1, \ 2, \ 3$$
(4.54)

$$C_{j,n} = C_{j,n-1} + \frac{q_j}{q^2} \left(f_{SQ}(n) - f_{SQ}(n-1) \right) - \dots$$

$$\dots - \left[f_{j,QB}(n) f_{LN}(n) - f_{j,QB}(n-1) f_{LN}(n-1) \right]; \quad j = 1, 2, 3$$
(4.55)

Primjer rješenja sustava dan je u 5.1.

5. PRIMJERI

5.1. Polaganje PEHD cjevovoda u segmentima kanalizacijskog sustava Kaštela – Trogir

5.1.1. Uvod

Ovaj izvještaj sadrži studiju izvedivosti i projekt polaganja podmorskog dijela kanalizacijskog sustava Kaštela – Trogir (1. Faza).

Cilj ove studije je prvenstveno provjeriti izvedivost prihvaćene metode polaganja podmorskog cjevovoda u odnosu na dva važna kriterije:

- izvijanje cjevovoda uslijed neprihvatljivog radijusa zakrivljenosti,
- zaglave cjevovoda na morskom dnu uslijed njegove neprimjerene zakrivljenosti u odnosu na morsko dno.

Analiza je provedena za 6 položaja podmorskog cjevovoda koji su karakteristični tijekom polaganja:

- pozicija 1: $x_1 = 400,0 \text{ m}$
- pozicija 2: $x_2 = 800,0 \text{ m},$
- pozicija 3: $x_3 = 1200,0 \text{ m},$
- pozicija 4: $x_4 = 1600,0 \text{ m},$
- pozicija 5: $x_5 = 2000,0 \text{ m},$
- pozicija 6: $x_6 = 2400,0 \text{ m}.$

Slika 5.1 Kanalizacijski sustav Kaštela – Trogir (1. faza)

PRIMJERI

Slika 5.2 Profil trase ispusta Čiovo sa označenim segmentima cjevovoda

← → - položaj segmenata na dnu,

← → - položaj segmenata prilikom međusobnog spajanja

45

PRIMJERI

Cilj ove studije je prvenstveno provjeriti izvedivost predložene metode polaganja podmorskog cjevovoda u odnosu na kriterij savijanja koje može izazvati:

- izvijanje cjevovoda uslijed neprihvatljivog radijusa zakrivljenosti,
- plastične deformacije cjevovoda.

Analiza je provedena za 6 položaja podmorskog cjevovoda koji su karakteristični tijekom polaganja:

- pozicija 1: $x_1 = 400,0 \text{ m}$
- pozicija 2: $x_2 = 800,0 \text{ m},$
- pozicija 3: $x_3 = 1200,0 \text{ m},$
- pozicija 4: $x_4 = 1600,0 \text{ m},$
- pozicija 5: $x_5 = 2000,0 \text{ m},$ - pozicija 6: $x_6 = 2400,0 \text{ m}.$

Montaža i potapanje podmorskog ispusta izvest će se pomoću barže. Cjevovod će se polagati bočno sa montažne platforme prilagođene postupku potapanja, dizanja i spajanja sekcija. Dimenzije barže su slijedeće:

- duljina:	L = 26,0 m,
- širina:	B = 8,0 m,
- gaz:	T = 1,6 m,
- visina:	H = 2,2 m.

U zaključnom dijelu studije dana je procjena potrebnih elemenata za balastiranje i uzgon cjevovoda kao i minimalne sile povlačenja i dizanja cjevovoda, sile koja osigurava pridneni dio cjevovoda od nedozvoljene deformacije.

5.1.2. Karakteristike podmorskog ispusta

Analiza izvedivosti polaganja podmorskog ispusta metodom segmentalnog potapanja cijevi oteživačima i međusobnim spajanjem (zavarivanjem) sekcija duljine Dl = 400,0 m. Parametri cjevovoda sumirani su u Tabeli 5.2. Kako je gustoća materijala cijevi manja od gustoće mora, neopterećena cijev pluta na površini mora, dok potopljena u moru ima pozitivan uzgon. Dijagram na slici 5.3 pokazuje gaz plutajuće cijevi u moru.

Slika 5.3 Plutanje neopterećenog cjevovoda

Materijal	PEHD	PE100		
g =	9.81	m/s²	gravitacijaska akceleracija	
ρ _c =	955	kg/m³	specifična masa materijala cijevi	
ρ _{mv} =	1030	kg/m ³	specifična masa morske vode	
D _v =	0,710	т	vanjski promjer presjeka	
<i>D</i> _{<i>u</i>} =	0,6556	т	unutarnji promjer presjeka	
<i>t_e</i> =	27,2	mm	debljina stijenke	
A _{pr} =	0.0583	kg/m²	površina porečnog presjeka	
m _{dc} =	55.68	kg/m	distribuirana masa cijevi	
G _{dc} =	546	N/m	distribuirana težina cijevi cijevi	
Ar =	0.0541	m2	potrebni iznos uronjene površine poprečnog presjeka	

Tablica 5.1 Geometrijske i fizikalne značajke cijevi podmorskog ispusta

5.1.3. Krutost cjevovoda na savijanje

Minimalni radijus zakrivljena kojeg cjevovod može podnijeti u odnosu na kriterij lokalnog i globalnog izvijanja i iznosi:

$$R_{\min} = \frac{EI}{\sigma W} = \frac{ED}{2\sigma} = \begin{cases} 32,0 \ m & za \ \sigma = 10,0 \ 10^6 \ N/m^2 \\ 70,0 \ m & za \ \sigma = 4,5 \ 10^6 \ N/m^2 \end{cases}$$
(5.1)

Taj kriterij je usvojen na strani sigurnosti.

Površina poprečnog presjeka, A	0,0583	m^2
Moment tromosti poprečnog presjeka, I	0,00341	m^4
Moment otpora poprečnog presjeka, W	0,00959	m^3
Modul elastičnosti, E	9,0.10 ⁸	N/m^2
krutost presjeka na savijanje, EI	3,068 . 10 ⁶	Nm ²
kratkoročno(do 3 min)	10,0 . 10 ⁶	N/m^2
dugoročno (do 20 sati, $\leq 20^{0}$ C)	4,5 . 10 ⁶	N/m^2

Tablica	5.2 1	Fizikalne	i ge	ometriiske	značaike	presieka
I aonea			- 5~	omeengone	Znacajne	presjena

Kako potpuno potopljeni cjevovod (ispunjen morem) ima pozitivni uzgon, vidi Tabelu 5.3, njegovo potapanje bit će izvedeno pomoću betonskih opteživača težine F_z u moru, razmještenih Ds uzduž cijevi. Analiza izvedivosti potapanja i dizanja izvršena je za slijedeće parametre opteživača:

Tablica 5.3 Balastiranje cjevovoda

$\mathbf{F}_{\mathbf{z}} =$	-1500,0 N (u moru)
Ds =	18,0 m

Distribuirano opterećenje potopljenog cjevovoda u moru navedeno je u Tabeli 5.4.

Tablica 5.4 Opterećenje cjevovoda (uronjena cijev ispunjena morem, r=1030 kg/m³)

Promjer	Težina	Uzgon	Opterećenje
	N/m	N/m	N/m
F710	-546,6	589,5	42,9

5.1.4. Ravnotežni položaj podmorskog cjevovoda tijekom polaganja

Ravnotežni položaj cjevovoda određen je za podignuti položaj kraja cjevovod na površinu mora. Taj položaj odgovara završnoj fazi potapanja, koje počine sa strane kopna, ili podizanja s morskog dna, neposredno prije spajanja završetka sekcije sa slijedećom. Položaj je određen za minimalnu vrijednost horizontalna sile povlačenje F_H . Sila je određena prema kriteriju dozvoljenog maksimalnog naprezanja, odnosno minimalnog radijusa savijanja, vidi jednadžbe (5.1). Kako je cijev izrađena od PEHD *PE100* materijala, vrlo je savitljiva na većim rasponima pa je model njenog potapanja/podizanja analiziran na modelu nerastezljive prostorne lančanice opterećene koncentriranim silama. Analitički model je opisan u 4.5. Takav pristup je na strani sigurnosti jer je stvarna zakrivljenost manja (radijus zakrivljenosti je veći), zbog male a ipak realne krutost cijevi na savijanje. Lokalne deformacije cjevovoda pod djelovanjem koncentriranih sila i rubnih uvjeta analizirani su metodom konačnih elemenata, na modelu složenog savijanja grede, vidi 4.4.

Rezultati proračuna izvedenog za kritični radijus savijanja cijevi na morskom dnu prilikom potapanja ili podizanja prikazani su u Tabeli 5.2 samo za prvu sekciju generaliziranom metodom najstrmijeg gradijenta riješen je nelinearni sustav jednadžbi, uz slijedeća ograničenja:

Tablica 5.5 Statička ravnoteža cjevovoda podmorskog ispusta prilikom potapanja/podizanja: Sekcija I

PRORAČUN LANČANICE CJEVOVODA

N m⁻ **q**₁ 0,000 Q_1 Ulazni 0,0 Ν N m⁻¹ Q_2 Reakcije u objesistima parametri **q**₂ 0,000 0,0 Ν Koordinate tocke P_N т 42,900 N m⁻¹ Q₃ 5405,4 **q** 3 Ν nepoznanice zadane izracunate razlika N m⁻¹ F _{1,0} 42,900 A = 0,0583 6954,09 113,65 q 0,00 = norma q^2 N ²m⁻² P₀ F _{2,0} 0,00 0,00 1840,410 3,41E-03 0,00 / = *m*4 F 3,0 9,59E-03 1443,61 49,60 W = 49,60 m3 Dı 18,00 F _{1,N} а _{1,N} **46,8**⁰ EI = 3,07E+06 6954,1 duljina segmenta Nm2 т **0,0** ⁰ Q_x P_N F _{2,N} 7 a _{2,N} broj segmenata n Opteživači 0,0 Ν 0,0 Qy F _{3.N} а _{з,N} 43,2 ⁰ ukupna duljina 126,0 6538,2 Ι т 0,0 Ν Qz F₀ broj presjeka -1500,0 Ν 100 Uzdužna 7102,8 Ν Ν F_N sila 9545,0 Ν

50

Sekcija I

	12	11	10	9	8	(6	5	4	3	2	1
7,3	17,3	15,8	14,4	13,0	11,5	10,1	8,6	7,2	5,8	4,3	2,9	1,4
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7	1417,7
+07	3,871E+07											
9,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7	60819,7
5,9	6095,9	6103,1	6110,9	6119,3	6128,3	6137,9	6148,1	6158,9	6170,4	6182,4	6195,0	6208,2
5,9	6095,9	6103,1	6110,9	6119,3	6128,3	6137,9	6148,1	6158,9	6170,4	6182,4	6195,0	6208,2
1,2	141,2	141,2	141,2	141,2	141,2	141,2	141,2	141,2	141,2	141,2	141,2	141,2
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
+02	1,412E+02											
-11	-7,373E-11											
+00	0,000E+00											
9,3	9,3	9,3	9,3	9,3	9,3	9,2	9,2	9,2	9,2	9,2	9,2	9,2
9,3	9,3	9,3	9,3	9,3	9,3	9,2	9,2	9,2	9,2	9,2	9,2	9,2
5,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0	-1295,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5,0	145,0	145,0	145,0	145,0	145,0	145,0	145,0	145,0	145,0	145,0	145,0	145,0
,02	17,02	15,59	14,16	12,73	11,31	9,89	8,47	7,05	5,63	4,22	2,81	1,40
,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
,94	2,94	2,77	2,59	2,39	2,18	1,96	1,72	1,47	1,20	0,92	0,63	0,32
8,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3	6058,3
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6,4	676,4	738,2	799,9	861,7	923,5	985,3	1047,1	1108,8	1170,6	1232,4	1294,2	1355,9
5,9	6095,9	6103,1	6110,9	6119,3	6128,3	6137,9	6148,1	6158,9	6170,4	6182,4	6195,0	6208,2

Tablica 5.6 Prikaz djela tablice koja se koristila pri rješavanju statičke ovješene lančanice teorijski opisane u 4.5.2.

0

0

0

0

0

0

0

0

0

0

0

Opcija za koncentriranu silu:

 F_{jn}

Q_{jn}

f_{j,QB}(n-1)

f_{j,QB}(n)

C_{jn}

x_{jn}

T_{jn}

n

s

 F_{1n}

 F_{2n}

 F_{3n}

Q_{1n}

 Q_{2n}

 Q_{3n}

f_{1,QB}(n-1)

f_{2,QB}(n-1)

f_{3,QB}(n-1)

f_{1,QB}(n)

 $f_{2,QB}(n)$

f_{3,QB}(n)

 C_{1n}

 C_{2n}

 C_{3n}

x_{1n}

 \mathbf{x}_{2n}

x_{3n}

T_{1n}

 T_{2n}

 T_{3n}

Tn

 A_n^2

B_n

f_{SQ}(n-1)

f_{SQ}(n)

f_{LN}(n-1)

f_{LN}(n)

0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0 11,0

12,0

13,0

14,0

15,0

16,0

17,0

18,0

19,0 20,0

21,0

22

23

24

25

26

27

28

0

0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

9,2

0,0

145,0

0,00

0,00

0,00

0,0

6058,3

1417,7

6222,0

-1295,0

141,2

6058,

1417,7 6058,3

1417,7

60819,7

6222,0

3,871E+07

0

Slika 5.4 Ravnotežni položaj cjevovoda (minimalna dozvoljena sila): potapanje/podizanje – Sekcija I

PRIMJERI

Slika 5.5 Naprezanje u cjevovodu (kod minimalne dozvoljene sile): potapanje/podizanje – Sekcija I

Slika 5.6 Radijus zakrivljenosti (kod minimalne dozvoljene sile): potapanje/podizanje – Sekcija I

5.1.5. Zaključak

Izvršena analiza deformacije cjevovoda podmorskog ispusta Čiovo prilikom njegovog potapanja i podizanja s morskog dna pokazuje da je postupak spajanja sekcija moguć i izvediv na prisutnim dubinama uz obveznu kontrolu minimalne horizontalne sile kojom je određen minimalni radijus zakrivljenosti cjevovoda. Rezultati analize nalaze se na strani sigurnosti jer je strukturni model temeljen na mehanici lančanice dok je naprezanje savijanja izvedeno iz krutosti na savijanje i dobivenog radijusa zakrivljenosti koji je manji od realnog – zanemarena je krutost cjevovoda na savijanja. Kako krutost na svijanja ima lokalni utjecaj i pripadni radijus zakrivljenosti savijanja je nižeg reda veličine od globalnog može se smatrati da su rezultati statičke analize prihvatljive točnosti.

Zahtijevanu silu kojom se potapa odnosno podiže kraj podmorskog ispusta moguće je kontrolirati nagibom užeta palubne dizalice (odnos horizontalne i vertikalne komponente sile) kojom se podiže ili potapa cjevovod a koja ovisi:

- o položaju barže u odnosu na kraj cjevovoda na morskom dnu, slika 5.7,
- duljini podignutog dijela cjevovoda (broju segmenata s balastnim elementima),
- horizontalnoj i vertikalnoj komponenti sile podizanja.

Za sigurni postupak montaže cjevovoda podmorskog ispusta potrebno je koordinirati rad sidrenih vitala i dizalice na barži.

Slika 5.7 Granični kut cjevovoda a_{1,N} kod polaganja/podizanja s morskog dna

Tabela 5.7 sadrži ograničenja koja osiguravaju deformaciju i naprezanje u cjevovodu za uvjete dozvoljenog radijusa zakrivljenosti r na morskom dnu i maksimalnog naprezanja u cijevi.

Prilikom spajanja sekcija termičkim zavarivanjem potrebno je debalastirati površinski dio sekcije kako bi se osigurala potrebna zakrivljenost dijela cjevovoda koji se preko *stingera* navlači do uređaja za zavarivanje.

m 10.0		т	m
40.0			111
49,6	7	126,0	113,7
54,4	7	126,0	111,2
56,6	8	144,0	129,1
57,3	8	144,0	128,7
58,0	8	144,0	128,2
58,6	8	144,0	128,5
	49,0 54,4 56,6 57,3 58,0 58,6	49,0 7 54,4 7 56,6 8 57,3 8 58,0 8 58,6 8	49,0 7 126,0 54,4 7 126,0 56,6 8 144,0 57,3 8 144,0 58,0 8 144,0 58,6 8 144,0

Tablica 5.7 Granične vrijednosti prilikom montaže podmorskog ispusta Čiovo (vidi sliku 5.7)

r(s=0)	F _{1,N}	F _{2,N}	$F_{3,N}$	F_N	a _{1,N}
т	kN	kN	kN	kN	0
82,8	6,954	0,0	6,538	9,545	47,0
75,2	6,273	0,0	6,595	9,102	44,0
83,3	7,026	0,0	7,109	9,995	45,0
80,9	6,823	0,0	7,074	9,829	44,0
78,6	6,745	0,0	7,040	9,674	43,0
85,2	7,161	0,0	7,294	10,221	45,0

- d dubina morskog dna,
- n broj segmenata *Ds* sa balastnim elementima *Q*,
- s duljina podignute sekcije cjevovoda,
- s_x horizontalna projekcija podignute sekcije cjevovoda,
- r radijus zakrivljenosti na morskom dnu,
- $F_{j,N}$ komponenta sile u hvatištu u smjeru j = 1,2,3,
- $F_{,N}$ sila u hvatištu,
- $a_{I,N}$ kut sile u hvatištu.

5.2. Polaganje cjevovoda na relaciji Vlaška vela – Koromačina metodom kontroliranog povlačenja iznad morskog dna

5.2.1. Uvod

Ovaj projekt sadrži studiju izvedivosti polaganja vodovodnog cjevovoda na relaciji između:

- polazna lokacija: Koromačina (kopno), točka LP1,
- završna lokacija: Vlaška Vela (otok Pag), točka LP2.

Slika 5.8 Položaj cjevovoda u Velebitskom kanalu

Smjer podmorskog cjevovoda je okomit na Velebitski kanal, te zbog intenzivnog pomorskog prometa u obzir dolaze samo primjerene metode polaganje ispod razine mora.

Metode koje će biti opisane i uspoređene u narednom izlaganju su: kontrolirano povlačenje iznad morskog dna (vidi 2.4.2) i S-tip polaganja (vidi 2.2) cijevi. Cjevovod se sastoji od jedne cijevi Φ 300 čije će karakteristike biti kasnije opisane.

Cilj ovog projekta je provjeriti izvedivost usvojene metode polaganja podmorskog cjevovoda u odnosu na dva važna kriterija:

- izvijanje cjevovoda uslijed neprihvatljivog radijusa zakrivljenosti,
- zaglave cjevovoda na morskom dnu uslijed njegove neprimjerene zakrivljenosti u odnosu na morsko dno

Analiza je provedena za pet položaja cjevovoda koji su karakteristični tijekom polaganja;

- cjevovod neposredno prije urona
- cjevovod na 0,25 raspona
- cjevovod na 0,5 raspona
- cjevovod na 0,75 raspona
- cjevovod na 1,00 raspona

5.2.2. Geometrijske značajke cjevovoda

Predmetni podmorski cjevovod je jedna Φ 300 cijev koja se sastoji od:

- unutarnjeg betonskog omotača
- unutarnje termoplastične cijevi izvedene od kontinuiranog polietilena
- metalne cijevi izrađene od čelika povišene čvrstoće: st52.4 (granica tečenja σ_v =355 N/mm²)
- vanjskog termoplastičnog omotača izvedenog od kontinuiranog polietilena
- betonskog omotača, armiranog mikrovlakancima, debljine 15mm.

Cijevi su ispitane na tlak $1,4\cdot 10^7$ Pa (140 bar).

Geometrijske karakteristike poprečnih presjeka i distribuirana masa vode navedene su, prema podacima proizvođača, u tablicama 5.8 i 5.9. Uz nominalne vrijednosti navedene su i minimalna i maksimalna veličina pojedinih karakteristika te pripadajuće vrijednosti izvedenih parametara.

5.2.3. Krutost cjevovoda na savijanje

Osnovni parametar u analizi je, uz težinu i uzgon cjevovoda, njegova krutost na savijanje. Kada se cijev savija, jedan dio omotača je izložen rastezanju, dok je drugi izložen sabijanju. Kako je vlačna čvrstoća betona zanemariva, dio omotača izloženog rastezanju ne sudjeluje u čvrstoći i dolazi do pomaka neutralne osi kompozitnog presjeka koji se sastoji od čeličnog i betonskog dijela. Normalno naprezanje savijanja čelične cijevi se zbog toga povećava na vlačnoj i smanjuje na tlačnoj strani. Pomak neutralne osi računa se iz ravnoteže svih sila na presjeku kao što je prikazano u 3.8.

Minimalni radijus zakrivljenja kojeg cjevovod može podnijeti u odnosu na kriterij lokalnog i globalnog izvijanja određen je prema 3.8 i iznosi:

$$R_{min} = 162.6 \text{ m}$$

Taj kriterij je usvojen na strani sigurnosti. Opterećenje podmorskog cjevovoda određeno je za nominalne, maksimalne i minimalne vrijednosti geometrijskih parametara prema tablicama 5.8 i 5.9. Analiza je izvršena na temelju nominalnih vrijednosti:

Promjer	Težina	Uzgon	Opterećenje
	kN/m	kN/m	kN/m
Φ_{300}	-930,5	1015,6	85,1

Tablica 5.8 Opterećenje cjevovoda (ispunjenog zrakom)

Slika 5.9 Raspored naprezanja na čeličnoj cijevi sa betonskim oblogama

Tablica 5.9	Svojstva	čeličnog	cjevovoda	obloženog	cementnom	oblogom
	- · · · Jac · · ·					

Cij	ev	AREA	Ix	I _y	Iz	I _{yz}	Wxmin	Wymin	Wzmin	Shary	Sharz	Shceny	Shcenz	Sy	Sz
		m^2	m^4	m^4	m^4	m^4	m^3	m^3	m^3	m	m	m	m		
Φ_3	00	7,07e-03	1,77e-04	1,05e-04	1,05e-04	0	1,10e-03	5,77e-04	5,77e-04	3,46e-03	3,46e-03	0,02016	0,02016	4,30e-04	4,30e-04

PRIMJERI

5.2.4. Trasa cjevovoda

Trasa podmorskog vodovodnog cjevovoda za lokaciju "Koromačina – Vlaška Vela" proteže se od točke "LP1" do točke "LP2" na kursu 235°23'20". Koordinate točaka u Gauss-Krüger-ovoj projekciji su sljedeće:

Točka	у	Х	Z	
"I D1"	5 499 304,28 m	5 937 414,47 m	2.83 m	
LFI	φ= 44°34'53,44"	λ = 14°59'12,49"	2,05 111	
ייז די	5 497 165,44 m	5 935 938,37 m	1.40 m	
	φ = 44°34'3,23"	$\lambda = 14^{\circ}57'35,43''$	1,40 111	

Tablica 5.10 Koordinate polazne i završne točke

Zračna udaljenost između te dvije točke iznosi 2599 m.

5.2.5. Zakrivljenost morskog dna

Kako je već navedeno u odlomku 3.9 Jedan od kriterija polaganja podmorskog cjevovoda na kontroliranoj visini iznad morskog dna je minimalni radijus globalne zakrivljenosti dna - R_{dmin} .

Na temelju dozvoljenog minimalnog radijusa zakrivljenosti cijevi, koji slijedi iz dozvoljenog naprezanja σ_d određenog u odnosu na kriterij naprezanja ili izvijanja, određuje se potrebno balastiranje cjevovoda prema geometriji morskog dna. U tu svrhu je izvršena numerička aproksimacija profila dna na osnovi izmjerenih podataka. Profil trase $z_1(x)$ aproksimiran je polinomom Pn(x) 8-tog stupnja:

$$w(x) = -6,4237 \cdot 10^{-24} \cdot x^8 + 5,1873 \cdot 10^{-20} \cdot x^7 - 1,6085 \cdot 10^{-16} \cdot x^6 + 2,6056 \cdot 10^{-13} \cdot x^5 -2,9436 \cdot 10^{-10} \cdot x^4 + 2,8297 \cdot 10^{-7} \cdot x^3 - 1,1942^{-4} \cdot x^2 - 8,9723 \cdot 10^{-2} \cdot x + 4,664$$
(5.2)

Usporedba aproksimacije prikazana je na slici 5.3.

Slika 5.10 Batimetrija dna i njena aproksimacija polinomom 8-og stupnja

62

5.2.6. Sastav morskog dna

Morsko dno uz trasu polaganja cjevovoda se sastoji od šljunka, pijeska i mulja te djelomično od sedimenata vapnenca. Oko 30 m od obale dno se sastoji od vapnenca debljine do 12 cm. Oko 100 m od obale dno je prekriveno šljunkom te pijeskom, a od 100-300m je pijesak pomiješan sa muljem. Na udaljenosti većoj od 300 m dno se sastoji samo od mulja.

5.2.7. Rezultati proračuna metodom konačnih elemenata (programski paket SESAM)

Slika 5.12 Reakcije u osloncima na rampi za porinuće u prvoj fazi polaganja

Slika 5.13 Naprezanje u cijevi u prvoj fazi polaganja

Slika 5.14 Reakcije u točkama u drugoj fazi polaganja

Slika 5.15 Naprezanje u cijevi u drugoj fazi polaganja

Slika 5.16 Neutralan položaj cjevovoda u drugoj fazi polaganja

Slika 5.18 Naprezanje u cijevi u trećoj fazi polaganja

Slika 5.19 Neutralan položaj cjevovoda u trećoj fazi polaganja

Slika 5.20 Reakcije u točkama u četvrtoj fazi polaganja

Slika 5.21 Naprezanje u cijevi u četvrtoj fazi polaganja

Slika 5.22 Neutralan položaj cjevovoda u četvrtoj fazi polaganja

Slika 5.23 Reakcije u točkama u petoj fazi polaganja

Slika 5.24 Naprezanje u cijevi u petoj fazi polaganja

Slika 5.25 Neutralan položaj cjevovoda u petoj, završnoj fazi polaganja

5.3. Usporedba rezultata proračuna pri polaganju cjevovoda na relaciji Punta Oštro (Kraljevica) – Mala Sršica (Urinj)

Kako je metoda kontroliranog povlačenja iznad morskog dna i njeno rješavanje opisano u 4.2 i 0, ovdje se to neće obrađivati. U narednom tekstu će biti uspoređene dvije metode rješavanja; metoda konačnih elemenata (programski paket Sesam) i metoda uplivnih koeficijenata.

U praksi se proračun izvodi za više faza polaganja dok ću ovdje uzeti u obzir samo završnu fazu.

Pri usporedbi ću se služiti samo grafičkim prikazom da se dobije bolji uvid u rješenje.

5.3.1. Rezultati naprezanja i progiba metodom uplivnih koeficijenata

Proračun po metodi uplivnih koeficijenata napravljen je prema lit. [8]. Pri proračunu se koristio program EXCEL koji je dio MS OFFICE paketa.

Slika 5.26 Položaj cjevovoda u završnoj fazi polaganja

72

73

5.3.2. Rezultati naprezanja i progiba metodom konačnih elemenata

Analiza se provodila modeliranjem cjevovoda u softverskom paketu "SESAM", modulom za modeliranje "PREFEM", analizu "SESTRA" te modulom "XTRACT" za ispisivanje rezultata. Model cjevovoda opisan je u 4.4.1, a grafički rezultati su predočeni na slijedećim stranama (slika 5.28, 5.22)

Slika 5.28 Položaj cjevovoda u zadnjoj fazi polaganja

Contours

DIPLOMSKI RAD

5.3.3. Usporedba naprezanja

Dobivena razlika je prikazana u tablicama 5.4. i 5.5.

	progib cjevo	ovoda w [m]	
x [m]	Metoda upl. koef.	Metoda kon. elemenata	Razlika
0	6,48	6,42	0,9%
12	5,64	5,58	1,1%
24	4,80	4,74	1,2%
36	3,96	3,90	1,5%
60	2,28	2,22	2,6%
72	1,44	1,38	4,2%
84	0,60	0,54	10,0%
128	-2,62	-2,49	4,9%
192	-7,32	-8,02	9,5%
256	-14,45	-15,67	8,5%
320	-24,62	-25,58	3,9%
384	-35,03	-35,47	1,2%
448	-41,84	-42,28	1,0%
512	-44,51	-45,29	1,8%
576	-44,54	-45,46	2,1%
640	-42,66	-43,35	1,6%
704	-38,09	-38,59	1,3%
768	-30,48	-31,19	2,3%
832	-21,47	-22,68	5,6%
896	-12,80	-14,67	14,7%
960	-5,99	-7,87	31,4%
1024	-2,34	-1,15	50,8%

Tablica 5.12 Razlika u naprezanjima

Maksimalna nap		
Metoda upl. koef.	Metoda kon. el.	Razlika
97	92	5,0%
-67	-79,3	15,7%

6. ZAKLJUČNO RAZMATRANJE

Kao što vidimo iz godine u godinu Hrvatska postaje sve veće turističko odredište i tranzicijska stanica u transportu naftnih prerađevina i plina. Iz toga proizlazi potreba za povećanjem protoka i/ili zamjenom dotrajalih podmorskih cjevovoda. Zato je ovaj rad bio i studija o izvedivosti polaganja u domaćim uvjetima. Domaći uvjeti odnose se na male udaljenosti i dubine, koje nam omogućavaju korištenje domaćih plovila niskih renti. Samim time, cijelo se financijsko opterećenje nadležnih općina ili ministarstava smanjuje i otvara prostor za veće obime radova. Tim radovima Hrvatska bi riješila probleme ispusta i distribucije pitke vode u vrijeme ljetnih preopterećenosti.

7. LITERATURA

- [1] ABS Guide for Building and Classing of Sub-sea Pipeline Systems; American Bureau of Shipping; Houston 2004.
- [2] Preframe Preprocessor for Generation of Beam Finite Element Models -Sesam user's manual, 2001.
- [3] Sestra Superelement Structural Analyses Sesam user's manual, 2002.
- [4] Senjanović, I.: Metoda konačnih elemenata u strukturnoj analizi brodskih konstrukcija; Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, Zagreb 1975.
- [5] J.M.J., Journée and W.W., Massie: Offshore hydromechanics, first edition; Delft University of Technology, Delft 2001.
- [6] Čatipović, I., Reljić M.: Kanalizacijski sustav Kaštela-Trogir; Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, Zagreb 2007.
- [7] Čatipović, I., Reljić M.: Polaganje podmorskog cjevovoda; Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, Zagreb 2005.
- [8] Alfirević, I.: Nauka o čvrstoći 2; Golden marketing tehnička knjiga, Zagreb 1999.
- [9] Ben, C., Gerwick, Jr.: Construction of Marine and Offshore Structures, second edition; University of California at Berkley, Berkley 1999.
- [10] Uršić, J.: Čvrstoća broda 3; Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, Zagreb 1992.
- [11] Bai, Y.: Pipelines and Risers; Elsevier Ocean Engineering Book Series; London 2001.
- [12] Čorić, V. at al.: AMOS Anchoring and Mooring of Offshore Structures; Faculty of Mechanical Engineering and Naval Architecture, Univ. of Zagreb
- [13] Lasdon, L., John W., Waren A., Fylstra D.: Design and use of the Microsoft Excell Solver; Frontline Systems Inc., 1998g.