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BA - Bosnia and Herzegovina 

EL - Greece 

HR - Croatia 
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SI - Slovenia 
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BG - Bulgaria 

RO - Romania 
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Gas, Top Gas, Voc Gas & Vapor, 

Waste Gas, WellheadGas 
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HRD - 

Anthracite, Other Anthracite, 
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Waste, Coal-Water Mixture, Gob, 

Hard Coal / Anthracite, Imported 

Coal, Other Solids, Soft Coal, 

Anthracite Silt, Steam Coal, 
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Subbituminous, Pelletized 

Synthetic Fuel From Coal, 

Bituminous Coal Waste) 

HYD - Hydrogen 

LIG - 
Lignite black, Lignite brown, 

Lignite 

NUC - U, Pu 

OIL - 

Crude Oil, Distillate Oil, Diesel 

Fuel, No. 1 Fuel Oil, No. 2 Fuel 

Oil, No. 3 Fuel Oil, No. 4 Fuel Oil, 

No. 5 Fuel Oil, No. 6 Fuel Oil, 

Furnace Fuel, Gas Oil, Gasoline, 

Heavy Oil Mixture, Jet Fuel, 

Kerosene, Light Fuel Oil, 

Liquefied Propane Gas, Methanol, 

Naphtha, ,Gas From Fuel Oil 

Gasification, Fuel Oil, Other 

Liquid, Orimulsion, Petroleum 

Coke, Petroleum Coke Synthetic 

Gas, Black Liquor, Residual Oils, 

Re-Refined Motor Oil, Oil Shale, 

Tar, Topped Crude Oil, Waste Oil 

PEA - Peat Moss 

SUN - Solar energy 

WAT - Hydro energy 

WIN - Wind energy 

WST - 

Digester Gas (Sewage Sludge 

Gas), Gas From Refuse 

Gasification, Hazardous Waste, 

Industrial Waste, Landfill Gas, 

Poultry Litter, Manure, Medical 

Waste, Refused Derived Fuel, 

Refuse, Waste Paper And Waste 

Plastic, Refinery Waste, Tires, 

Agricultural Waste, Waste Coal, 

Waste Water Sludge, Waste 

COMC - Combined cycle 

GTUR - Gas turbine 

HDAM - Conventional hydro dam 

HROR - Hydro run-of-river 

HPHS - Pumped hydro storage 

ICEN - Internal combustion engine 

PHOT - Solar photovoltaic 

STUR - Steam turbine 

WTOF - Offshore wind turbine 

WTON - Onshore wind turbine 
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CAES - Compressed air energy storage 

BATS - Stationary batteries 

BEVS - Battery-powered electric vehicles 

THMS - Thermal storage 

P2GS - Power-to-gas storage 

HE - Hydropower plant 

TE - Thermal power plant 

KTE - Combined cycle 

RHE - Pumped hydro storage 

CHP - Pumped hydro storage 

Unit - Unit name 

Year - Commissioning year 

Technology - Technology 

Primary fuel - Fuel 

Zone - Zone 

PowerCapacity MW Capacity 

Efficiency % Efficiency 

MinEfficiency % Efficiency at minimum load 

CO2Intensity TCO2/MWh CO2 intensity 

PartLoadMin % Minimum load 

RampUpRate %/min Ramp up rate 

RampDownRate %/min Ramp down rate 

StartUpTime h Start-up time 

MinUpTime h Minimum up time 

MinDownTime h Minimum down time 

NoLoadCost €/h No load cost 

StartUpCost € Start-up cost 

RampingCost €/MW Ramping cost 

CHP y/n Presence of CHP 

STOCapacity MWh Storage capacity 

STOSelfDischarge %/h Self-discharge rate 

STOMaxChargingPower MW Maximum charging power 

STOChargingEfficiency % Charging efficiency 

CHPType 
Extraction/back-

pressure/p2h 

CHP Type 

CHPPowerToHeat - Power-to-heat ratio 

CHPPowerLossFactor - Power loss factor 

CHPMaxHeat MW(th) Maximum heat production 

STOCapacity MWh(th) Capacity of heat storage 

STOSelfDischarge % % of storage heat loss pet  
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IEA - International Energy Agency 

ENTSO-E - 

European Network of 

Transmission System Operators 

for Electricity 
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ABSTRACT 

This study describes the implementation of three different models for detailed analysis of 

impacts on the regional power system for different hydrological years. The region includes 

countries Slovenia, Croatia, Serbia, Bosnia and Herzegovina, Montenegro, Kosovo, North 

Macedonia, Albania and Greece. Combining the hydrological LISFLOOD model with Dispa-

SET models for simulation of the regional power system, three scenarios for dry, average and 

wet year were studied to investigate the regional power system output for different hydrological 

conditions. The first part of the study included gathering data needed for detailed representation 

of regional power system participants and analysis of data from the LISFLOOD model provided 

by the European Commission’s Joint Research Centre (JRC).  

Data on regional power systems were obtained from available databases and documentation 

published by regional TSO’s. Details on region hydrology and power system of each country 

is described in the first two sections. Three mentioned models are in more detail described in 

Section 3. The LISFLOOD model is included in the study in the form of its results that are 

needed as input data for Dispa-SET models. Water inflows are crucial for a successful run of 

Dispa-SET models that can be divided into Dispa-SET Medium-Term Hydrothermal 

Coordination model (Dispa-SET MTHC) and Dispa-SET Unit Commitment and Dispatch 

model (Dispa-SET UCD). Dispa-SET MTHC model is used to in detail represent hydropower 

generation of each unit included in the study. Results in the form of hydropower generation for 

run-of-river units and reservoir levels of hydropower units with accumulations are used as input 

data for Dispa-SET UCD model. Besides power generation, results from UCD model include 

economical, commitment and power dispatch values for each unit and aggregated by country 

or region. 

The model was validated based on the hydropower generation for the reference year (2015). 

Results on three different hydrological years, 2007, 2015 and 2010 used as dry, average and 

wet year, respectively, are shown in Section 6. Region hydropower generation was compared 

to available statistical data from ENTSO-E and International Energy Agency. The study shows 

model results on power system operation for different hydrological conditions. 

 

KEYWORDS: LISFLOOD, Dispa-SET, Balkan Peninsula, Water-power nexus, Water-energy 

nexus 
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SAŽETAK 

U ovom radu proučava se poveznica između tri postojeća modela. U svrhu energetskog 

modeliranja i prikaza rezultata za različite ulazne podatke stvara se poveznica između 

LISFLOOD hidrološkog modela i Dispa-SET modela koji simulira energetski sustav definirane 

regije. Odabrano simulirano područje obuhvaća zemlje Zapadnog Balkana, Srbija, Bosna i 

Hercegovina, Sjeverna Makedonija, Crna Gora, Albanija, Kosovo, te tri susjedne države, 

Hrvatska, Slovenija i Grčka. U sklopu zadatka bilo je potrebno pokazati poveznicu između 

hidrologije i energetskog sustava promatranog područja. 

Cjelokupni model sastoji se od tri povezana modela. LISFLOOD model je hidrološki model 

koji se koristi za simuliranje hidrologije i/ili poplava na određenom području, a u sklopu ovog 

rada koristi se u obliku ulaznih podataka vezani na protoke rijeka i padalinama na definiranim 

područjima. Protoci rijeka i padaline potrebni su kao ulazni podaci za proizvodnju 

hidroelektrana u Dispa-SET modelu. Dispa-SET model može se podijeliti na dva zasebna 

modela. Prvi model je Dispa-SET Medium-Term Hydrothermal Coordination (Dispa-SET 

MTHC) model koji se na kratkoročnoj razini, u ovome radu na razini jedne godine uz vremenski 

korak od jednog dana, koristi za izračun proizvodnje protočnih hidroelektrana i razine vode 

hidroelektrana koje koriste akumulacije. U Dispa-SET MTHC modelu detaljno se definiraju 

tehnički podaci za pojedinu hidroelektranu dok su ostale proizvodne jedinice definirane uz 

osnovne tehničke značajke. Rezultati Dispa-SET MTHC modela i podaci dobiveni iz 

LISFLOOD modela koriste se kao ulazni podaci za Dispa-SET Unit Commitment and Dispatch 

(Dispa-SET UCD) model u kojem se detaljno definiraju tehnički podaci za pojedinu elektranu 

vezano na njenu fleksibilnosti i cjelokupnu proizvodnju u definiranom energetskom sektoru. 

Rezultati Dipsa-SET UCD modela daju detaljan prikaz rada pojedinog postrojenja i njihove 

isplativosti kao i ekonomske pokazatelje cjelokupne regije. 

U sklopu rada prikazan je utjecaj različitih hidroloških godina na energetski sustav promatranog 

područja koji je definiran u sklopu pojma poveznice hidrologije i proizvodnje energije. (eng. 

water-power nexus, water-energy nexus) 

 

KLJUČNE RIJEČI: LISFLOOD, Dispa-SET, Balkanski poluotok, Energetsko planiranje, 

Water-power poveznica, Water-energy poveznica 
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PROŠIRENI SAŽETAK (EXTENDED SUMMARY IN CROATIAN) 

U svrhu istraživanja utjecaja hidrologije na energetski sustav promatrane regije pristupilo se 

modeliranju uz primjenu tri postojeća modela. Odabrano simulirano područje obuhvaća zemlje 

Zapadnog Balkana, Srbija, Bosna i Hercegovina, Sjeverna Makedonija, Crna Gora, Albanija, 

Kosovo, te tri susjedne države, Hrvatska, Slovenija i Grčka. U sklopu rada koristili su se modeli, 

ili njihovi rezultati, kako bi se pokazala poveznica između hidrologije i rada energetskog 

sektora regije. (eng. water-power nexus, water-energy nexus). 

Prije definiranja modela koji se koriste u sklopu ovog rada, navedeni su podaci o hidrologiji i 

energetskom sustavu promatranog područja. Podaci o hidrologiji definirani su u drugom 

poglavlju, dok su podaci o energetskom sustavu regije pobliže objašnjeni u trećem poglavlju. 

Porječje cijele regije podijeljeno je na dva glavna sliva, Crnomorski i Sredozemni. Sredozemni 

sliv se daljnje može podijeliti na Jadranski, Jonski i Egejski sliv. Pobliže su objašnjene značajke 

pojedinih slivova i pripadajućih rijeka.  

U trećem poglavlju detaljnije je definirana struktura proizvodnje električne energije iz različitih 

izvora za svaku državu obuhvaćenu ovim radom. Naveden je popis elektrana s podacima o 

nominalnoj snazi, tehnologiji i gorivu koji se koristi za proizvodnju električne energije.  

U četvrtom poglavlju objašnjava se pojedini model korišten u ovome radu. Korišteni modeli 

obuhvaćaju hidrološki model LISFLOOD [71], te Dispa-SET modele koji se mogu podijeliti 

na Dispa-SET Medium-Term Hydrothermal Coordination (Dispa-SET MTHC) i Dispa-SET 

Unit Commitment and Dispatch (Dispa-SET UCD)..[73],[77] 

Hidrološki model LISFLOOD koristi za simuliranje hidrologije i/ili poplava na određenom 

području, a u sklopu ovog rada koristi se u obliku ulaznih podataka vezani na protoke rijeka i 

padalina na definiranim područjima. Kako model nije javno dostupan, već je kreiran za 

korištenje unutar grupe koja radi na projektu prirodnih katastrofa u sklopu Zajedničkog 

Istraživačkog Centra (eng. Joint Research Centre - JRC), u sklopu ovog rada ne koristi se u 

modeliranju sustava, već se samo njegovi rezultati, u obliku protoka rijeka i padalina, koriste 

kao ulazni podaci za Dispa-SET modele. Navedeni podaci dostavljeni su od strane JRC-a za 

definirane elektrane u sklopu energetskog sustava promatranog područja. 

Navedeni protoci rijeka i padalina potrebni su kao ulazni podaci za Dispa-SET modele kako bi 

se mogla definirati proizvodnja energije iz hidroelektrana. 

Dispa-SET MTHC model na kratkoročnoj razini, u ovome radu na razini jedne godine uz 

vremenski korak od jednog dana, koristi se za izračun proizvodnje protočnih hidroelektrana i 
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razine vode hidroelektrana koje koriste akumulacije. Spomenuti podaci potrebni su kao ulazni 

podaci za Dispa-SET UCD model. U sklopu Dispa-SET MTHC modela, detaljnije se definiraju 

tehnički podaci za hidroelektrane, jer je primaran rezultat njihova proizvodnja, dok su podaci o 

ostalim elektranama svedeni na osnovne tehničke značajke. Model je definiran kao problem 

linearnog programiranja gdje je cilj funkciju cilja svesti na minimum. Funkcija cilja sastoji se 

od varijabilnih troškova proizvodnje električne energije, troškova pumpanja vode za 

reverzibilne hidroelektrane, troškova preljeva, prijenosa energije, rasterećenja te troškova ne 

proizvodnje iz obnovljivih izvora. Ograničenja u obliku jednadžbi i nejednadžbi definiraju rad 

tržišta, granice proizvodnje električne energije, proizvodnju energije iz vjetra i sunca, prijenos 

energije te detalje oko bilance vodnih resursa i proizvodnje energije iz hidroelektrana. Dobiveni 

rezultati o proizvodnji protočnih hidroelektrana i razini vode u akumulacijama prenose se u 

Dispa-SET UCD model. 

Dispa-SET UCD model simulira kratkoročni rad energetskog sustava, u ovome radu na 

godišnjoj razini sa satnim vremenskim korakom, s ciljem dobivanja rezultata o detaljnom 

načinu rada pojedinih postrojenja. Model se može predstaviti kao problem linearnog 

programiranja ili problem mješovitog linearnog programiranja, ovisno o ulaznim podacima. 

Model se optimizira minimizirajući funkciju cilja koja definira ukupni trošak rada energetskog 

sustava promatranog područja. Funkcija cilja sastoji se od troškova pokretanja i gašenja 

postrojenja, troškova promjena izlazne snage postrojenja, troškova prijenosa energije, troškova 

rasterećenja sustava te varijabilnih i fiksnih troškova proizvodnje električne energije. Dodatne 

jednadžbe i nejednadžbe definiraju rad tržišta, pomoćnih usluga, skladištenje energije, 

proizvodnju topline, emitirane emisije CO2, prijenos energije, rasterećenje sustava te smanjenje 

rada obnovljivih izvora energije. 

U petom poglavlju definiraju se ulazni podaci za navedene Dispa-SET modele. 

Kako se Dispa-SET MTHC značajnije odnosi na rad hidroelektrana, odabran je pristup gdje su 

ostali tipovi postrojenja spojeni u grupe temeljene na vrsti goriva. Tako se svaka država sastoji 

od, u modelu definiranih, hidroelektrana i virtualnih elektrana temeljeno na vrsti goriva koju 

koriste za proizvodnju električne energije. Navedeni popis elektrana odnosi se na referentnu 

2015. godinu. U poglavlju se može pronaći detaljniji opis hidroelektrana s podacima o 

instaliranoj snazi, protoku, padu i akumulaciji. U poglavlju se nalaze i ostali ulazni podaci koji 

obuhvaćaju potrošnju električne energije za svaku državu, protoke rijeka i padalina dobivene iz 

LISFLOOD modela, profile rada vjetro i solarnih elektrana, kapaciteti prijenosne mreže, 
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topologija koja definira mrežu hidroelektrana te detaljniji ulazni podaci vezani uz rad 

hidroelektrana. U nastavku su objašnjeni ulazni podaci specifični za Dispa-SET UCD model. 

U šestom poglavlju prikazani su rezultati simulacija. Kako je u sklopu zadatka bilo potrebno 

pokazati utjecaj različitih hidrologija za promatrani energetski sustav, odabrane su tri godine 

gdje svaka predstavlja jedan od scenarija s različitim hidrološkim uvjetima. Bazirano na 

podacima o protocima rijeka i padalinama, odabrane su godine s maksimalnim, minimalnim te 

prosječnim iznosom padalina. Kao kišna godina odabrana je 2010., kao sušna 2007, te kao 

prosječna godina 2015. Provedene su simulacije u Dispa-SET MTHC, te su prikazani rezultati 

za sve tri godine. Prikazani rezultati obuhvaćaju podatke o proizvodnji električne energije iz 

hidroelektrana, razina vode u rezervoarima akumulacija, te proizvodnja protočnih 

hidroelektrana. Proizvodnja hidroelektrana uspoređena je sa stvarnom proizvodnjom za 

referentnu, 2015. godinu. Na kraju je prikazana proizvodnja električne energije agregirana po 

gorivima za sve tri godine, gdje se može vidjeti utjecaj promjene proizvodnje električne energije 

iz hidroelektrana i ukupni utjecaj na cijeli energetski sustav. 

Dobiveni rezultati iz MTHC modela koriste se kao ulazni podaci za Dispa-SET UCD model. 

Primarni razlog primjene MTHC modela je dobiti rezultate u obliku razina vode u 

akumulacijama hidroelektrana. Potreba za time proizlazi iz UCD modela. UCD model ima 

vremenski korak od jednog sata, te kako bi se smanjilo računalno vrijeme simulacije, 

modeliranju se nije pristupilo tako da se prati jedna simulacija na razini cijele godine, već se 

pristupilo postupku razdjeljivanja perioda od jedne godine na korisnički definiran broj 

optimizacijskih koraka koji se rješavaju rekurzivno. Zbog tog pristupa model ima tendenciju 

isprazniti svu akumulaciju hidroelektrana na kraju jednog optimizacijskog koraka, stoga je kao 

ulazni podatak potrebno definirati razinu akumulacija za svaku pojedinu hidroelektranu na 

satnoj razini. Prikazani su rezultati o ekonomičnosti sustava, ukupnoj proizvodnji agregirano 

prema gorivu te broj paljenja i gašenja svih postrojenja. Slikovito i tablično detaljnije su 

prikazani rezultati o proizvodnji iz hidroelektrana za sve tri godine. Prikazana je i krivulja 

proizvodnje iz hidroelektrana gdje je usporedno prikazana i proizvodnja dobivena iz statističkih 

podataka. U konačnici su slikovito, u prilogu ovog rada, prikazani podaci o razini vode u 

akumulacijama i podaci o radu pojedinog postrojenja za svaku državu zasebno. Iz dobivenih 

rezultata definirani su zaključci o utjecaju hidrologije na rad promatranog elektroenergetskog 

sustava te su navedene smjernice za budući rad kojim bi se još detaljnije prikazao spomenuti 

utjecaj, s namjerom proširenja regije na Mađarsku, Bugarsku i Rumunjsku. 
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1. INTRODUCTION 

Power generation sector worldwide accounts for high water withdrawal and consumption due 

to the hydropower generation and cooling of thermal power plants. The operation of the power 

generation sector is constrained by availability of the water resources which are needed for 

energy generation in hydropower plants and for proper cooling of thermal power plants, but the 

water resources are also used for a variety of purposes not related to the power sector, such as 

irrigation, flood control, water supply, agriculture etc.[1],[2] 

According to the International Commission on Large Dams database, irrigation is the most 

common purpose of use of water reservoirs while hydropower generation represents the second 

largest use of single-purpose dams, followed by water supply. Multipurpose dams are mostly 

used for flood control and water supply.[1] 

As stated in [2], in the past decade there have been several examples of issues related to the 

shortage of water resources or high river water temperatures needed for proper cooling of 

thermal power plants. Mostly due to the joint effects of heat waves and/or bad hydrological 

conditions of the main river channels, consequences of curtailment of nuclear power in France 

with a cost of €300 million in 2003 have been experienced. In 2006., France, Germany and 

Spain had to reduce their nuclear power generation due to the high river water temperatures. 

Poland experienced reduced coal power generation and restricted industrial demand in 2015-

2016 due to the same reasons. This events bring demand restrictions, monetary losses and 

increased wear of the thermal power plants.[2],[3],[4],[5] 

Mentioned impacts on the power system with forecasts that climate change will cause a number 

of similar events to rise, raise the questions on have to implement better water management.[2] 

The term water-energy nexus (or water-power nexus) is used to refer the interactions between 

the water and energy sectors for the best utilization of water resources. Mentioned water-energy 

link is discussed within the WATERFLEX project carried out by C7 (Knowledge for the Energy 

Union) and D2 (Water and Marine resources) of the European Commission’s Joint Research 

Centre with its main goal to incorporate hydropower production as a source of flexibility for 

the European power system.[2] 

The hydropower is a recognized technology that provides benefits for the total power system 

operation. Spinning reserve, black start capability, frequency response, flexibility and reserve 

with quick start and shutdown capabilities, identify hydropower as a main cost-competitive 

resource for integration of variable renewable sources into the European power system.[1],[2] 
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Even though the importance of water-energy nexus is recognized as a new challenge for better 

control of water resources, current power system models overlook water-related constraints as 

contributions to power system management. Hydrological related constraints determine 

hydropower production, which in turn determine the operation of thermal power plants related 

to its water sources for proper cooling. Thus, the better understanding of the water-energy nexus 

is needed to enable flexible power generation for the future European power system.[2] 

To better represent and analyse water-power nexus, the method proposed in the WATERFLEX 

project consist of combining the LISFLOOD hydrological model [7], Dispa-SET Unit 

Commitment and Dispatch model (Dispa-SET UCD)[8] and the Dispa – SET Medium-Term 

Hydrothermal Coordination model (Dispa-SET MTHC)[9]. 

The MTHC model determines reservoir levels of the hydropower plants during a certain period 

of time, which is then passed as an input data to the Dispa-SET UCD model. The Dispa-SET 

UCD model establishes schedule operations and dispatch, as well as the economic results 

related to power generation. More on the model formulation will be discussed in the Section 

4.[2] 

1.1. Climate change and hydropower production 

The ambitious protection targets have been adopted by the European Union to help fight climate 

change. Targets were adopted in October 2014, updated in 2016 with Winter Package and 

revised in 2018 stating that goals of, at least 40% cuts in green gas emissions over pre-industrial 

level, at least 32% share for renewable energy in gross final energy consumption and at least 

32.5% improvement in energy efficiency must be met. The long-term strategy tends to 

transform EU into a competitive low-carbon economy with setting goals to achieve an 80-95% 

reduction of GHG emission by 2050. To achieve this goal, the EU must rely on investments in 

low-carbon technologies, increase energy efficiency, use of renewable energy and deployment 

of smart grid infrastructure. As of today, more than half GHG emissions come from the 

developing countries, which set the EU to lead the international effort for the UN global climate 

agreement, which has been adopted at the Climate Change Conference in Paris. Its main goal 

is to keep the global temperature rise well below 2 °C to pre-industrial levels with ambitions 

strive to keep it below 1.5 °C.[10] 

A case study conducted at four hydropower plants included in [11] provides conclusions: 

 Impacts of climate change are related to direct effects on the hydropower generation 

potential, that being river flow, but also indirectly through an increase in general 

demand for energy due to higher summer and lower winter temperatures.[10],[11] 
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 A decrease in river flow would affect power generation for all types of hydropower 

plants but the highest effect would be on run-of-river hydropower plants.[10],[11] 

 With the increase in temperature, the evaporation rate of the reservoirs would affect 

hydropower production of the facilities with smaller reservoirs that have a high storage 

area to volume ratio. Other types of hydropower plants would experience the same 

effect, but in a smaller amount in total hydropower production decrease.[10],[11] 

 With higher runoffs in the autumn/winter and lower in spring/summer, high impact on 

the overall decrease of hydropower production of run-of-river hydropower plants and 

hydropower plants with small storage would be experienced.[10],[11]  

Overall, it is to assume that, due to the future extreme droughts in summer and floods in the 

autumn/winter, an adaptation of hydropower plants to the climate change relies on better 

management of water reservoirs. The reservoirs should be managed and sized to compensate 

for the increase in seasonal runoffs.[10] 

Balkan Peninsula countries are among some of the most water-rich countries in Europe with 

the amount of water available per person of 10,600 m3/cap.[10] Water resources have always 

been important for the Balkan Peninsula economy with its use for irrigation, industry, drinking 

water supply, tourism, livestock production and hydropower production. The hydropower 

electricity production accounts for 49% of all electricity generated in the Western Balkan 

region.[10] 

The Balkan Peninsula is getting warmer and projections are that the trend will continue with 

the expected increase in global temperatures. Even though precipitation rate changes with 

terrain, elevation and proximity to the sea, the region is experiencing lower annual precipitation 

with projections for a further decrease. The projections in [12] state that if the worst case 

scenario happens, that being the rise of the 4 °C, the Balkan Peninsula region could encounter 

reduced water availability with projections of precipitation declining between 20-50 %. As most 

countries in the Balkan region depend on hydropower sources, reduction in water availability 

would strongly affect the regions power system, with projections that the hydropower potential 

in Croatia could decrease up to 35 %. Also, due to the increased possibility of extremely low 

river flows in summer days, the mean number of days during which electricity production will 

be reduced by more than 90 % is projected to increase.[10], [12] 

Overall can be stated that the reduction of hydropower potential will happen in the future, but 

the loss could be compensated by better reservoir management.[10] 
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1.2. Literature review 

For the past decade, water-power nexus has been a popular research topic. In [4] the 

International Energy Agency brought the question on the dependence of energy on water and 

vice versa with the topic being more discussed in [13]. In 2014, the US Department of Energy 

published the report “The Water-Energy Nexus: Challenges and Opportunities”.[14] Security 

of sustainable electricity supply in cooperation with the water management was discussed in 

the [15]. The cooperation between the US Department of Energy, European Commission’s Joint 

Research Centre and the Directorate-General for Research and Innovation organized a 

workshop for better integration of water and power system.[16] 

The water-power nexus has been studied in Europe for the Greek power system.[2] The Greek 

case study analyses the implications of water on the power system and vice versa for three 

different historical scenarios. Also, the water stress index is defined to determine the locations 

and time periods with high possibilities of water shortages for the dry hydrological year. The 

same problem was discussed for the Iberian Peninsula region in [17]. Additionally, the 

vulnerability analysis of cooling-related constraints on maximum allowable water withdrawal 

has been conducted for coal-fired power plants with high marginal cost and moderate installed 

capacity, and nuclear power plant with low marginal cost and high installed capacity. More 

studies for the Europe region can be found in [18] – [23]. For the US region, the water-power 

nexus is discussed in [24] and [25]. The analysis was carried out to research the water-energy 

nexus for states Texas and Illinois. In [24] the analysis of 2011 droughts was studied to examine 

the power plant’s vulnerability regarding moderate year 2010. In [25] the economic 

implications were studied for shifting from coal to natural gas, and replacement of open-loop 

with the closed-loop cooling technologies. The report for the Middle East and North Africa is 

represented in [26], while the Western Africa region is discussed in [6]. In [26] MENA region 

was analysed that is composed of 20 countries spanning from Iran to Morocco. The water 

consumption in energy-related sectors and the energy consumption in water-related activities 

were studied, with a discussion on energy and environmental implications for the included 

region. In [6] the model was created to determine economic impacts, the water consumption 

and withdrawal, and detailed operation of the power system under different current and future 

assumptions. In this report, additional improvements were mentioned for the more accurate 

representation of water-energy nexus.[17] 
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2. DRAINAGE BASINS OVERVIEW 

As previously stated, the study includes six Western Balkan countries, Serbia, Bosnia and 

Herzegovina, Kosovo, Montenegro, North Macedonia, Albania, and additional neighboring 

countries, Slovenia, Croatia and Greece. In the next few subchapters, hydrology of major river 

basins will be explained. The Balkan Peninsula drainage basin can be divided into two main 

drainage basins. The Black Sea drainage basin and Mediterranean Sea drainage basin. 

Mediterranean drainage basin can be further divided into Adriatic Sea drainage basin, Aegean 

Sea drainage basin and Ionian Sea drainage basin. Figure 1. represents two main drainage basins 

while the black dashed line shows the border between them.[27]  

 

Figure 2.1.  Two main drainage basins of the Balkan Peninsula [27] 

2.1. Black Sea Drainage Basin 

The major rivers and tributaries are Danube, Inn, Morava, Vah, Drava, Tisza, Sava, Velika 

Morava, Olt, Siret and Prut.[28] Danube, Sava, Drava, Krka, Una, Vrbas, Bosna, Drina and 

Velika Morava Rivers are included in this study since they flow through mentioned 

countries.[29]  
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Figure 2.2.  Danube River Basin District Overview [29]  

2.1.1. Danube River Basin 

The Danube represents the second largest river in Europe with its flow distance of 2,826 km. It 

flows through 19 countries and drains an area of around 800,000 km2 and its average altitude 

is 458 m. The main Danube tributaries are Leitha, Raab, Drava, Sava and Velika Morava 

Rivers.[10]  

Because of its size, west to east flow orientation, and diverse relief, there are big differences in 

climate between Lower and Upper Danube. Atlantic climate has an influence on the Upper 

Danube where winters are mild and precipitations are higher, while the Lower Danube exhibits 

lower precipitations, dry and cold winters due to the influence of eastern continental regions. 

Parts of the Drava and Sava Rivers are affected by a Mediterranean climate. Highest 

precipitations are in the higher parts of the Alps (~3200 mm) while the lowest precipitations 

are in the Black Sea and delta regions (~350 mm). Average peak precipitation for the western 

part of the basin happens in July, for the southeast parts it peaks in February/March, while it 

peaks at autumn months for the areas influenced by the Mediterranean climate. Middle and 

Lower Danube have highest average annual temperatures of around 11-12 °C, while seasonal 
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differences increase from west to east. For example, the seasonal temperature difference in 

Hungary can be as high as 74°C.[28] 

Due to the spatial differences in precipitation, there is a strong effect on the surface run-off and 

most of the flow comes from the Austrian and Romanian mountains (around 40%). The average 

annual specific discharge decreases from 25-35 L/s/km2 in Alpine mountains to 19 L/s/km2 for 

the Sava, 6.3 L/s/km2 for the Tisza and to 2.8 L/s/km2 for the rivers of eastern Carpathian region. 

Iron Gate dams and larger water management schemes along the Prut, Siret, Arges and Olt 

Rivers modified the flow regime of the Lower Danube.[28] The list of the hydropower plants 

in the Danube River Basin can be seen in documents [30] and [32]. 

Table 2.1. Flow regime of the Danube River and its tributaries [28] 

River Station 
Catchment area 

[km2] 

Mean annual discharge 

[m3/s] 

Danube Berg 4,047 38.5 

Danube Vienna 101,731 1,920 

Danube Ceatal Izmail 807,000 6,486 

Inn Passau-Ingling 26,084 732 

Morava Moravsky Jan 24,129 110 

Vah Sala 10,620 138 

Drava Donji Miholjac 37,142 541 

Tisza Senta 141,715 792 

Sava Sremska Mitrovica 87,996 1,527 

Velika Morava Ljubicevski most 37,320 277 

Olt Stoenesti 22,683 172 

Siret Lungoci 36,036 210 

Prut Cernicvi 6,890 67 

2.1.2. Sava River Basin 

River Sava, with its flow length of 945 km represents the largest Danube tributary by volume 

and the second largest by catchment area (95,793 km2). The Sava basin is international basin 

covering six countries, 40% in Bosnia and Herzegovina, 26% in Croatia, 15.4% in Serbia, 11% 

in Slovenia, 7.5% in Montenegro and 0.1% in Albania.[10] The Sava’s watershed covers 45 to 

70% of the surface area of the Slovenia, Bosnia and Herzegovina, Croatia and Montenegro and 
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its water resources represent almost 80% of the freshwater resources of mentioned four 

countries. [30] Around 8.8 million people live in the Sava River basin with cities like Belgrade, 

Zagreb, Sarajevo, Ljubljana and Banja Luka being the largest cities on the Sava River or its 

tributaries.[10] 

The Sava River is formed out of headwaters of Dolinka Sava and the Bohinjka Sava from the 

Lake Bohinj. Its river bed passes through Slovenia and Croatia where it continues along the 

border of Croatia and Bosnia and Herzegovina, from the confluence of the Una River and 

almost to the confluence of the Drina River. In Serbia, it remains a lowland river with wide 

channel and it enters the Danube River in Belgrade.[28] 

The Sava is under influence of Alpine and Mediterranean climates with an average annual air 

temperature of 9.2 °C and average annual precipitation of 1,000 mm. In the upper Kupa region 

and in the Julian Alps, maximum precipitation reaches around 3,800 mm, while the minimum 

precipitation of around 600 mm is reached in the Pannonian Plain. Average annual discharge is 

1,572 m3/s, while its largest tributary, the Drina River, has a discharge of 370 m3/s. The Sava 

contributes for 25% of the total Danube discharge.[28] 

Major Sava tributaries are rivers Kupa, Una, Vrbas, Bosna and Drina.[28] 

The Kupa River is tributary of the Sava and it forms a natural border between Croatia and 

Slovenia. It originates in Croatia in the mountain region of Gorski Kotar. Before it reaches the 

Slovenian border it receives inflow from small Čabranka River. It receives inflow from the 

Lahinja River before eventually detaching from the Slovenian border. The river then reaches 

the city of Karlovac where it receives inflow from the Dobra and Korana Rivers. Before it 

reaches the city of Sisak and enters the Sava River, it merges with the Glina and Odra 

Rivers.[31] 

The Una sub-river basin has an area of 10,816 km2. The length of the river is 214 km and it 

forms part of the border between Croatia and Bosnia and Herzegovina. The climate is 

continental with annual precipitation of around 900 mm. The spring is in Croatia and after 12 

km of flow, it enters mountains in northwestern Bosnia and Herzegovina, while proceeding to 

the Una Sana Canton. The confluence is in Croatia near Jasenovac.[30] 

The Vrbas sub-river basin has an area of 6,386 km2 and it is the smallest Sava River tributary 

in BiH. The spring is in the Vranica mountain.[30] 

The Bosna sub-river basin has a catchment area of 10,457 km2 and it is the second biggest 

tributary of the Sava River in Bosnia and Herzegovina. The spring is located in Sarajevsko 

polje, in the Igman Mountain.[30] 
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The Drina sub-river basin is the largest tributary of the Sava River. It is 346 km long and the 

catchment area is 19,570 km2. The catchment is shared between BiH, Serbia, Albania and 

Montenegro. The river is composed of the Piva and Tara Rivers which flow from Montenegro. 

The list of the hydropower plants in the Sava River Basin can be seen in document [30] and 

[32]. 

 

Figure 2.3.  The Sava River Basin with tributaries [30] 
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2.1.3. Velika Morava River Basin 

The Velika Morava is the large right-bank tributary of the lower Danube, upstream of the Iron 

Gate dams. It drains around 40% of the Serbian territory with a catchment area of around 38,000 

km2. The catchment is located in some parts of Bulgarian territory (~3%) as well as parts of 

North Macedonia and Montenegro. Its average channel width is 140 m and the average water 

depth of 1-4 m.[28] 

Main tributaries are Crnica, Jovanovačka Reka, Ravanica, Resava and Resavica on the right 

side, and Jasenica, Rača, Lepenica, Belica River, Lugomir and Kalenićka Reka on the left side. 

Before it reaches the Danube, the Velika Morava River splits, while creating 47 km long arm 

called Jezava. From the left side, it is joined by the Ralja River and it flows into Danube 

River.[30] 

The Velika Morava, with its length of 185 km, starts at the confluence of the South and the 

West Morava near the small town of Stolać. The West Morava branch is the longest tributary 

with the length of 493 km and its longest water source of the Ibar River. The Ibar River is the 

longest tributary of the West Morava which gives the Ibar-West Morava-Velika Morava river 

system a length of 550 km, being the longest waterway in the Balkan Peninsula.[28],[30] 

The South Morava drains southeast Serbian territory with the catchment area of a 15,446 km2. 

The rivers two biggest headwaters originate from the Rilo-Rhodope and North Macedonian-

Serbian Mountains. Its largest tributary is the Nišava River with the length of 218 km and 

catchment area of a 4,068 km2. The source of the Nišava River is located in southern slopes of 

the Stara Planina Mountains in Bulgaria. It merges the South Morava near the city of Niš.[28] 

The West Morava drains southwest Serbian territory with the catchment area of a 15,567 km2. 

Its headwater sources are located in Golija, Mučanj and Tara Mountains in the Dinaric Alps. 

The headwaters merge near the village Leposavić. The biggest tributary of the West Morava is 

the Ibar River with its source in eastern Montenegro. It merges with West Morava near the city 

of Kraljevo.[28] 

The climate of the Velika Morava River is mostly continental with average annual temperatures 

of 11-12 °C. Precipitation is highest in May and June while being the lowest in February and 

October. Average discharge is 277 m3/s and it peaks during the snowmelt period in 

springtime.[28] 

The first major hydro water activities started between 1960 and 1995 on the whole Velika 

Morava River Basin. The river directions were shortened, meander has been cut off and the 
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swamp areas have been transformed into fish ponds. Extensive drainage system has been carried 

out to increase the proportion of arable land. Multiple dams and water reservoirs have been 

built to be used for hydropower generation, municipal water supply, irrigation and flood 

protection.[28] The list of the hydropower plants in the Velika Morava River Basin can be seen 

in document [30] and [32]. 

2.1.4. Drava River Basin 

The Drava River is the 4th largest and the 4th longest Danube tributary with its catchment area 

of a 40,087 km2 and the length of the 719 km. It is shared by Italy, Austria, Slovenia, Hungary 

and Croatia. The main tributaries are the Austrian rivers Isel, Moll, Lieser and Gurk and the 

Mura River that reaches the Drava River at Croatian-Hungarian border. Drava merges with the 

Danube near the city of Osijek and basin is inhabited by approximately 3.6 million people. The 

largest cities on the Drava River are Graz, Maribor and Osijek.[28] 

The Drava River source is located in the Southern Alps in Italy near Dobbiaco. For its first few 

kilometers of flow, it drops 400 m in altitude, while entering Austria. It flows through Eastern 

Tyrol and Carinthia, while separating the central Alps from the limestone Alps. The Drava then 

continues through northeast Slovenia and enters Croatia.[28] 

There are 23 installed hydropower plants in the upper region, upstream of the Mura confluence, 

numbering the 12 power station in Austria, 8 in Slovenia and 3 in Croatia.(Figure 2.4.) Also, 

there are 26 hydropower plants along the Mura River. Downstream of the Mura confluence the 

river is not suitable for effective hydropower production and river continues forming Croatian-

Hungarian border for 145 km. The confluence of the Drava river forms Kopački Rit Nature 

Park.[28] 

The climate is mild continental and partly humid with an average temperature of 10.9 °C. The 

average rainfall is between 600-750 mm. The highest flow occurs in May and June because of 

the Alpine snowmelt period. There is a second peak of flow in late autumn due to high 

precipitation in the Southeast Alps. The lowest flow regime is experienced in May and June. 

Due to the high precipitation in the upper basin, the Drava River has high flood risk in the upper 

part of the river but the flood is prevented with the construction of dams and reservoirs. Average 

discharge of the Drava River is 541 m3/s.[28] 

Human activities resulted in significant changes on the hydrological regime. The Drava River 

is regulated since the past century, but there are some semi-natural parts of the basin in the 

lower parts. The upper part hydropower regime causes major water level changes, which impact 

the flora and fauna.[28] 
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Figure 2.4.  Part of the Drava River and the hydropower plants located in Slovenia and 

Croatia [32] 

2.2. Adriatic Sea Drainage Basin 

The analysis of the Adriatic Sea Drainage Basin will cover rivers Neretva, Trebišnjica, Morača, 

Drin, Bune, Mat, Seman and Vjose/Aoos, Cetina, Krka, Zrmanja and Isonzo/Soča.[30] 

2.2.1. Neretva-Trebišnjica River Basin 

The catchment area of the Neretva-Trebišnjica River Basin is 10,380 km2 and it is shared 

between Croatia and Bosnia and Herzegovina. The total length of the Neretva River is 230 km, 

of which 208 km are in Bosnia and Herzegovina territory and 22 km in Croatian territory. The 

rivers source is in the Bosnia and Herzegovina at the base of the Zelengora Mountain and it 

enters southern Croatia forming delta with an area of 200 km2. The Neretva River is the largest 

karstic river in the Dinaric Mountains and it is also hydrologically connected with the 

Trebišnjica River.[30],[33]   

The Neretva River experience high annual precipitation, but its flow is lost in the underground 

and the karstic springs that have substantial contribution to the surface flow. The maximum 

runoff occurs in December and the minimum in the July/August. Jablanica, Rama, Grabovica, 

Salakovac and Mostar are five hydropower plants located in Bosnia and Herzegovina that 

utilize the flow of the Neretva River.[33] 

The Neretva-Trebišnjica River Basin has a crucial socio-economic role in energy production, 

drinking water supply and agricultural use.[30] 
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Figure 2.5.  River basins of the Adriatic Sea Drainage Basin with locations of HPP [30] 

2.2.2. Morača River Basin 

The Morača River springs in northern Montenegro under the Rzača Mountain. The main 

tributaries are the Koštanica, Sjevernica, Javorski Potok, Trnovačka Rijeka, Slatina, Ibrištica, 

Ratnja and Požanjski Potok. It generally flows southwards for around 113 km before emptying 

in the Skadar Lake. On its northern part, the Morača River is fast mountain river. Its biggest 

tributary is the Zeta River, which merges with Morača River north of the city of Podgorica.[30] 

2.2.3. Drin-Bune River Basin 

The Drin River is the largest Albanian river and it is the third greatest river discharge in the 

European Mediterranean. The Drin River catchment area is 14,173 m2 with a length of a 285 

km. The river is composed of the two main river branches, the White Drin and the Black Drin. 

The White Drin drains Serbia and Montenegro and the Black Drin originates from the Lake 

Pespa and the Lake Ohrid. The Buna River merges with the Drin River before they enter the 

Adriatic Sea. The Buna River drains the Shkodra Lake.[30],[33] 
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The Black Drin River is transboundary river since it flows from its source in North Macedonia 

to a downstream country Albania and merges with the White Drin near the city of Kukes. The 

total length of the river is 149 km. With the main purpose of hydropower production, there are 

two dams with their associated reservoirs with a total installed power of 126 MW. The Black 

Drin River has a catchment area of a 3,350 km2 with average annual precipitation of 993 mm. 

Its average annual discharge is 52 m3/s.[30] 

The main tributary of the Black Drin River is the Radika River which is formed by a number 

of small springs in the area of Shara and Korab mountains. The catchment area of the Radika 

River is around 880 km2 while its average annual flow is approximately 30 m3/s. Its main 

tributaries are Mavrovksa, Ribnica and Mala Reka Rivers.[30] 

2.2.4. Mat River Basin 

The catchment area of the Mat River is 2,441 km2 and the total length is 115 km. It springs in 

Diber County near Martanesh. It passes cities Klos and Burrel and after 10 km flows into a 

large Ulez Lake. Downstream of the Ulez Lake it enters the smaller Shkopet Lake and forms 

gorge through the mountain. It enters the Adriatic Sea near Fushe-Kuqe, close to the cities of 

Lezhe and Lac.[30] 

2.2.5. Seman River Basin 

The Seman River is the second longest river in Albania with the catchment area of a 5,649 km2 

and a length of 281 km. It is composed of the two rivers in the Berat County, near the village 

of Kozare. Osum and Devoll Rivers, after merging, pass along the Fier County where the 

Gjanica River joins in and they enter the Adriatic Sea, south of the lagoon of Karavasta. 

Precipitation is scarce with annually averaging to 1,084 mm. Its average annual flow is 95.7 

m3/s. The average temperature of the water ranges from 6.8 °C in January up to 25.5°C in 

August.[30] 

2.2.6. Vjose/Aoos River Basin 

The Vjose/Aoos River flows through the northwest part of Greece before it enters Albania. Its 

largest tributary is Drino River with a catchment area of 1,320 km2.[17] 

The Vjose/Aoos flow length is 272 km with 86 km of flow being in Greece. The catchment of 

the entire Vjose/Aoos River Basin is around 6,700 km2. Its highest discharge is in winter 

months, up to 400 m3/s, while the lowest river flow occurs during the month from July to 

October. The most of its catchment area is in its natural form with restricted agriculture, 

forestry, cattle breeding and aquaculture.[30],[33] 
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2.2.7. Cetina River Basin 

The Cetina River is the 101 km long river in southern Croatia with a catchment area of a 1,463 

km2. It springs in the northwestern slopes of the Dinara Mountain from the multiple springs 

near the village Cetina, 7 km north of the small town Vrlika. The large Peruća Lake is located 

near the town Vrlika created by the Peruća Dam. Cetina River then passes to the lower Sinj 

karst field, passing through the city of Sinj. Passing the city of Sinj, the river continues 

eastwards through the city of Trilj, before it continues to the westward around the Mosor 

Mountain. Then it flows into the Adriatic Sea in the city of Omiš. The main tributaries of the 

Cetina River Basin are rivers Rumin, Kosinac, Ruda, Dragović, Dabar, Vojskova and 

Karakašica.[34] 

The flow of the Cetina River is regulated by means of the hydropower plants operation. The 

hydropower plants located on the Cetina River are HE Peruca, HE Orlovac, HE Dale, HE 

Kraljevac and HE Zakucac.[32],[34] 

2.2.8. The Krka River Basin 

The Krka River is 73 km long, located in Croatia’s Dalmatia County with its catchment area of 

2,088 km2. The river springs at the foot of the Dinara Mountain, near the border between Croatia 

and Bosnia and Herzegovina. The river flows through the Krčić Canyon before it enters the 

karst valley of Knin, where its tributaries Kosovčica, Orašnica and Butižnica merge with the 

river. The river then passed to the Brljansko Lake, while further downstream, river forms the 

Visovačko Lake. The 7 km long Visovačko Lake ends at the confluence of the Krka River and 

its largest tributary, the Čikola River. Downstream of the mentioned confluence, the river flows 

past the town of Skradin, before it forms Prokljasko Lake together with its tributary, the Gudača 

River. At the last, the river empties into the Bay of Šibenik to the Adriatic Sea.[35] 

Hydropower plants located on the Cetina River are HE Jaruga, HE Miljacka and three small 

hydropower plants HE Golubić, mHE Roški Slap and mHE Krčić.[32],[35] 

2.2.9. The Zrmanja River Basin 

The Zrmanja River is the 69 km long river in the southern Lika and northern Dalmatia County 

and its catchment area is a 907 km2. The river spring is located in the southern part of the Lika 

County, under the southern peak of the Pljesevica Mountain called Postak. It flows southward 

through the narrow and long valley before it turns westwards reaching the town of Obrovac. 

Few kilometers downstream, the river enters the Adriatic Sea at the Novigradsko More Bay. Its 

main tributary is the Krupa River.[36] 
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2.2.10. The Soča/Isonzo River Basin 

The Soča River is the 138 km long river that flows through northeastern Italy and western 

Slovenia. Its catchment area is 3,400 km2 and it springs in the Julian Alps, in the Trenta Valley 

at an elevation of 876 m. The river flow passes the tows of Bovec, Kobarid, Tolmin, Kanal ob 

Soči, Nova Gorica and Gorizia, before it enters the Adriatic Sea near the town of 

Manfalcone.[37]  

The course of the Soča River can be divided into Upper and Medium Soča Valley and the lower 

Soča. The Upper Soča Valley flow is natural and its located between the rivers source and the 

village of Most na Soči. In the Medium Soča Valley river flow is regulated by means of three 

dams and accumulating lakes for the purposes of the hydropower generation of the HE Plave, 

RHE Avche, HE Doblar and HE Solkan hydropower plants. The lower Soča in its span from 

Italian-Slovenian border to its mouth is the free flowing river.[32],[38] 

2.3. Aegean Sea Drainage Basin 

The analysis of the Aegean Sea Drainage Basin will cover rivers Evros, Nestos, Strymon, 

Axios/Vardar, Aliakmon, Pinios, Sperchios and Evrotas.[33] 

 

Figure 2.6.  Rivers of the South Balkan region [33] 
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2.3.1. Evros River Basin 

The Evos River Basin is a large river basin shared between Greece, Turkey and Bulgaria, with 

the percentage of its catchment area being 66.4% in Bulgarian, 27.2% in Turkish and 6.4% in 

Greek territory. It springs in Bulgaria, forms border between Greece and Turkey and at last, 

forms large delta in the Aegean Sea. The main tributaries are Tundja, Arda and Ergene 

Rivers.[33] 

The Evros River Basin numbers around 100 tributaries with a mean annual discharge of its main 

tributaries, Arda, Tundja and Ergene of 2.2 km3, 1.08 km3 and 0.87 km3, respectively. Its 

maximum flow occurs in spring, between March and May, while the minimum is reached 

between July and September. Rainfall contributes to the whole discharge for around 60% 

depending on the region. There are 21 large scale reservoirs with a total storage of 3,440 Mm3. 

Even though there are a large number of reservoirs, the runoff is highly variable with frequent 

floods.[33] 

2.3.2. Nestos River Basin 

The Nestos River is a highland river that springs at the eastern slope of Rila Mountain in 

Bulgaria. It flows through Bulgaria and Greece entering the Aegean Sea while forming a large 

delta. The main tributary is Dospatis River, which sinks in Bulgaria and joins Nestos River in 

Greece.[8] 

Most of the runoff occurs from snow melting in the mountains and the rain in the lower regions. 

Maximum flow occurs between April and August while its minimum occurs in September. 

There are 6 large reservoirs on its tributaries in Bulgaria with the largest one being Dospatis 

reservoir with a total storage capacity of 430 Mm3. In Greece, there are three large reservoirs 

for hydropower production, Thysavros, Temenos, Platanovrisi and a small irrigation dam 

Texotes.[33]  

2.3.3. Strymon River Basin 

The catchment area of the Strymon River Basin is located in Bulgaria, Greece, North 

Macedonia and Serbia, but the Bulgarian and Greek part represent 88% of the whole catchment 

area. Its main tributaries are rivers Strumeshnitsa, Treklyanska in Bulgaria and Aggitis River 

in Greece.[33] 

There are 56 multi-purpose reservoirs in Bulgaria with the total storage capacity of 141 Mm3. 

The largest ones are reservoirs Djakovo, Studena and Pchelina.[33] 
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2.3.4. Axios/Vardar River Basin 

The Axios/Vardar River Basin is the second largest basin in the Aegean Sea Drainage. It drains 

83% of North Macedonia and small parts of Greek, Serbian and Bulgarian territory. The main 

tributaries are Crna and Brejalinica Rivers. The river springs at the western slopes of the Crna 

Gora Mountain before it reaches Skopje-Veles plain where it merges with the Treska River. 

Tributaries Pčinja, Crna and Bregalnica join the river before it enters Greece. Together with 

rivers Aliakmon, Gallikos and Loudias it forms wide delta in Thermaikos Gulf.[33] 

The highest flow occurs in April and minimum in August. The mean annual runoff of its main 

tributaries is 2.78 km3. In North Macedonia, 17 large dams have been built to control floods 

with its total storage capacity of more than 500 Mm3.[33] 

2.3.5. Aliakmon River Basin 

The Aliakmon River is the longest river in Greece and it receives overflow waters from Lake 

Kastoria. Its main tributaries are rivers Venetikos, Almopeos and Edesseos. The Venetikos 

Rivers joins Aliakmon River in the rivers upstream, while rivers Almopeos and Edesseos merge 

with Aliakmon River via long irrigation canal. Together with Axios/Vardar River, Aliakmon 

forms delta in the Aegean Sea.[33] 

Around 70% of the river flow is modified due to large dams being built. The largest reservoirs, 

Sfikia, Polyfyto and Asomata, have a storage capacity of around 3 km3. In the downstream part 

of the river, the highest discharge occurs in summer while the minimum is reached in spring.[3]  

2.3.6. Pinios River Basin 

The Pinios River has catchment area in vast Thessaly plain where it flows into the Thermaikos 

Gulf forming 69 km2 radial-shaped delta. The main tributaries contributing to its discharge are 

rivers Titarissios, Onochonos and Enipeas. There is only one major dam on the Smokovo River 

tributary. [33] 

2.3.7. Sperchios River Basin 

The Sperchios River Basin is the smallest catchment in the Aegean Sea Drainage Basin that 

spring in the Tymfristos Mountain. It flows into the Aegean Sea forming a wide lobate delta. It 

is a mostly unregulated river with about 69% of its flow originating from snow and 19% from 

the rain.[33] 
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2.3.8. Evrotas River Basin 

The Evrotas River Basin is the basin in south Greece territory. It enters the Aegean Sea in the 

Laconikos Gulf. The river springs in the Taygetos Mountain and flows south to the Lanconia 

basin. While entering the Aegean Sea, it forms small 53 km2 wide delta.[33] 

Parts of the Evrotas River exhibit an intermittent flow regime and the only stable flow from its 

tributaries comes from the Oinous River. There is severe water abstraction for irrigation but the 

river is mostly unregulated. The karstic outflow and snowmelt represent the highest discharge 

and it reaches its peak in March.[33] 

2.4. Ionian Sea Drainage Basin  

The analysis of the Ionian Sea Drainage Basin will cover rivers Arachthos, Acheloos and 

Alfeios.[33] 

2.4.1. Arachthos River Basin 

The Arachthos springs are located in the Tszoumerska and Lakmos Mountains. The Arachthos 

Rivers enters the Ionian Sea in the Amvrakikos Gulf, where together with the Louros River 

forms double-delta formation which extends over 350 km2 creating Greece’s largest coastal 

swamp system.[33] 

The rivers discharge peaks in December-January while its minimum occurs in August. Two 

main reservoirs are Pournar I and Pournari II with the coverage area of a 21 km2 and storage 

capacity of around 800 Mm3. Reservoirs, besides being used for hydropower production, also 

decrease seasonal flow variations.[33] 

2.4.2. Acheloos River Basin 

The Acheloos River drains southern Pindos mountain range and then enters Agrinio plain with 

an average channel width of 25 m. The snowmelt accounts for 19% and rain 71% of the total 

runoff. There are four large reservoirs built and they have a storage capacity of more than 6.6 

km3. Maximum discharge rate occurs in July and minimum in summer times.[33]   

2.4.3. Alfeios River Basin 

The Alfeios River springs at the Taygetos Mountain and enters the Ionian Sea in the 

Kyparissiakos Gulf. Total runoff is partly supplied by karstic runoff and its two main tributaries, 

Ladon and Lousios contribute with 0.64 and 0.21 km3/year, respectively. Its maximum 

discharge peaks in January, while its minimum occurs in August. Small hydropower dam, 

located along the Ladon River, is used for irrigation and flood control.[33]  



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 20 

3. BALKAN PENINSULA POWER SYSTEM 

3.1. The Western Balkan Region 

The power sectors of the Western Balkan countries have a large potential of bringing additional 

investments to diversify the supply sources with the addition of renewable energy sources and 

enhance energy efficiency.[10] 

The region is highly dependent on the energy import, especially the oil and natural gas imports, 

with the high dependence and use of coal, primarily lignite, in power generation. Besides the 

high carbon density due to the heavy dependence on coal, the excessive use of wood for fuel is 

a significant environmental concern, as it is the cause of air pollution, deforestation and land 

degradation.[10] 

The main source of the electricity generation is lignite and hydropower with Serbia, Bosnia and 

Herzegovina, Kosovo and North Macedonia mostly depending on lignite-fired thermal power 

plants while Albania has its electricity production almost 100% from hydropower.[10] 

 

Figure 3.1.  Installed power generation capacities for WB region in 2015. (MW, %) [39] 

3.1.1. Hydropower sector in the Western Balkan region 

There are 444 hydropower plants located in the WB region. There are 57 large hydropower 

plants (installed capacity of more than 10 MW) with most of them located in Albania and 

Bosnia and Herzegovina, closely followed by Serbia and North Macedonia. More data on the 

number of installed hydropower plants are represented in the Table. 3.1[39]  
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Table 3.1. Number of hydropower plants in the Western Balkan Region [39] 

Country 
Large HPP  

[> 10 MW] 

Small HPP 

 [<10 MW] 
Total 

Albania 17 137 154 

Bosnia and Herzegovina 16 66 82 

Serbia 12 85 97 

North Macedonia 9 75 84 

Montenegro 2 16 18 

Kosovo 1 10 11 

Total 57 389 446 

Share 12.8% 87.2% 100% 

Based on the total installed capacities, the large hydropower pants account for 8,022 MW, while 

small hydropower plants have a capacity of 583 MW. Serbian hydropower plants account for 

3,157 MW of the total WB region, followed by Bosnia and Herzegovina with 2,183 MW and 

Albania with installed 1,844 MW of installed hydropower capacities. Related to small 

hydropower plants, the most of the installed capacity is located in Albania with a total share of 

43%, followed by Bosnia and Herzegovina, North Macedonia and Serbia.[39]  

Even though the number of small hydropower plants represents the 87.2% in the number of 

facilities, they account for the smaller amount of the total installed capacity of 6.8% and an 

even smaller amount in the average annual hydropower generation with only 2.5%. More on 

the total installed capacity for the WB region in Table 3.2. Table 3.3. shows the average annual 

hydropower production for the period between 2001–2015.[39] 

When comparing cumulative values of the hydropower capacities being installed, the 90% of 

the total installed capacity has been constructed and commissioned before 1990 with only 866 

MW added between 1990 and 2015. During the period between 2001 and 2016, the 397 MW 

of the large hydropower plant capacities and 403 MW of small hydropower plants have been 

added.[39] 
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Table 3.2. Installed hydropower capacities in the WB region, in MW [39] 

Country 
Large HPP  

[> 10 MW] 

Small HPP 

 [<10 MW] 
Total 

Albania 1,592 252 1,844 

Bosnia and Herzegovina 2,081 102 2,183 

Serbia 3,092 66 3,157 

North Macedonia 574 97 671 

Montenegro 649 25 974 

Kosovo 35 40 75 

Total 8,022 583 8,605 

Share 93.2% 6.8% 100% 

Table 3.3. Average annual hydropower production for the period between 2001 and 2015 in 

 GWh [39] 

Country 
Large HPP  

[> 10 MW] 

Small HPP 

 [<10 MW] 
Total 

Albania 4,895 182 5,077 

Bosnia and Herzegovina 5,572 97 5,669 

Serbia 9,946 62 10,008 

North Macedonia 1,273 194 1,468 

Montenegro 1,722 33 1,755 

Kosovo 91 36 127 

Total 23,499 604 24,104 

Share 97.5% 2.5% 100% 

3.1.2. Albania 

The Albanian power generation capacities number only one thermal power plant, while the 

country’s power generation relies on the hydropower generation with 1,838 MW of active 

generation capacity. The only thermal power plant, TE Vlora, is out of operation due to the 

technical problems or the lack of profitability. The lack of thermal power generation puts the 

Albanian power system in the sensitive position when dry hydrological year happens, putting 

the Albanian security of electricity supply to the test. To compensate for the loss of the available 

hydropower generation, Albania imports electricity from its neighboring countries.[39],[40] 
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Figure 3.2.  Albanian transmission network with locations of larger power plants (left)[44]; 

Locations of the existing hydropower plants (right),[32] 

Table 3.4. The list of the major power plants in the Albania [40], [41], [42], [43], [44],[45] 

Unit Power Capacity [MW] Type* Fuel* 

TE Vlora 98 COMC OIL 

HE Fierza 500 HDAM WAT 

HE Koman 600 HDAM WAT 

HE Vau Dejes 250 HDAM WAT 

HE Shkopet 24 HDAM WAT 

HE Ulez 25 HDAM WAT 

HE Bistrica I 22,5 HROR WAT 

HE Bistrica II 5 HROR WAT 

HE Tervol 10.6 HROR WAT 

HE Arras 4,8 HROR WAT 

HE Smokthina 9 HROR WAT 

Small HPPs 252 HROR WAT 

               * related to Dispa-SET Manual list of unit types and supported fuels [75] 
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3.1.3. Bosnia and Herzegovina 

   

Figure 3.3.  Transmission network of Bosnia and Herzegovina with locations of larger power 

plants (left),[41]; Locations of existing hydropower plants (right),[32] 

The power capacities of Bosnia and Herzegovina consist of five main coal-fired power plants 

and a number of hydropower plants.[40] 

The five thermal power plants, TE Gacko, TE Kakanj, TE Tuzla, TE Ugljevik and TE Stanari 

use lignite coal as an energy source and are built near the coal mines which provides them with 

the needed energy source. The Abid Loloc, Zenica, Kakanj and Breza mines are located near 

the TE Kakanj, the Banovic, Đurđevik and Kreka mines near the TE Tuzla, the Stanari mine 

near the TE Stanari, the Terex Kop and Ugljevik mines near the TE Ugljevik and the Gacko 

mine near the TE Gacko.[40]  

The main hydropower plants are HE Visegrad, RHE Capljina, HE Grabovica, HE Trebinje, HE 

Salakovac, HE Rama, HE Jablanica, HE Bocac, HE Mostar, HE Jajce 1 and HE Jajce2. RHE 

Capljina is the only pumped hydro storage unit.[40],[41],[42] 

Major rivers flowing through or passing Bosnia and Herzegovina are rivers Sava, Drina, 

Neretva, Una, Bosna, Vrbas, Sana and Trebišnjica.[42] 

Beside the two main power generation sources with a total thermal power capacity of 2,516 

MW and 2,180.24 MW of hydropower generation, Bosnia and Herzegovina has 14 MW of solar 

capacities and 50,6 MW of wind power with its first wind power plant VE Mesihovina.[40],[46] 

Total energy mix of Bosnia and Herzegovina presented in percentage shows that lignite-fired 

thermal power plants account for 60.46%, hydropower plants for 37.65% and other energy 

sources for 1.89%.[40] 

More on the power plants data in Table 3.5. 
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Table 3.5. The list of the major power plants in Bosnia and Herzegovina [40],[41],[42],[45] 

Unit Power Capacity [MW] Type* Fuel* 

TE Tuzla 730 STUR LIG 

TE Kakanj 416 STUR LIG 

TE Ugljevik 269 STUR LIG 

TE Gacko 289 STUR LIG 

TE Stanari 300 STUR LIG 

HE Bocac 110 HDAM WAT 

HE Jablanica 181 HDAM WAT 

HE Rama 161 HDAM WAT 

HE Salakovac 210 HDAM WAT 

HE Trebinje 179 HDAM WAT 

HE Visegrad 315 HDAM WAT 

RHE Capljina 430 HPHS WAT 

HE Grabovica 114 HROR WAT 

HE Mostar 72 HROR WAT 

HE Jajce 1 60 HROR WAT 

HE Jajce 2 30 HROR WAT 

               * related to Dispa-SET Manual list of unit types and supported fuels [75] 

3.1.4. Montenegro 

The power system of Montenegro consists of one thermal coal-fired thermal power plant, TE 

Pljevlja, two larger hydropower plants, HE Piva and HE Perucica, with few smaller hydropower 

plants, HE Bistrica, HE Orah, HE Sekular, HE Pljevlja, HE Glava Zete, HE Slap Zete, HE 

Muskovica Rijeka, HE Savnik, HE Lijeva Rijeka, HE Podgor and HE Rijeka 

Crnojevica.[40],[41] 

Beside thermal power plant TE Pljevlja (210 MW) and hydropower plants (673 MW), 

Montenegro has wind power capacity of 72 MW with their first wind power plant Krnovo that 

started operating in 2017.[40],[47] 

Total energy mix of Montenegro presented in percentage shows that hydropower plants account 

for 69.66%, thermal power plant TE Pljevlja for 22.81% and other energy sources for 7.53%. 

More on the power plants data in Table 3.6. 
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Table 3.6. The list of the major power plants in Montenegro, [40],[41],[42],[45] 

Unit Power Capacity [MW] Type* Fuel* 

TE Pljevlja 210 STUR HRD 

HE Piva 360 HDAM WAT 

HE Perucica 310 HDAM WAT 

mHE Bistrica 5.1 HROR WAT 

mHE Orah 1.71 HROR WAT 

mHE Sekular 1.71 HROR WAT 

HE Glava Zete 5.36 HROR WAT 

HE Slap Zete 2.4 HROR WAT 

HE Pljevlja 114 HROR WAT 

HE Muskovica Rijeka 0.84 HROR WAT 

HE Savnik 0.2 HROR WAT 

HE Podgor 0.395 HROR WAT 

HE Rijeka Crnojevica 0.555 HROR WAT 

               * related to Dispa-SET Manual list of unit types and supported fuels [75] 

   

Figure 3.4.  Transmission network of Montenegro with locations of larger power plants 

(left),[48]; Locations of existing hydropower plants (right),[32]  
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3.1.5. North Macedonia 

The power system of North Macedonia consists of three thermal power plants and several 

hydropower plants. Thermal power plants TE Bitola and TE Oslomej are lignite-fired thermal 

power plants, which utilize nearby coal mines Suvodol and, Oslomej East and West, 

respectively. The TE-TO AD Skopje is gas-fired combined cycle cogeneration power plant.[40] 

The largest hydropower plants are HE Tikvesh, HE Shpilje, HE Kozjak, HE Globcica, HE Sveta 

Petka and the Mavrovo Cascade consisted of HE Vrutok, HE Raven and HE Vrben. Besides 

larger hydropower plants, North Macedonia has a capacity of 97 MW of the small hydropower 

plants.[40],[41],[42],[45] 

The only wind power plant is the Vatren Park Bogdanci with a power output of 35 MW that 

started operating in 2014.[40] 

Based on IEA Statistic, the percentage of electricity generation by fuel for the year 2015 shows 

the usage of coal, hydropower, gas, wind and other energy sources of 58.26%, 33.03%, 3.24%, 

2.14% and 3.33%, respectively.[49] 

More on the power plants data in Table 3.7. 

 

Figure 3.5.  Transmission network of North Macedonia with locations of larger power plants 

[48] 
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Figure 3.6.  Locations of existing hydropower plants in North Macedonia [32] 

Table 3.7. The list of the major power plants in North Macedonia, [40],[41],[42],[45] 

Unit Power Capacity [MW] Type* Fuel* 

TE Bitola 699 STUR LIG 

TE Oslomej 125 STUR LIG 

TE-TO AD Skopje 251 COMC GAS 

Mavrovo Cascade 207 HDAM WAT 

HE Tikvesh 114 HDAM WAT 

HE Shpilje 84 HDAM WAT 

HE Kozjak 82 HDAM WAT 

HE Globacica 42 HDAM WAT 

HE Sveta Petka 36.4 HDAM WAT 

HE Kalimanci 13.8 HROR WAT 

HE Matka 8 HROR WAT 

VE Vatren Park Bogdanci 35 WTON WIN 

                    * related to Dispa-SET Manual list of unit types and supported fuels [75] 
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3.1.6. Serbia 

    

Figure 3.7.  Transmission network of Serbia with locations of larger power plants (left),[52]; 

Locations of existing hydropower plants (right), [32] 

Serbian power system consists of ten thermal power plants and a number of hydropower plants 

as they represent a big share of electricity generation units. The lignite-fired thermal power 

plants are TE Kolubara, TE Kostolac A, TE Kostolac B, TE Morava, TE Nikola Tesla A and 

TE Nikola Tesla B. The lignite coal is provided from coal mines Kostolac and Kolubara. TETO 

Novi Sad, TETO Zrinjanin and TETO Sremska Mitrovica are combined heat and power thermal 

power plants that utilize gas as a power source.[40],[41],[45],[50] 

Major hydropower plants are HE Bajina Bašta, HE Djerdap 1, HE Djerdap 2, HE Zvornik. HE 

Pirot, HE Bistrica, HE Kokin Brod, HE Potpec, HE Uvac, HE Vrla 1-4 and RHE Bajina Bašta. 

Beside mentioned larger hydropower plants, Serbia has small hydropower capacities with a 

total 62 MW of power output.[40],[41][42],[45] 

With construction completion of Alibunar wind farm in late 2018, the total wind power output 

of Serbian power sector reached 67 MW. The largest wind farms are VE Alibunar, VE 

Malibunar, VE Kula and VE Izbiste with a power output of 42 MW, 8 MW, 9.9 MW and 6.6 

MW, respectively.[40],[51] 
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Based on IEA Statistic, the percentage of electricity generation by fuel for the year 2015 shows 

the usage of coal, hydropower and other energy sources (oil, gas, biofuels, waste, solar and 

wind) of 71.09%, 28.17% and 0.74%, respectively.[49] 

More on the power plants data in Table 3.8. 

Table 3.8. The list of the major power plants in Serbia, [40],[41],[42],[50],[51] 

Unit Power Capacity [MW] Type* Fuel* 

TE Kolubara 270 STUR LIG 

TE Kostolac A 310 STUR LIG 

TE Kostolac B 698 STUR LIG 

TE Morava 125 STUR LIG 

TE Nikola Tesla A 1650 STUR LIG 

TE Nikola Tesla B 1240 STUR LIG 

TETO Novi Sad 245 COMC GAS 

TETO Zrenjanin 100 COMC GAS 

TETO Sremska Mitrovica 45 COMC GAS 

HE Bajina Basta 420 HROR WAT 

HE Djerdap 1 1083 HROR WAT 

HE Djerdap 2 270 HROR WAT 

HE Zvornik 96 HROR WAT 

HE Pirot 80 HDAM WAT 

HE Bistrica 102 HDAM WAT 

HE Kokin Brod 22 HDAM WAT 

HE Potpec 54 HDAM WAT 

HE Uvac 36 HDAM WAT 

HE Vrla 1-4 128.6 HDAM WAT 

RHE Bajina Basta 614 HDAM WAT 

                    * related to Dispa-SET Manual list of unit types and supported fuels [75] 

3.1.7. Kosovo 

Kosovo power system consists of two thermal power plants and several hydropower plants. 

Thermal power plants TE Kosovo A and TE Kosovo B are lignite-fired thermal power plants.  

Thermal power plants utilize nearby coal mine named Southwest Sibovc mine.[40] 
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The largest hydropower plant is HE Ujmani with a net power output of 35 MW. Ten smaller 

hydropower plants add up to total 40 MW of power output, which together with HE Ujmani, 

account for 75 MW of total power capacities.[40],[42] 

Putting the wind park VE Kitka in operation, total wind power output rose up to the 33.77 

MW.[40] 

Based on IEA Statistic, the percentage of electricity generation by fuel for the year 2015 shows 

the usage of coal, hydropower and oil of 97.47%, 2.29% and 0.24%, respectively.[49] 

More on the power plants data in Table 3.9. 

  

Figure 3.8.  Transmission network of Kosovo with locations of larger power plants (left),[45]; 

Locations of existing hydropower plants (right), [32] 

Table 3.9. The list of the major power plants in Kosovo, [40],[41],[42] 

Unit Power Capacity [MW] Type* Fuel* 

TE Kosovo A 432 STUR LIG 

TE Kosovo B 528 STUR LIG 

HE Ujmani 35 HDAM WAT 

HE Decani 9.9 HROR WAT 

HE Bellaje 8 HROR WAT 

Small HPPs 40 HROR WAT 

Wind Parks 33.7 WTON WIN 

               * related to Dispa-SET Manual list of unit types and supported fuels [75] 
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3.2. Slovenia 

  

Figure 3.9.  Transmission network of Slovenia with locations of larger power plants (left), 

[62]; Locations of existing hydropower plants (right), [32] 

Slovenian power system mainly consists of three fossil fuel powered thermal power plants, one 

nuclear power plant and a number of hydropower plants. 

TE Sostanj and TE-TO Ljubljana are lignite-fired thermal power plants with both being CHP 

power stations. The thermal power plant TPP Brestenica utilize gas as a power source. Nuclear 

power plant NE Krsko is a shared project between Croatia and Slovenia with power plant’s 

energy output shared equally.[45],[53],[54],[55],[56],[58] 

Largest hydropower plants are located on three main rivers in Slovenia, Soča, Sava and Drava 

Rivers. Hydropower plants can be divided into Soca HPP Chain, Sava HPP Chain and Drava 

HPP Chain with most of the units being run-of-river type hydropower plants.[59] 

The largest hydropower plants on the Drava River are HE Dravograd, HE Vuzenica, HE 

Vuhred, HE Ozbalt, HE Fala, HE Mariborski Otok, HE Zatolicje and HE Formin. The 

hydropower plants on the Soča River are HE Doblar I, HE Doblar II, RHE Avche, HE Plave I, 

HE Plave II and HE Solkan with RHE Avche being the only pumped hydropower plant in 

Slovenia. Main hydropower plants on the upper part of the Sava River are HE Moste, HE 

Mavcice and HE Medvode, while the largest hydropower plants on the downstream part of the 

Sava River are HE Vrhovo, HE Bostanj, HE Blanca, HE Krsko, HE Brezice and HE Mokrice. 

Beside the mentioned larger hydropower plants, Slovenia has a large number of small 

hydropower plants.[32],[45],[53],[54],[55],[59],[60] 

Beside thermal power and hydropower plants, Slovenia has smaller capacities in energy 

generation from waste or biomass (57 MW), wind power (3 MW) and solar power generation 

(275 MW).[61] 
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Based on IEA Statistic, the percentage of electricity generation by fuel for the year 2015 shows 

the usage of nuclear energy, coal, hydropower, gas, solar power and other energy sources (wind, 

biofuels, waste, oil) of 37.4%, 29.04%, 27.09%, 2.68%, 1.81% and 1.98%, respectively.[49] 

More on the power plants data in Table 3.10. 

Table 3.10. The list of the major power plants in Slovenia,[32],[45],[53]-[60] 

Unit Power Capacity [MW] Type* Fuel* 

NE Krsko 696 STUR NUC 

TE Sostanj 1217 STUR LIG 

TPP Brestanica 297 GTUR GAS 

TETO Ljubljana 134 STUR HRD 

HE Dravograd 21 HROR WAT 

HE Vuzenica 52 HROR WAT 

HE Vuhred 61 HROR WAT 

HE Ozbalt 61 HROR WAT 

HE Fala 57 HROR WAT 

HE Mariborski Otok 60 HROR WAT 

HE Zatolicje 126 HROR WAT 

HE Formin 127 HROR WAT 

HE Doblar I and II 70 HROR WAT 

RHE Avche 185 HPHS WAT 

HE Plave I and II 42 HROR WAT 

HE Solkan 31 HROR WAT 

HE Moste 13 HROR WAT 

HE Mavcice 38 HROR WAT 

HE Medvode 19 HROR WAT 

HE Vrhovo 34 HROR WAT 

HE Bostanj 32 HROR WAT 

HE Krsko 38 HROR WAT 

HE Brezice 45 HROR WAT 

HE Mokrice 28.05 HROR WAT 

               * related to Dispa-SET Manual list of unit types and supported fuels [75] 
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3.3. Croatia 

   

Figure 3.10.  Transmission network of Croatia with locations of larger power plants (left), 

[68]; Locations of existing hydropower plants (right), [32] 

Croatian powers system is mainly composed of eight larger thermal power plants, a number of 

hydropower plants and wind power capacity of 582 MW.[55],[61] 

Thermal power plants EL-TO Zagreb, TE-TO Osijek, TE-TO Sisak (BLOK C) and TE-TO 

Zagreb are CHP units that utilize gas as a power source. TE-TO Sisak refers to the set of the 

three units with one of them (BLOK C) being Combined Cycle Gas Turbine Unit (CCGT) with 

a power output of 230 MWe and 50 MWh commissioned in 2015. The other two units of the 

TE-TO Sisak are steam turbine powered generators that utilize oil as a power source. KTE 

Jertovec with a power output of 88 MW is also CCGT unit that uses gas as a power source. 

Beside two units of TE-TO Sisak using oil as a power source, the thermal power plant TE Rijeka 

uses the same fuel for electricity generation. The only thermal power plant that uses coal as a 

power source is TE Plomin.[45],[55],[61],[63],[64] 

Hydropower plants are divided into Southern HPPs, Western HPPs, Northern HPPs and HES 

Dubrovnik.[63] 

Northern HPPs, HE Varazdin, HE Cakovec and HE Dubrava are located on the Drava River. 

HES Vinodol is a system that includes hydropower plants CHE Fuzine, RHE Lepenica and HE 

Vinodol. Together with hydropower plants HES Senj (HE Senj and HE Sklope), HE Rijeka, 

HE Zeleni Vir, HE Gojak, HE Lešće and HE Gojak, HES Vinodol forms Western HPPs which 

utilize waters of the Kupa River (HE Ozalj);  Ogulinska Dobra and Zagorska Mrežnica Rivers 
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(HE Gojak); Lokvarka, Križ, Ličanka, Benkovac Rivers and Lokvarsko, Lepenica and Bajer 

Lakes (HES Vinodol); Riječina River (HE Rijeka), Lika and Gacka Rivers (HES Senj) and 

Dobra River (HE Lesce).[45],[63],[64],[65] 

Hydropower plants RHE Velebit, HE Miljacka, HE Golubic, HE Jaruga, mHE Krcic, HE 

Orlovac, HE Peruća, HE Dale, Zakucac and HE Kraljevac form a group of Southern HPPs 

utilizing waters of the Cetina, Zrmanja and Krka River Basins.[45,][63],[64],[66],[67] 

HES Dubovnik is composed of smaller HE Zavrelje and shared project between Croatia and 

Bosnia and Herzegovina, HE Dubrovnik, which uses waters of the Trebišnjica River from the 

Bileća Lake which is located in Bosnia and Herzegovina.[45],[63],[64] 

Based on IEA Statistic, the percentage of electricity generation by fuel for the year 2015 shows 

the usage of hydropower, coal, gas, wind, biofuels, oil and other energy sources (solar, waste) 

of 57.49%, 20.26%, 10.5%, 6.98%, 2.33%, 1.93% and 0.51%, respectively.[49] 

More on the power plants data in Table 3.11. 

Table 3.11. The list of the major power plants in Croatia, [45],[61],[63]-[67] 

Unit Power Capacity [MW] Type* Fuel* 

EL-TO Zagreb 90 STUR GAS 

KTE Jertovec 88 COMC GAS 

TE Plomin 325 STUR HRD 

TE Rijeka 320 STUR OIL 

TE-TO Sisak (BLOK A and B) 396 STUR OIL 

TE TO Sisak (BLOK C) 230 COMC GAS 

TE-TO Zagreb 440 STUR GAS 

HE Kraljevec 46.4 HROR WAT 

HE Varazdin 92.46 HROR WAT 

HE Dubrava 79.78 HROR WAT 

HE Cakovec 77.44 HROR WAT 

HE Gojak 55.5 HROR WAT 

HE Lesce 41.2 HROR WAT 

HE Rijeka 36.8 HPHS WAT 

HE Miljacka 24 HROR WAT 

mHE Krcic 0.375 HROR WAT 
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HE Ozalj 6 HROR WAT 

HE Jaruga 7.2 HROR WAT 

HE Zeleni Vir 1.7 HROR WAT 

HE Zakucac 486 HDAM WAT 

HE Senj 216 HDAM WAT 

HE Dubrovnik 252 HDAM WAT 

HE Vinodol 90 HDAM WAT 

HE Peruca 60 HDAM WAT 

HE Sklope 22.5 HDAM WAT 

HE Dale 40.8 HDAM WAT 

HE Golubic 7.5 HDAM WAT 

HE Zavrelje 2.09 HDAM WAT 

RHE Velebit 276 HPHS WAT 

RHE Orlovac 237 HPHS WAT 

RHE Lepenica 0.8 HPHS WAT 

CHE Fuzine 4.6 HPHS WAT 

Wind Power 582 WTON WIN 

Solar Power 52 PHOT SUN 

             * related to Dispa-SET Manual list of unit types and supported fuels [75] 

3.4. Greece 

The Greek power system consists of 37 thermal power plants, number of hydropower plants, 

the wind power capacity of a 2,355 MW and solar power capacity of a 2,441 MW.[2],[61] 

Thermal power plants are lignite or gas fired. Thermal power plants Agios Dimitrios, Amyntaio, 

Kardia, Megalopoli (III and IV) and Florina are lignite-fired units with a total power output of 

3,912 MW. Thermal power plants Lavrio, Megalopoli V, Komotini, Korinthos, Protegia, 

Aliveri, Elpedison Thisvi, Thessaloniki, Alouminio, Heron CC and Heron (I,II and III) are gas-

fired units. All mentioned gas units, excluding Heron I,II and II, are also CCGT units. The total 

installed power output of the gas-fired thermal power plants is 4,902 MW.[2],[61] 

Largest hydropower plants are Asomata, Ilarionas, Kastraki, Kremasta, Ladonas, Pigia Aoos, 

Plastiras, Platanovrysi, Polyfyto, Pournari I, Pournari I, Stratos, Sfikia, Thesavros, Agras and 

Edessaios. Most of the mentioned units are conventional dam storage hydropower plants with 
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exception of units Sfikia and Thesavros representing pumped hydropower units, and units 

Agras and Edessaios representing run-of-river type hydropower plants. Total installed 

hydropower is 3,401 MW[2],[61],[69] 

Based on ENTSO-E Statistic, the percentage of electricity generation by fuel for the year 2018 

shows the usage of coal, gas, hydropower, wind and solar of 34.76%, 34.81%, 11.52%, 11.1% 

and 7.81%, respectively.[61] 

More on the power plants data in Table 3.12. 

Table 3.12. The list of the major power plants in Greece, [2],[61],[69] 

Unit Power Capacity [MW] Type* Fuel* 

Lavrio 928 COMC GAS 

Megalopoli V 500 COMC GAS 

Komotini 476 COMC GAS 

Korinthos 433 COMC GAS 

Protegia CC 432 COMC GAS 

Aliveri 417 COMC GAS 

Thisvi Elpedison 410 COMC GAS 

Thessaloniki 400 COMC GAS 

Alouminio 334 COMC GAS 

Heron CC 422 COMC GAS 

Heron I, II, III 147 GTUR GAS 

Agios Dimitrios 1456 STUR LIG 

Florina 289 STUR LIG 

Kardia 1103 STUR LIG 

Amyntaio 546 STUR LIG 

Megalopoli III, IV 511 STUR LIG 

Asomata 108 HDAM WAT 

Ilationas 154 HDAM WAT 

Kastraki 320 HDAM WAT 

Kremasta 437 HDAM WAT 

Ladonas 70 HDAM WAT 

Pigai Aoos 210 HDAM WAT 
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Plastiras 130 HDAM WAT 

Platanovrysi 116 HDAM WAT 

Polyfyto 375 HDAM WAT 

Pournari 1 304 HDAM WAT 

Pournar 2 30 HDAM WAT 

Stratos 150 HDAM WAT 

Sfikia 315 HPHS WAT 

Thesavros 384 HPHS WAT 

Agras 50 HROR WAT 

Edessaios 19 HROR WAT 

Wind Power 2,355 WTON WIN 

Solar Power 2,441 PHOT SUN 

               * related to Dispa-SET Manual list of unit types and supported fuels [75] 

    

Figure 3.11.  Transmission network of Greece with locations of larger power plants (left), [70]; 

Locations of existing hydropower plants (right), [32] 
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4. MODEL DESCRIPTION 

The modeling of the region is composed of three steps. The Dispa-SET model is divided into 

the Dispa-SET Medium-Term Hydrothermal Coordination (Dispa-SET MTHC) and Dispa-

SET Unit Commitment and Dispatch (Dispa-SET UCD) model. Both models are linked to the 

rainfall-runoff hydrological LISFLOOD model. Results from the LISFLOOD model, in form 

of water inflows, are used as input data for both Dispa-SET models. Steps of the modeling are 

represented in Figure 4.1.[6] 

 

Figure 4.1.  Modeling steps and their outputs [6] 

The first step represents the LISFLOOD model which is solved to give the output of the water 

inflows for the Dispa-SET model. Water inflows impose constraints on hydropower plants, and 

for the later work, water constrained limitation for the thermal power plants.[6] 

The second step represents the Dispa-SET MTHC model, which runs at daily time steps in order 

to provide management of water resources. Its output in the form of reservoir levels and the 

hydropower generation of the run-of-river units is later passed for the Dispa-SET UCD 

model.[6] 
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The third step is the Dispa-SET UCD model which runs at hourly time steps and gives output 

in terms of power dispatch and schedule, water-related results and economic results.[6] 

4.1. LISFLOOD 

As a source of the needed inflows for the Dispa-SET MTHC, and later Dispa SET UCD model, 

the LISFLOOD model represents the important role for this study. The model will be only 

briefly discussed since it is not being used in the scope of this study yet the data related to the 

inflows are provided by JRC. 

The LISFLOOD model has been developed by the floods group of the Natural Hazards Project 

of the Joint Research Centre. It is the hydrological rainfall-runoff model that simulates the 

hydrological processes in a catchment including flood forecasting, assessing the effects of river 

regulation measures, effects of land-use change and effects of climate change.[71] 

 

Figure 4.2.  Overview of the LISFLOOD model. P = precipitation; Int = interception; EWint = 

evaporation of intercepted water; Dint = leaf drainage; ESa = evaporation from soil surface; 

Ta = transpiration (water uptake by plant roots); INFact = infiltration; Rs = surface runoff; 

D1,2 = drainage from top- to subsoil; D2,gw = drainage from subsoil to upper groundwater 

zone; Dpref,gw = preferential flow to upper groundwater zone; Duz,lz = drainage from upper- 

to lower groundwater zone; Quz = outflow from upper groundwater zone; Ql = outflow 

from lower groundwater zone; Dloss = loss from lower groundwater zone. Note that 

snowmelt is not included in the Figure (even though it is simulated by the model)., [72] 
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The model is designed to be used across a wide range of spatial and temporal scales. Since it is 

grid-based, the model can be used on a grid cells ranging from as little as 100 meters for the 

medium-sized catchments, and up to 10 km for global models. The time steps can be daily based 

for the simulation of the long-term water balance, while the hourly time steps are used for the 

simulation of the individual flood events. Also, the output of the “water balance” simulation 

can be used as input data for the “flood” simulations. Even though the primary output is channel 

discharge, all the internal rate and states variable can be written as the output with the complete 

user control.[71] 

There is an overview of the model structure presented in Figure 4.2. The model is made up of 

the two-layer soil water balance sub-models, sub-models for the simulation of groundwater and 

subsurface flow, sub-model for the routing of surface runoff to the nearest river channel and 

sub-model for the routing of channel flow. Simulated processes include infiltration, snowmelt, 

interception of rainfall, leaf drainage, evaporation, water uptake by vegetation, surface runoff, 

exchange of soil moisture between soil layers, drainage to the groundwater, bypass of the soil 

layer and flow through the river channel. More on the formulation of the mentioned processes 

can be seen in [71].[71],[72] 

4.2. Dispa-SET Medium-Term Hydrothermal Coordination 

The Dispa-SET MTHC is a model used to determine operation planning of hydropower 

reservoirs and thermal power plants based on minimization of system cost function composed 

of the system generation costs over a given planning horizon. The time horizon ranges from 

one year to several years with daily, weekly or monthly times steps. The degree of detail of 

hydropower units is greater than in the short-term operation at the expense of clustering the 

same fuel-powered thermal power plants. That mens that thermal power units are aggregated 

by fuel and country, because the main scope of the MTHC model is to get results on hydropower 

generation and reservoir levels, and including the each thermal unit itself would substantialy 

increase the run time of the model. The MTHC problem can be characterized as large-scale, 

nonlinear and nonconvex optimization.[1] 

The problem can be solved from two perspectives. The extensive form also knows as 

deterministic equivalent, which is used in this study, and the stochastic form.[1] 

The deterministic MTHC problem assumes fixed water inflows, and based on the formulation 

of the hydro and thermal related technical features, the problem can be formulated as linear 

programming, nonlinear programming or mixed-integer linear programming.[1]  
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Related to the stochastic form, the model is based on the addition of uncertainty as hydrological 

scenarios for each planning stage, which consist of the amount of the water available for the 

electricity generation at each stage through the horizon. Scenarios are built with information 

from the previous year. There are two ways to tackle the stochastic problem, vertical by 

stage/time and horizontal by scenarios.[73] 

The deterministic form can be used to perform a scenario-based analysis for certain years, while 

the stochastic form is more valuable when models are used for production because the inherent 

uncertainty of different variables could affect the real-time operational decisions.[1] 

In this study, the deterministic approach is used and it is defined as a constrained linear 

programming problem in GAMS.[74]  

The model sets are represented in Table 4.1., variables in Table 4.2 and model parameters in 

Table 4.3. 

Table 4.1. Model sets, [6] 

Sets  

p Time periods 

ut Thermal power plants 

ur Renewable power plants: SUN, WIN, HROR 

uh Hydropower plants with storage 

up Pumped storage hydropower plant 

l Lines (Transmission lines between neighbouring countries) 

n Nodes (Countries) 

t Technology (Based on the Dispa-SET manual list of fuels [75]) 

Table 4.2. Model variables, [6] 

Name Unit Description 

G (p,u) GWh Energy generated in period p by power plant u 

PUMP (p,u) GWh Pumping water at period p to storage of plant u 

RES (p,u) Mm3 Water stored at period  p in plant u 

DIS (p,u) m3/s Water discharge at period p by plant u 

CH (p,u) m3/s Water charge at period p to pumped hydro storage u 

SPILL (p,u) m3/s Spillage at period p by plant u 

UPSTREAM (p,u) m3/s Inflow from upstream hydropower plants at time p for plant u 

FLOW (p,l) GWh Energy transmission at period p and line l 

CURT (p,n) GWh Curtailed RES at time p in node n 

LOSTLOAD (p,n) GWh Unsatisfied demand at time p in node n 
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Table 4.3. Model parameters [6] 

Name Unit Description 

dt h Period duration 

Gravity m/s2 Gravity constant 

Density kg/m3 Water density 

Factor 1 Mm3/(m3∙s) Conversion factor from m3/s to Mm3 

Factor 2 GWh/((m3/s)∙m) Conversion factor from m3/s to GWh 

Technology (u,t) / Technology [75] 

Demand (p,n) GWh Electricity demand for the node n at period p 

Duration (n,t) day Minimum number of days a given technology 

must be producing to match statistics 

Location (u,n) / Unit location 

Pmin (u) GW Minimum stable generation of unit 

Pmax (u) GW Installed capacity 

VarCost (u) k€/GWh Variable cost of electricity generation 

Stmin (u) Mm3 Minimum storage level 

Stmax (u) Mm3 Maximum storage level 

Stinit (u) Mm3 Initial storage level 

eta_pump (u) % Pumping efficiency 

eta_turb (u) % Discharging efficiency 

Delay (u, uu) day Water transport delay between two unit u 

NominalHead (u) m Nominal head of hydropower plant 

Resources (p,u) m3/s Natural water inflows 

Evaporation (p,u) m3/s Evaporation loses from reservoirs 

Profiles (p,u) / Capacity factor for solar and wind power 

Topology (u,uu) / Hydropower network (Cascades) 

Spillage_max (p,u) m3/s Maximum spillage allowed 

Incidence_matrix (n,l) / Line-node incidence matrix for power flow 

LineCapacity (l) GW Transmission line capacity 

DemandW (p,u) m3/s Water withdrawal from plant u at period p 

Eco_flow (p,u) m3/s Environmental flow 

Availability (p,u) % Unit availability 
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The objective function determines the total electricity generation cost during the simulation 

period. The objective function includes variable costs of electricity generation for all units, the 

cost of pumping, spillage, energy transmission, curtailment and load shedding. 

𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑠𝑡 = ∑ 𝑉𝑎𝑟𝐶𝑜𝑠𝑡(𝑢) ∙ 𝐺(𝑝, 𝑢) +𝑝,𝑢 ∑ 𝑃𝑢𝑚𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡 ∙ 𝑃𝑈𝑀𝑃(𝑝, 𝑢) +𝑝,𝑢

                              ∑ 𝑆𝑝𝑖𝑙𝑙𝑎𝑔𝑒𝐶𝑜𝑠𝑡 ∙ 𝑆𝑃𝐼𝐿𝐿(𝑝, 𝑢) + ∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑠𝑡 ∙ 𝐹𝐿𝑂𝑊(𝑝, 𝑙) +𝑝,𝑢𝑝,𝑢

                              ∑ 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 ∙ 𝐶𝑈𝑅𝑇(𝑝, 𝑛) +𝑝,𝑢

                              ∑ 𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡 𝐿𝑂𝑆𝑇𝐿𝑂𝐴𝐷(𝑝, 𝑛)𝑝,𝑢   

(1) 

The objective function is constrained by a set of equations: 

The market clearing equation (2) state that for each node n at period p the supply (generation 

and imports of electricity) must meet the demand: 

∑ 𝐺(𝑝, 𝑢) +𝑢∈𝑈(𝑛) ∑ 𝐹𝐿𝑂𝑊(𝑝, 𝑙)𝑙∈𝐿(𝑛) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑝, 𝑛) + ∑ 𝑃𝑈𝑀𝑃(𝑝, 𝑢) +𝑢∈𝑃𝑈𝑀𝑃(𝑛)

                                                                             𝐶𝑈𝑅𝑇(𝑝, 𝑛) − 𝐿𝑂𝑆𝑇𝐿𝑂𝐴𝐷(𝑝, 𝑛)  

(2) 

Generation bounds in equation (3) sets the minimum and maximum energy generation of each 

unit in every time step (day): 

𝑃𝑚𝑎𝑥 ∙ 𝑑𝑡 > 𝐺(𝑝, 𝑢) > 𝑃𝑚𝑖𝑛(𝑢) ∙ 𝑑𝑡  (3) 

The energy generated by hydropower units is set in equation (4). Factor 2 is used to calculate 

the amount of energy in GWh from initial m3/s.(5)  

𝐺(𝑝, 𝑢) = 𝑒𝑡𝑎_𝑡𝑢𝑟𝑏(𝑢) ∙ 𝐷𝐼𝑆(𝑝, 𝑢) ∙ 𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝐻𝑒𝑎𝑑 ∙ 𝐹𝑎𝑐𝑡𝑜𝑟2  (4) 

𝐹𝑎𝑐𝑡𝑜𝑟2 = 24(ℎ) ∙ 60(𝑚𝑖𝑛/ℎ) ∙ 60(𝑠/𝑚𝑖𝑛) ∙ 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 ∙ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∙
1

3600
(

𝑊ℎ

𝐽
)

1

109 (
𝐺𝑊ℎ

𝑊ℎ
)  (5) 

The renewable energy generation from solar and wind power is set in equation (6): 

𝐺(𝑝, 𝑢) = 𝑃𝑚𝑎𝑥(𝑢) ∙ 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠(𝑝, 𝑢) ∙ 𝑑𝑡  (6) 

The transmission bound is set in equation (7) where it states that power flow cannot be higher 

than the line capacity: 

𝐹𝐿𝑂𝑊(𝑝, 𝑙) ≤ 𝐿𝑖𝑛𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑙) ∙ 𝑑𝑡  (7) 

The curtailment bound sets that for each node the curtailment for the units suitable for 

curtailment (hydropower, wind and solar power) must be lower than the total production (8): 

𝐶𝑈𝑅𝑇(𝑝, 𝑛) = ∑ 𝐺(𝑝, 𝑢) ∙ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑛)𝑢∈𝐶𝑈𝑅𝑇(𝑛)   (8) 

Water balance bound set that water stored in period p plus the outflows is equal to the stored 

water in period p-1 plus the inflows (9): 
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𝑅𝐸𝑆(𝑝, 𝑢) − 𝑅𝐸𝑆(𝑝 − 1, 𝑢) = 𝐹𝑎𝑐𝑡𝑜𝑟1 ∙ (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝, 𝑢) − 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑢) +

                                                         𝑈𝑃𝑆𝑇𝑅𝐸𝐴𝑀(𝑝, 𝑢) + 𝐶𝐻(𝑝, 𝑢) − 𝐷𝐼𝑆(𝑝, 𝑢) −

                                                         𝑆𝑃𝐼𝐿𝐿(𝑝, 𝑢) − 𝐷𝑒𝑚𝑎𝑛𝑑𝑊(𝑝, 𝑢))  

(9) 

Minimum water outflow (discharge and spillage) from the hydropower units must be higher 

than the ecological flow (10): 

𝐸𝑐𝑜_𝑓𝑙𝑜𝑤(𝑝, 𝑢) ≤ 𝐷𝐼𝑆(𝑝, 𝑢) + 𝑆𝑃𝐼𝐿𝐿(𝑝, 𝑢)  (10) 

The maximum allowed spillage is used to bound the spillage in equation (11): 

𝑆𝑝𝑖𝑙𝑙𝑎𝑔𝑒_max (𝑝, 𝑢) ≥ 𝑆𝑃𝐼𝐿𝐿(𝑝, 𝑢)  (11) 

The water storage is bounded by the maximum and the minimum storage volumes in the 

equation (12): 

𝑆𝑡𝑚𝑎𝑥(𝑝, 𝑢) ≥ 𝑅𝐸𝑆(𝑝, 𝑢) ≥ 𝑆𝑡𝑚𝑖𝑛(𝑝, 𝑢)  (12) 

Pumped hydro storage constraints are represented in equations (13) and (14): 

𝑃𝑈𝑀𝑃(𝑝, 𝑢) ≤ 𝑃𝑚𝑎𝑥(𝑢) ∙ 𝑑𝑡  (13) 

𝑃𝑈𝑀𝑃(𝑝, 𝑢) = 𝐶𝐻(𝑝, 𝑢) ∙ 𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝐻𝑒𝑎𝑑(𝑢) ∙ 𝐹𝑎𝑐𝑡𝑜𝑟2 ∙
1

𝑒𝑡𝑎_𝑝𝑢𝑚𝑝
  (14) 

In equation (15) and (16) the reservoirs are assumed to be emptied or filled in 2 months: 

𝑅𝐸𝑆(𝑝, 𝑢) − 𝑅𝐸𝑆(𝑝 − 1, 𝑢) <
𝑆𝑡𝑚𝑎𝑥(𝑢)

60
  (15) 

𝑅𝐸𝑆(𝑝 − 1, 𝑢) − 𝑅𝐸𝑆(𝑝 − 1, 𝑢) <
𝑆𝑡𝑚𝑎𝑥(𝑢)

60
  (16) 

To guarantee a minimum use of certain technologies, to match the available statistics, the 

equations (17) is set: 

∑ 𝐺(𝑝, 𝑢) ∙ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦(𝑢, 𝑡) ≥ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑛, 𝑡) ∙
1

365
∑ 𝑃𝑚𝑎𝑥(𝑢)𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑛)𝑢∈𝑈𝑢∈𝑈   (17) 

Set of the equations (1) – (17) is characterized as a linear programming problem. 

4.3. Dispa-SET Unit Commitment and Dispatch 

The Dispa-SET UCD model aims to represent the medium-term operation of large-scale power 

system. The problem consists of two parts: 

 Scheduling the start-up, shut down and operation of available generation units. The 

problem requires the use of binary variables to be able to represent the start-up and shut 

down decisions, while also considering constraints connected to the commitment status 

of the generation units in all time periods,[75],[76] 
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 Allocation of the total power demand to be achieved among the available generation 

units so the total power system cost is minimized. This part of the problem is the 

economic dispatch problem, which determines the output of all generation 

units.[75],[76] 

The problem can be formed as a mixed integer linear problem (MILP) or simplified linear 

program (LP) depending on the picked level of details for the input data. The implementations 

of both problems (MILP and LP) exists in both GAMS and PYOMO.[76] 

Continues variables include dispatched power, the curtailed power generation and the shed load 

in every time step and the binary variables represent the commitment status of all units.[76] 

The model features include: minimum and maximum power outputs for the all units, ramping 

limits, reserves up and down, minimum up and down times, load shedding, curtailment, 

pumped-hydro storage, non-dispatchable units, constraints on the targets for the renewables 

and/or CO2 emissions, outages of all units, schedules for the reservoir storage level, constraints 

of CHP units and thermal storage, network-related constraints, different clustering methods and 

costs of start-up, ramping and no load.[76] 

The model uses three data types: Set, Parameters and Optimisation Variables. Sets are building 

a blocks of the model and are listed in Table 4.4. Parameters are coefficients that correspond to 

the exogenous data provided to the model. The list of the model’s parameters is shown in Table 

4.5. The model variables are set by the model to minimize the objective function and are listed 

in Table 4.6. 

Table 4.4. Model sets [77] 

Sets  

f Fuel types 

h Hours 

i Time step in the current optimization horizon 

l Transmission lines between nodes 

mk {DA: Day-Ahead, 2U: Reserve up, 2D: Reserve down} 

n Zones within each country (currently one node per country) 

p Pollutants 

t Power generation technologies 

tr Renewable power generation technologies 

u Units 

s(u) Storage units (including hydro reservoirs) 

chp(u) CHP units 
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Table 4.5. Model parameters [77] 

Name Unit Description 

AvailabilityFactor(u,i) % Percentage of nominal capacity available 

CHPPowerLossFactor(u) % Power loss when generating heat 

CHPPoweToHeat(u) % Nominal power-to-heat ratio 

CHPMaxHeat(chp) MW Maximum heat capacity of CHP plant 

CHPType / CHP Type 

CommittedInitial(u) / Initial commitment status 

CostFixed(u) €/h Fixed cost 

CostLoadShedding(n,h) €/MWh Shedding cost 

CostRampDown(u) €/MW Ramp-down cost 

CostRampUp(u) €/MW Ramp-up cost 

CostShutDown(u) €/u Shut-down costs for one unit 

CostStartUp(u) €/u Start-up cost for one unit 

CostVariableH(u,i) €/MWh Variable cost 

CostHeatSlach(chp,h) €/MWh Cost of supplying heat via other means 

Curtailment(n) / Curtailment  

Demand(mk,n,i) MW Hourly demand in each zone 

Efficiency(u) % Power plant efficiency 

EmissionMaximum(n,p) €/tP Emission limit per zone for pollutant p 

EmissionRate(n,p) tP/MW Emission rate of pollutant p from unit u 

Fuel(u,f) / Fuel type used by unit u 

HeatDemand(chp,h) MWh/u Heat demand profile for CHP units 

K_QuickStart(n) / Reserve that can be provided by offline units 

LineNode(l,n) / Line-zone incidence matrix 

LoadShedding(n,h) MW Load that may be shed per zone in 1 hour 

Location(u,n) / Location 

Nunits(u) / Number of units inside the cluster 

OutageFactor(u,h) % Outage factor per hour 

PartLoadMin(u) % Percentage of minimum nominal capacity 

PowerCapacity(u) MW/u Installed capacity 

PowerInitial(u) MW/u Power output before initial period 

PowerMinStable(u) MW/u Minimum power for stable generation 

PowerMustRun(u) MW Minimum power output 

PriceTransmission(l,h) €/MWh Price of transmission between zones 

QuickStartPower(u,h) MW/h/u Available max capacity for tertiary reserve 

RampDownMaximum(u) MW/h/u Ramp down limit 

RampShutDownMaximum(u) MW/h/u Shut-down ramp limit 

RampStartUpMaximum(u) MW/h/u Start-up ramp limit 

RampUpMaximum(u) MW/h/u Ramp up limit 

Reserve(t) / Reserve provider 

StorageCapacity(s) MWh/u Storage capacity 

StorageChargingCapacity(s) MW/u Maximum charging capacity 

StorageChargingEfficiency(s) % Charging efficiency 

StorageDischargeEfficiency(s) % Discharge efficiency 

StorageInflow(s,h) MWh/u Storage inflows 
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StorageInitial(s) MWh Storage level before initial period 

StorageMinimum(s) MWh/u Minimum storage level 

StorageOutflow(s,h) MWh/u Storage outflows 

StorageProfile(u,h) MWh Storage long-term profile 

Technology(u,t) / Technology type 

TimeDownMinimum(u) h Minimum down time 

TimeUpMinimum(u) H Minimum up time 

VOLL() €/MWh Value of lost load 

 

Table 4.6. Model variables [77] 

Name Unit Description 

Committed(u,h) / Unit committed at hour h 

CostStartUpH(u,h) € Cost of start up 

CostShutDownH(u,h) € Cost of shutting down 

CostRampUpH(u,h) € Ramping cost 

CostRampDownH(u,h) € Ramping cost 

CurtailedPower(n,h) MW Curtailed power at node n 

Flow(l,h) MW Flow through lines 

Heat(chp,h) MW Heat output by CHP plant 

HeatSlack(chp,h) MW Heat satisfied by other sources 

Power(u,h) MW Power output 

PowerMaximum(u,h) MW Power output 

PowerMinimum(u,h) MW Power output 

Reserve_2U(u,h) MW Spinning reserve up 

Reserve_2D(u,h) MW Spinning reserve down 

Reserve_3U(u,h) MW Nonspinning quick start reserve up 

ShedLoad(n,h) MW Shed load 

StorageInputs(s,h) MWh Charging input for storage units 

StorageLevel(s,h) MWh Storage level of charge 

Spillage(s,h) MWh Spillage from water reservoirs 

SystemCost(h) € Total system cost 

LL_MaxPower(n,h) MW Deficit in term of maximum power 

LL_RampUp(u,h) MW Deficit in term of ramping up for each plant 

LL_RampDown(u,h) MW Deficit in term of ramping down 

LL_MinPower(n,h) MW Power exceeding the demand 

LL_2U(n,h) MW Deficit in reserve up 

LL_3U(n,h) MW Deficit in reserve up – non spinning 

LL_2D(n,h) MW Deficit in reserve down 

The goal of the unit commitment model is minimizing the equation (18), which describes the 

total power system cost. The equation (18) represents the objective function composed of sums 

of the different cost that are part of the power system, such as start-up and shut down costs, 

fixed, variable, ramping, transmission-related, load shedding and lost load costs.[77] 
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𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑠𝑡 = ∑ [𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑢,𝑖 + 𝐶𝑜𝑠𝑡𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑢,𝑖 + 𝐶𝑜𝑠𝑡𝐹𝑖𝑟𝑒𝑑𝑢 ∙ 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑢,𝑖

𝑢,𝑛,𝑖

+ 𝐶𝑜𝑠𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑢,𝑖 ∙ 𝑃𝑜𝑤𝑒𝑟𝑢,𝑖 + 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝𝑢,𝑖 + 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝑢,𝑖

+ 𝑃𝑟𝑖𝑐𝑒𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑙 ∙ 𝐹𝑙𝑜𝑤𝑖,𝑙 + 𝐶𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑆ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑖,𝑛 ∙ 𝑆ℎ𝑒𝑑𝐿𝑜𝑎𝑑𝑖,𝑛

+ 𝐶𝑜𝑠𝑡𝐻𝑒𝑎𝑟𝑆𝑙𝑎𝑐𝑘𝑐ℎ𝑝(𝑢),𝑖 ∙ 𝐻𝑒𝑎𝑡𝑆𝑙𝑎𝑐𝑘𝑐ℎ𝑝(𝑢),𝑖                

+ 𝐶𝑜𝑠𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐ℎ𝑝(𝑢),𝑖 ∙ 𝐶𝐻𝑃𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑐ℎ𝑝(𝑢) ∙ 𝐻𝑒𝑎𝑡𝑐ℎ𝑝(𝑢),𝑖

+ 𝑉𝑂𝐿𝐿𝑃𝑜𝑤𝑒𝑟 ∙ (𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟𝑖,𝑛 + 𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑀𝑖𝑛𝑃𝑜𝑤𝑒𝑟𝑖,𝑛)

+ 𝑉𝑂𝐿𝐿𝑅𝑒𝑠𝑒𝑟𝑣𝑒 ∙ (𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑅𝑒𝑠𝑒𝑟𝑣𝑒2𝑈𝑖,𝑛 + 𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑅𝑒𝑠𝑒𝑟𝑣𝑒2𝑑𝑖,𝑛)

+ 𝑉𝑂𝐿𝐿𝑅𝑎𝑚𝑝 ∙ (𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑅𝑎𝑚𝑝𝑈𝑝𝑢,𝑖 + 𝐿𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝑢,𝑖)]  

(18) 

The main constraint is the supply-demand balance in the day-ahead market. In the equation 

(19), the sum of all power produced by the units in node n, the power imported from neighboring 

nodes and the curtailed power must be equal to the sum of the load and power consumed for 

energy storage, minus the load interrupted and the load shed.[77] 

∑ 𝑃𝑜𝑤𝑒𝑟𝑢,𝑖 ∙ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑢,𝑛 +

𝑝,𝑢

∑ 𝐹𝑙𝑜𝑤𝑙,𝑖 ∙ 𝐿𝑖𝑛𝑒𝑁𝑜𝑑𝑒𝑙,𝑛

𝑝,𝑢

= 𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝐴,𝑛,ℎ + ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡𝑠,ℎ ∙ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠,𝑛

𝑝,𝑢

− 𝑆ℎ𝑒𝑑𝐿𝑜𝑎𝑑𝑛,𝑖

− 𝐿𝐿𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟,𝑛,𝑖 + 𝐿𝐿𝑀𝑖𝑛𝑃𝑜𝑤𝑒𝑟,𝑛,𝑖 

(19) 

Other constraints related to the reserves, power output, ramping, minimum up and down times, 

storage, heat production, heat storage, emissions, network, curtailment and load shedding can 

be seen in [75],[76], and [77]. 
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5. INPUT DATA 

5.1. Dispa-SET Medium-Term Hydrothermal Coordination Input Data 

5.1.1. Power plants 

As stated before, the study includes countries of the West Balkan region with additional 

neighboring countries Croatia, Slovenia and Greece. Year 2015 is selected as the reference year, 

therefore the data used for modeling the power system is related to the reference year. 

The list of power plants was collected from multiple sources. Most of the data on existing power 

plants came from the databases [45],[55] and [61], with the additional information from the 

national TSO’s and energy-related documentation available online. References were mentioned 

in Section 3. for each country included in this study.  

The thermal, wind and solar power plants for the Dispa-SET MTHC were clustered based on 

the fuel chart described in the Dispa-SET Manual [76] and corresponding country. The naming 

scheme for the thermal power plants was: 

 Country_FUEL_Cluster, 

where the Country represents the ISO 3166-1 standard to define the country name at the NUTS-

1 level, and the FUEL refers to the mention fuel chart in [76]. List of the country codes is shown 

in Table 5.1., while the fuel categorization can be seen in Table 5.2. 

Table 5.1. NUTS-1 zones defined in Dispa-SET for the included region, [76] 

Code Country 

AL Albania 

BA Bosnia and Herzegovina 

EL Greece 

HR Croatia 

ME Montenegro 

MK North Macedonia 

RS Serbia 

SI Slovenia 

XK Kosovo 

The clustering method was not used on the hydropower plants because the primary goal of the 

MTHC model is to get results on the reservoir levels of the storage hydropower plants and 

hydropower production of the run-of-river hydropower plants. The naming scheme for the 

hydropower plants was: 

 Country_PowerPlantName_Technology, 
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where PowerPlantName refers to the actual power plant name, while Technology refers to the 

defined supported ways of producing electrical energy in the Dispa-SET Manual.[76] List of 

the supported technologies is represented in Table 5.3. The list of the clustered thermal, wind 

and solar power plants is shown in Table 5.4., while hydropower plants are listed in Table 5.5. 

The reference column refers to additional data, not related to databases [45],[55] and [61]. 

Table 5.2. Dispa-SET fuel list, [76] 

Fuel Examples 

BIO Bagasse, Biodiesel, Gas From Biomass, Gasification, Biomass, Briquettes, Cattle 

Residues, Rice Hulls Or Padi Husk, Straw, Wood Gas (From Wood Gasification), 

Wood Waste Liquids Excl Blk Liq (Incl Red Liquor, Sludge, Wood,Spent Sulfite 

Liquor And Oth Liquids, Wood And Wood Waste 

GAS Blast Furnace Gas, Boiler Natural Gas, Butane, Coal Bed Methane, Coke Oven Gas, 

Flare Gas, Gas (Generic), Methane, Mine Gas, Natural Gas, Propane, Refinery Gas, 

Sour Gas, Synthetic Natural Gas, Top Gas, Voc Gas & Vapor, Waste Gas, 

WellheadGas 

GEO Geothermal steam 

HRD Anthracite, Other Anthracite, Bituminous Coal, Coker By-Product, Coal Gas (From 

Coal Gasification), Coke, Coal (Generic), Coal-Oil Mixture, Other Coal, Coal And Pet 

Coke Mi, Coal Tar Oil, Anthracite Coal Waste, Coal-Water Mixture, Gob, Hard Coal 

/ Anthracite, Imported Coal, Other Solids, Soft Coal, Anthracite Silt, Steam Coal, 

Subbituminous, Pelletized Synthetic Fuel From Coal, Bituminous Coal Waste) 

HYD Hydrogen 

LIG Lignite black, Lignite brown, Lignite 

NUC U, Pu 

OIL Crude Oil, Distillate Oil, Diesel Fuel, No. 1 Fuel Oil, No. 2 Fuel Oil, No. 3 Fuel Oil, 

No. 4 Fuel Oil, No. 5 Fuel Oil, No. 6 Fuel Oil, Furnace Fuel, Gas Oil, Gasoline, Heavy 

Oil Mixture, Jet Fuel, Kerosene, Light Fuel Oil, Liquefied Propane Gas, Methanol, 

Naphtha, ,Gas From Fuel Oil Gasification, Fuel Oil, Other Liquid, Orimulsion, 

Petroleum Coke, Petroleum Coke Synthetic Gas, Black Liquor, Residual Oils, Re-

Refined Motor Oil, Oil Shale, Tar, Topped Crude Oil, Waste Oil 

PEA Peat Moss 

SUN Solar energy 

WAT Hydro energy 

WIN Wind energy 

WST Digester Gas (Sewage Sludge Gas), Gas From Refuse Gasification, Hazardous Waste, 

Industrial Waste, Landfill Gas, Poultry Litter, Manure, Medical Waste, Refused 

Derived Fuel, Refuse, Waste Paper And Waste Plastic, Refinery Waste, Tires, 

Agricultural Waste, Waste Coal, Waste Water Sludge, Waste 

The variable generation cost of available technologies is collected from multiple sources. In 

[78] the comparison of the conventional and non-conventional electricity production is studied, 

with a list of costs for electricity production from wind, solar, biomass, geothermal, 

hydropower, nuclear power plants, gas and coal-fired thermal power plants. In [79] detailed 

analysis on the estimation of costs and technical specifications for the different generation 

technologies is studied. The cost data is broken into detailed expenditure for the lifetime of the 
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power plants. In [80] the social cost of electricity is studied with the categorization of relevant 

types of costs differentiating between plant-level, system and external costs. In [81] the key 

factors affecting the economics of the electricity generation is studied with projected costs for 

electricity production from different energy sources. 

Table 5.3. Dispa-SET technologies, [76] 

Technology Description Storage 

COMC Combined cycle N 

GTUR Gas turbine N 

HDAM Conventional hydro dam Y 

HROR Hydro run-of-river N 

HPHS Pumped hydro storage Y 

ICEN Internal combustion engine N 

PHOT Solar photovoltaic N 

STUR Steam turbine N 

WTOF Offshore wind turbine N 

WTON Onshore wind turbine N 

CAES Compressed air energy storage Y 

BATS Stationary batteries Y 

BEVS Battery-powered electric vehicles Y 

THMS Thermal storage Y 

P2GS Power-to-gas storage Y 

Table 5.4. List of clustered thermal, solar and wind power plants for the reference year, 

[45],[55],[61] 

Cluster Nominal power [MW] Cluster Nominal power [MW] 

AL_OIL_Cluster 98 HR_SUN_Cluster 44 

BA_LIG_Cluster 1,704 MK_LIG_Cluster 824 

BA_OIL_Cluster 98 MK_GAS_Cluster 251 

ME_LIG_Cluster 210 MK_WIN_Cluster 35 

EL_GAS_Cluster 4,913 SI_GAS_Cluster 297 

EL_LIG_Cluster 4,459 SI_LIG_Cluster 1,217 

EL_OIL_Cluster 743 SI_NUC_Cluster 696 

EL_WIN_Cluster 1,613 SI_WST_Cluster 35 

EL_SUN_Cluster 2,429 SI_BIO_Cluster 16 

HR_GAS_Cluster 938 SI_WIN_Cluster 3 

HR_OIL_Cluster 716 SI_SUN_Cluster 262 

HR_HRD_Cluster 325 RS_LIG_Cluster 4,293 

HR_WST_Cluster 6 RS_GAS_Cluster 390 

HR_BIO_Cluster 25 XK_LIG_Cluster 960 

HR_WIN_Cluster 429   
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Table 5.5. List of hydropower plants for the reference year, [45],[55],[61] 

Unit 

Nominal 

power 

[MW] 

Installed 

flow 

[m3/s] 

Nominal 

head  

[m] 

Water 

storage 

[Mm3] 

Ref 

AL_Koman_HDAM 600 736 96 118 [41] 

AL_Fierza_HDAM 500 467 118 2,300 [41] 

AL_Banje_HDAM 73 50 301 272 [10] 

AL_Vau Dejes_HDAM 250 565 52 263 [41] 

BA_Bocac_HDAM 110 240 66 42.9 [41] 

BA_Jablanica_HDAM 181 209 94 288 [41] 

BA_Rama_HDAM 161 64 285 466 [41] 

BA_Salakovac_HDAM 210 540 42 68 [41] 

BA_Trebinje_HDAM 179 210 22 1,082 [41] 

BA_Visegrad_HDAM 315 800 43 161 [41] 

BA_Capljina_HPHS 430 225 228 6.5 [41] 

EL_Assomata_HDAM 108 303 52 10 [2],[69] 

EL_Ilarionas_HDAM 154 160 130 270 [2],[69] 

EL_Kastraki_HDAM 320 499 96 98 [2],[69] 

EL_Kremasta_HDAM 437 392 165 3,300 [2],[69] 

EL_Ladonas_HDAM 70 34 56 46 [2],[69] 

EL_Pigai Aoos_HDAM 210 36 78 144 [2],[69] 

EL_Plastiras_HDAM 130 27 83 300 [2],[69] 

EL_Platanovrysi_HDAM 116 181 95 57 [2],[69] 

EL_Polyfyto_HDAM 375 311 112 1,220 [2],[69] 

EL_Pournari 1_HDAM 304 453 87 303 [2],[69] 

EL_Pournari 2_HDAM 30 294 15 4 [2],[69] 

EL_Stratos_HDAM 150 468 26 11 [2],[69] 

EL_Sfikia_HPHS 315 635 82 18 [2],[69] 

EL_Thisavros_HPHS 384 288 172 565 [2],[69] 

HR_Zakucac_HDAM 486 220 250.4 6,8 [63] 

HR_Senj_HDAM 216 60 410 73.14 [63] 

HR_Dubrovnik_HDAM 234 90 272 555 [63] 

HR_Vinodol_HDAM 90 16.7 648 41.56 [63] 

HR_Peruca_HDAM 60 120 47 565 [63] 

HR_Sklope_HDAM 22.5 45 60 54.86 [63] 

HR_Dale_HDAM 40.8 220 21 3.7 [63] 

HR_Golubic_HDAM 7.5 14 59 5* [63] 

HR_Zavrelje_HDAM 2.09 3 76 5* [63] 

HR_Velebit_HPHS 276 100 538 16.35 [63] 

HR_Orlovac_HPHS 237 70 380 800 [63] 

HR_Lepenica_HPHS 0.8 6.2 12.22 4.469 [63] 
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HR_CHE Fuzine_HPHS 4.6 9.9 49 34.5 [63] 

ME_Piva_HDAM 360 240 220 880 [41] 

ME_Perucica_HDAM 310 68 549 225 [41] 

MK_Vrutok+Raven_HDAM 207 57 525 227 [41] 

MK_Tikvesh_HDAM 114 144 91.3 309.6 [41] 

MK_Shpilje_HDAM 84 108 85.2 506 [41] 

MK_Kozjak_HDAM 82 100 95 550 [41] 

MK_Globacica_HDAM 42 50 95.29 55.3 [41] 

MK_Sveta Petka_HDAM 36.4 100 40 11.4 [82] 

RS_Pirot_HDAM 80 45 243 180 [41] 

RS_Bistrica_HDAM 102 36 378 7.6 [41] 

RS_Kokin Brod_HDAM 22 37.4 72 210 [41] 

RS_Potpec_HDAM 54 165 38.4 25 [41] 

RS_Uvac_HDAM 36 43 100 213 [41] 

RS_Vrla 1-4_HDAM 129 18.32 338 165 [41] 

RS_Bajina Basta_HPHS 614 129.2 555 170 [41] 

SI_Avche_HPHS 185 40 520 2 [83] 

XK_Ujmani_HPHS 35 35.68 100 350 [41] 

BA_Grabovica_HROR 114 380 34  [41] 

EL_Agras_HROR 50 37 156  [2],[69] 

EL_Edessaios_HROR 19 19 125  [2],[69] 

HR_Kraljevac_HROR 46.4 55 108  [63] 

HR_Varazdin_HROR 92.46 500 21.9  [63] 

HR_Dubrava_HROR 79.78 500 17.5  [63] 

HR_Cakovec_HROR 77.44 500 17.5  [63] 

HR_Gojak_HROR 55.5 57 118  [63] 

HR_Lesce_HROR 41.2 122.7 38.18  [63] 

HR_Rijeka_HROR 36.8 21 212.7  [63] 

HR_Miljacka_HROR 24 30 102  [63] 

HR_Krcic_HROR 0.375 / /  [63] 

HR_Ozalj_HROR 6 85 9.2  [63] 

HR_Jaruga_HROR 7.2 31 24.4  [63] 

HR_Zeleni Vir_HROR 1.7 4.4 50  [63] 

RS_Bajina Basta_HROR 420 692 66  [41] 

RS_Djerdap 1_HROR 1083 4,800 27.16  [41] 

RS_Djerdap 2_HROR 270 4,200 9  [41] 

RS_Zvornik_HROR 96 620 21.6  [41] 

SI_Formin_HROR 127 500 29  [84] 

SI_Zatolicje_HROR 126 530 33  [85] 

SI_Blanca_HROR 38 500 9.29  [86] 

SI_Bostanj_HROR 32 500 7.47  [86] 
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SI_Doblar_HROR 70 75 45.5  [87] 

SI_Dravograd_HROR 21 420 8.9  [87] 

SI_Fala_HROR 57 550 14.6  [88] 

SI_Krsko_HROR 38 500 9.14  [86] 

SI_Mariborski Otok_HROR 60 550 14.2  [90] 

SI_Mavcice_HROR 38 54.5 19.5  [91] 

SI_Medvode_HROR 19 150 19.1  [92] 

SI_Moste_HROR 13 23 65  [93] 

SI_Ozbalt_HROR 61 550 17.42  [94] 

SI_Plave_HROR 42 75 29  [87] 

SI_Solkan_HROR 31 180 20.55  [87] 

SI_Vrhovo_HROR 34 230 10.5  [95] 

SI_Vuhred_HROR 61 550 17.41  [96] 

SI_Vuzenica_HROR 52 530 13.8  [97] 
* assumption due to the lack of data online 

5.1.2. Demand profiles 

Demand profiles for all countries have been obtained from the ENTSO-E Power Statistic 

Platform, with the exception of demand profile for the Kosovo, which was obtained from the 

database [55]. 

 

Figure 5.1.  Demand profiles of the studied countries for the year 2015 

The average demand for the Albania, Bosnia and Herzegovina, Montenegro, Greece, Croatia, 

North Macedonia, Slovenia, Serbia and Kosovo in year 2015 was 19.42, 33.88, 9.37, 140.62, 

47.1, 21.47, 36.24, 108.23 and 15.85 GWh, respectively, while the maximum demand peaked 

at 26.11, 40.26, 12.07, 197.28, 59.69, 29.92, 43.31, 141.3 and 23.89 GWh/day, respectively. 
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5.1.3. Water inflows 

Net water inflows have been provided by the JRC from the rainfall-runoff hydrological 

LISFLOOD model briefly described in Section 4.1. The assumption is that the provided water 

inflows are the total runoff at studied catchment level. Figure 5.2. represents the total sum of 

inflows for the included hydropower plant locations for the period between 1990 and 2016. The 

yellow highlighted line represents the runoff for the dry, green highlighted for the average and 

red for the wet year. The wet, average and dry years are 2010, 2015 and 2007, respectively. The 

average runoff values for wet, average and dry years are 16,630, 12,248 and 10,447 m3/s, 

respectively, while the runoff peaked at 29,469, 19,975 and 19,057, respectively.  

 

Figure 5.2.  The total sum of the water inflows for the studied region between 1990 and 2016, 

[71] 

5.1.4. Wind and solar power profiles 

Wind and solar power capacities for the reference year were studied. The wind power capacities 

are present in Greece, Croatia, North Macedonia and Slovenia, with a total installed power 

capacity of 1,613, 429, 35 and 3 MW, respectively. The solar power capacities are present in 

Greece, Croatia and Slovenia, with a total installed power capacity of 2,429, 44 and 262 MW, 

respectively. Data on total installed power capacity for the solar and wind power was obtained 

from ENTSO-E Transparency Platform.[61] 

Data on power generation from solar power plants was obtained from Strategic Energy 

Technologies Information System (SETIS), from EMHIRES dataset in the form of capacity 

factors.[99] 
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Data on power generation from wind power plants was obtained from Renewables ninja dataset 

in the form of capacity factors.[100] 

Figure 5.3 represents yearly capacity factor values for the solar power plants in Greece, Croatia 

and Slovenia, while Figure 5.4. shows yearly capacity factor values for the wind power plants 

in Greece, Croatia, North Macedonia and Slovenia. 

 

Figure 5.3.  Capacity factor values of solar power plants in Greece, Croatia and Slovenia for 

the year 2015  

 

Figure 5.4.  Capacity factor values of wind power plants in Greece, Croatia, North 

Macedonia, Slovenia for the year 2015 

5.1.5. Line capacities 

Data on line capacities was covered in the form of Net Transfer Capacities (NTC). Data was 

obtained from a thoroughly made study on NTC values for the studied region which covered 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 58 

three different ways of calculating the NTC values.[101] The first case included all network 

elements 400, 220 and 200 kV. In the second case only 400 and 220 kV network elements were 

covered, and in the case three, only tie-lines were monitored. Data on NTC values for Kosovo 

is missing, so they were obtained  from [55]. Data from the third scenario were selected as valid 

NTC values and can be seen in Table 5.6. 

Table 5.6. NTC Values for the studied region in MW, [56],[101] 

 

5.1.6. Topology 

Topology defines the hydropower plants network. It is used for the model to determine 

upstream inflow for the hydropower plants that utilize the same river water resources. 

The topology covered in this study, in form where first mentioned hydropower unit is the 

upstream one, is mentioned below, where hydropower plants with * are absent from the model 

due to missing data on water inflow: 

 HE Gojak → HE Lesce 

 HE Golubic + mHE Krcic → HE Miljacka → HE Jaruga 

 HE Peruca + HE Orlovac → HE Dale → HE Zakucac + HE Kraljevac 

 HE Rama → HE Jablanica → HE Grabovica → HE Salakovac → HE Mostar* 

 HE Trebinje → HE Dubrovnik 

 HE Uvac → HE Kokin Brod 

AL BA BG HR MK ME RO RS SI XK IT AT HU UA TR EL 

AL / / / / 430 / 327 / 550 / / / / / 683

BA / / 1076 / 1,088 / 1,278 / / / / / / / /

BG / / / 412 / 1,814 745 / / / / / / 1,684 987

HR / 569 / / / / 1,078 880 / / / 2,597 / / /

MK / / 1,185 / / / 870 / 440 / / / / / 636

ME 383 746 / / / / 534 / 440 / / / / / /

RO / / 891 / / / 999 / / / / 1,924 2,280 / /

RS 671 731 1,635 669 441 311 830 / 680 / / 872 / / /

SI / / / 1,402 / / / / / 893 1,645 / / / /

XK 671 / / / 440 440 / 680 / / / / / / /

IT / / / / / / / / 774 / n.a. / / / 500

AT / / / / / / / / 1,162 / n.a. n.a. / / /

HU / / / 789 / / / 1,401 / / / n.a. n.a. / /

UA / / / / / / / / / / / / n.a. / /

TR / / 1,457 / / / / / / / / / / / 913

EL 440 / 1,693 / 879 / / / / / 500 / / / 2,260

Import 

Export 
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 HE Kokin Brod + HE Piva + HE Potpec → HE Visegrad → HE Bajina Basta → HE 

Zvornik 

 HE Bocac → HE Jajce 1* → HE Jajce 2* 

 HE Moste → HE Mavcice → HE Medvode → HE Vrhovo → HE Bostanj → HE Blanca 

→ HE Krsko 

 HE Doblar → RHE Avche → HE Plave → HE Solkan 

 HE Dravograd → HE Vuzenica → HE Vuhred → HE Ozbalt → HE Fala → HE 

Mariborski Otok → HE Zatolicje → HE Formin → HE Varazdin → HE Cakovec → 

HE Dubrava 

 HE Globacica → HE Shpilje → HE Fierza → HE Komani → HE Vau Dejes → HE 

Ashta* 

 HE Kozjak → HE Sveta Petka 

 RHE Thisavros → HE Platanovrisi 

 HE Ilarionas → HE Polyphyton → HE Sfikia → HE Asomata 

 HE Pigai Aoos → HE Pournari 1 → HE Pournari 2 

 HE Plastira → HE Kremasta → HE Kastraki → HE Stratos 

 HE Agras → HE Edessaios 

5.1.7. Water demand 

Water demand can be divided into water used for hydropower production, water used for 

cooling thermal power plants and water used for other non energy-related purposes like 

agriculture, irrigation industry, drinking water supply etc. Due to the lack of data on water 

withdrawal and water consumption besides the hydropower generation, other water withdrawal 

and consumption activities mention above were taken in account through minimum amount of 

water reservoir level set to 20% of maximum reservoir level for each hydropower unit with 

accumulation. Data on water withdrawal and consumption for other activities than the 

hydropower generation is quite important and it will be included in the future work, so the 

water-energy nexus could be investigated in more detail. 

5.2. Dispa-SET Unit Commitment and Dispatch Input Data 

In the next few sections, only data additionally needed, that is not covered in Section 5.1, will 

be mentioned. 
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5.2.1. Power plants 

Additionally to data covered in Section 5.1.1, common fields needed for all units are shown in 

Table 5.7. All data related to power plants for the Dispa-SET UTC were obtained from [45] and 

[55], with the addition of power plants data for Greece from [2]. 

Additionally, related to storage units, some parameters must be added and are show in Table 

5.8.[77] 

For the CHP units additional data, dependent on CHP type, is needed as input. Types of CHP 

covered in Dispa-SET UCD are extraction/condensing, backpressure and power-to-heat units. 

Additional data with the description, field name and units are shown in Table 5.9. In Table 

5.10., mandatory fields based on the CHP type are shown.[77] 

Table 5.7. Common fields needed for all units, [77] 

Description Field name Units 

Unit name Unit  

Commissioning year Year  

Technology Technology  

Fuel Primary fuel  

Zone Zone  

Capacity PowerCapacity MW 

Efficiency Efficiency % 

Efficiency at minimum load MinEfficiency % 

CO2 intensity CO2Intensity TCO2/MWh 

Minimum load PartLoadMin % 

Ramp up rate RampUpRate %/min 

Ramp down rate RampDownRate %/min 

Start-up time StartUpTime h 

Minimum up time MinUpTime h 

Minimum downtime MinDownTime h 

No load cost NoLoadCost €/h 

Start-up cost StartUpCost € 

Ramping cost RampingCost €/MW 

Presence of CHP CHP y/n 

Table 5.8. Additional storage specific fields, [77] 

Description Field name Units 

Storage capacity STOCapacity MWh 

Self-discharge rate STOSelfDischarge %/h 

Maximum charging power STOMaxChargingPower MW 

Charging efficiency STOChargingEfficiency % 
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Table 5.9. Additional specific fields for CHP units, [77] 

Description Field name Units 

CHP Type CHPType Extraction/back-pressure/p2h 

Power-to-heat ratio CHPPowerToHeat  

Power loss factor CHPPowerLossFactor  

Maximum heat production CHPMaxHeat MW(th) 

Capacity of heat storage STOCapacity MWh(th) 

% of storage heat loss pet  STOSelfDischarge % 

Table 5.10. Mandatory fields based on CHP Type, (X: mandatory, ○: optional), [77] 

Description Extraction Backpressure Power to heat 

CHP Type X X X 

Power-to-heat ratio X X  

Power loss factor X  X 

Maximum heat production ○ ○ X 

Capacity of heat storage ○ ○ ○ 

% of storage heat loss pet  ○ ○ ○ 

5.2.2. Power plants outages 

In the current version of Dispa-SET UTC, planned and unplanned outages are not distinguished, 

and are defined by “OutageFactor” parameter for each unit. The parameter is equal to zero if 

there are no outages, and one if the unit is out of operation. The data on unit outages were 

obtained from ENTSO-E Transparency platform and nationally related TSO’s web sites, 

collected in the database [55].[61] 

5.2.3. Hydro data 

Additional data needed as input for the Dispa-SET UCD model are results from Dispa-SET 

MTHC model. Additional data are hydropower production of run-of-river units and reservoir 

levels of hydropower plants with storage.[77] 

Hydropower production of run-of-river units is defined through the availability factor (AF), 

which has the same definition as the capacity factor for wind and solar power generation. It is 

described as energy generated in one hour divided by the total installed power of the unit and 

it ranges from zero to one, depending on the availability of energy source. It is exogenous time 

series defined for all renewable power generation units, which generated energy cannot be 

stored and it is fed to the grid or curtailed.[77] 

Because of a model tendency to empty reservoir storage at the end of the optimization horizon, 

due to emptying the storage having zero marginal cost, additional input of reservoir level for 

the last hour of each horizon is needed. The input to Dispa-SET UCD is defined as a normalized 
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value with respect to the maximum storage capacity, so its minimum value is zero, and the 

maximum is one. 

5.2.4. Power flows 

The power flow between the simulated region and outer zones cannot be modeled 

endogenously, so it must be provided as exogenous input. Data for this study was obtained from 

ENTSO-E Transparency Platform [62], and were data were missing, database [55] was 

used.[77] 
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6. MODEL RESULTS 

6.1. Results from the Dispa-SET Medium-Term Hydrothermal Coordination model 

The study included three different hydrological years. The year 2015 was selected as the 

reference year, while also representing an average hydrological year. Based on provided water 

inflows from the LISFLOOD model, the year 2010 and 2007 were selected as a wet and dry 

hydrological year, respectively. Aggregated water inflows for the studied region can be seen in 

Figure 5.2., while its average yearly values are 19,057, 19,975 and 29,469 m3/s for dry, average 

and wet year, respectively. Water inflows peaked at 10,448, 12,249 and 16,630 m3/s for dry, 

average and wet year, respectively. 

The Dispa-SET MTHC model was validated based on hydropower production for each country 

included in the model. The reference year hydropower production was obtained from ENTSO-

E Transparency Platform and International Energy Agency (IEA), and compared to the model 

outputs.[49],[62] 

In Table 6.1., the model results for the year 2015, on hydropower production and statistical 

values from mentioned sources, can be seen. 

Table 6.1. Comparison of hydropower production for average (2015) year,[49],[62] 

Country 
IEA 

[GWh] 

∆/IEA 

[%] 

ENTSO-E 

[GWh] 

∆/ENTSO-E 

[%] 

MTHC model 

[GWh] 

Albania 5,895 0.39 / / 5,918 

Bosnia and Herzegovina 5,551 1.23 5,650 -0.55 5,619 

Greece 6,150 1.77 6,091 2.76 6,259 

Croatia 6,556 -13.65 5,657 0.07 5,661 

Montenegro 1,491 -4.96 1,415 0.14 1,417 

North Macedonia 1,865 -18.34 1,514 0.59 1,523 

Serbia 10,789 -1.41 10,633 0.04 10,637 

Slovenia 4,091 -0.12 4,060 0.64 4,086 

Kosovo 140 0.36 / / 140.5 

Sum 42,528 -2.98 35,013 0.54 41,261 

When model was validated to match hydropower production as equal as possible to the 

statistically obtained values for the reference year, the model was run for the additional wet and 

dry years with changed inputs on the water inflows showed in Figure 5.2. 

The aggregated yearly hydropower production for the studied region averaged at 95.57, 113.05 

and 141.57 GWh, while it peaked at 146.07, 187.64 and 233.92 GWh/day for dry, average and 

wet year, respectively. Minimum was reached at 52.33, 61.82 and 56.56 GWh/day for the dry, 

average and wet year, respectively. In Table 6.2. and Table 6.3., total hydropower production 
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of each country and statistically obtained values are shown. The statistical values are not to 

compare to the model values for the dry and wet years, due to the only input changed being 

water inflow, while other power generation input data stayed the same as the reference year. 

Results on yearly region aggregated hydropower generatiom from MTHC model show increase 

from 34,881 GWh for dry year to 41,261 and 51,668 for average and wet year, respectively. 

Comparison of the yearly aggregated hydropower production for the studied region can be seen 

in Figure 6.1., while compared hydropower generation, on a monthly basis for the year 2015, 

between model results and ENTSO-E data can be seen in Figure 6.2. Comparison shows close 

relation with statistical data, especially for January, February, July, August and September. 

Slightly higher differences at -635.31, 354.59 and 335.95 GWh are noticed for May, March and 

December, respectively.  

Table 6.2. Hydropower production for wet (2010) year,[49],[62] 

Country 
IEA 

[GWh] 

∆/IEA 

[%] 

ENTSO-E 

[GWh] 

∆/ENTSO-E 

[%] 

MTHC model 

[GWh] 

Albania 7,567 8.91 / / 8,241 

Bosnia and Herzegovina 8,026 -8.95 7,870 -7.14 7,308 

Greece 7,485 -0.17 7,457 0.20 7,472 

Croatia 9,232 -28.38 8,313 -20.46 6,612 

Montenegro 2,750 -38.73 2,738 -38.46 1,685 

North Macedonia 2,431 -17.85 2,316 -13.77 1,997 

Serbia 12,571 8.27 12,453 9.29 13,610 

Slovenia 4,703 -2.42 4,249 8.00 4,589 

Kosovo 156 -1.07 / / 154.33 

Sum 54,921 -5.92 45,396 -4.68 51,668 

Table 6.3. Hydropower production for dry (2007) year,[49],[62] 

Country 
IEA 

[GWh] 

∆/IEA 

[%] 

ENTSO-E 

[GWh] 

∆/ENTSO-E 

[%] 

MTHC model 

[GWh]  

Albania 2,788 76,87 / / 4,931 

Bosnia and Herzegovina 4,001 23.04 4,001 23.04 4,923 

Greece 3,376 1.81 3,367 2.08 3,437 

Croatia 4,864 2.73 4,361 14.58 4,997 

Montenegro 1,284 3.82 1,292 3.17 1,333 

North Macedonia 1,010 -20.02 1,054 -23.36 807.75 

Serbia 10,037 1.05 9,928 2.16 10,142 

Slovenia 3,266 27.89 2,814 48.44 4,177 

Kosovo 94 42.21 / / 133.68 

Sum 30,720 13.54 26,817 10.1 34,881 
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Figure 6.1.  Region aggregated hydropower generation for dry (2007), average (2015) and 

wet (2015) year, MTHC model  

 

Figure 6.2.  Comparison of region aggregated hydropower generation between MTHC model 

results and ENTSO-E data for the year 2015 

Reservoir levels and hydropower generation of run-of-river units are vital outputs of the Dispa-

SET MTHC model that are needed to successfully run Dispa-SET UTC model. 

The average, region aggregated, reservoir level values are 21,951, 22,049 and 23,076 Mm3 for 

dry, average and wet year, respectively. It reached its peak of 24,634, 25,273 and 26,968 Mm3, 

while its minimum was at 19,257, 18,888 and 18,690 Mm3 for dry, average and wet year, 

respectively. The average, minimum, and maximum, aggregated per country, reservoir level 

values for the dry, average and wet year can be seen in Table 6.4., Table 6.5. and Table 6.6., 

respectively. 
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Table 6.4. Country aggregated reservoir level values for dry (2007) year in Mm3 

Country Average  Minimum Maximum 

Albania 1,600 595.84 2,936 

Bosnia and Herzegovina 794.7 472.65 1,186 

Greece 3,075 1,769 4,110 

Croatia 15,007 14,947 15,146 

Montenegro 257.94 221 322.84 

North Macedonia 401.61 342.49 495.57 

Serbia 565.4 285.78 729.57 

Slovenia 1.49 0.4 2 

Kosovo 247.81 91.25 350 

Table 6.5. Country aggregated reservoir level values for average (2015) year in Mm3 

Country Average  Minimum Maximum 

Albania 1,567 590.6 2,953 

Bosnia and Herzegovina 1,620 869.23 2,211 

Greece 1,869 1,152 3,059 

Croatia 15,019 14,951 15,166 

Montenegro 742.08 323.22 1,103 

North Macedonia 457.9 334.87 657.59 

Serbia 502.15 287.2 687.82 

Slovenia 1.20 0.542 2 

Kosovo 272.18 143.51 350 

Table 6.6. Country aggregated reservoir level values for wet (2010) year in Mm3 

Country Average  Minimum Maximum 

Albania 1,706 590.6 2,953 

Bosnia and Herzegovina 1,320 453.64 2,164 

Greece 2,999 1,160 4,582 

Croatia 15,072 14,938 15,255 

Montenegro 630.23 221 1,105 

North Macedonia 581.39 335.55 861.13 

Serbia 572.1 324.35 831.59 

Slovenia 1.42 0.547 2 

Kosovo 194.16 74.42 266.14 

The annual, region aggregated, reservoir level values for the dry, average and wet year can be 

seen in Figure 6.3. 
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Figure 6.3.  Annual, region aggregated, reservoir level for dry (2007), average (2015) and wet 

(2010) year in Mm3 as results from the MTHC model 

 

The availability factor determines run-of-river units hydropower generation and it depends on 

available water inflows provided from the LISFLOOD model. It is defined as the ratio of 

available water source power and installed capacity of hydropower unit, but in the next section, 

it will be expressed as energy produced by run-of-river hydropower units in MWh or GWh. 

The yearly average, region aggregated, availability factor values are 34.47, 38.22 and 45.87 

GWh, reaching its maximum of 51.33, 51.22 and 62.23 GWh/day for dry, average and wet year, 

respectively. The run-of-river hydropower generation reached its minimum of 23.68, 23.01 and 

29.23 GWh/day for dry, average and wet year, respectively. 

It should be stated that only units with a power capacity of more than 10 MW and those provided 

with water inflows are included in the study, so run-of-river units from Albania, Montenegro, 

North Macedonia and Kosovo are not included in this study. 

The average, minimum, and maximum, aggregated per country, availability values for the dry, 

average and wet year can be seen in Table 6.7., Table 6.8. and Table 6.9., respectively. 

Table 6.7. Country aggregated availability factor values for dry (2007) year in MWh 

Country Average  Minimum Maximum 

Bosnia and Herzegovina 382.51 112.95 905.03 

Greece 595.67 137.03 1,408 

Croatia 5,657 4,265 7,239 

Serbia 20,901 12,349 34,636 

Slovenia 6,932 3,334 12,843 
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Table 6.8. Country aggregated availability factor values for average (2015) year in MWh 

Country Average  Minimum Maximum 

Bosnia and Herzegovina 482.08 111.25 1,877 

Greece 839.13 224.38 1,408 

Croatia 5,881 3,836 8,864 

Serbia 23,035 12,551 36,178 

Slovenia 7,978 3,850 14,682 

Table 6.9. Country aggregated availability factor values for wet (2010) year in MWh 

Country Average  Minimum Maximum 

Bosnia and Herzegovina 977.78 137.44 2,326 

Greece 944.04 259.43 1,408 

Croatia 5,851 3,369 8,107 

Serbia 30,189 18,888 38,128 

Slovenia 7,911 3,692 12,778 

The annual, region aggregated availability factor values for the dry, average and wet year can 

be seen in Figure 6.4. 

 

Figure 6.4.  Annual, region aggregated, availability factor values for dry (2007), average 

(2015) and wet (2010) year in GWh 

Figure 6.5, Figure 6.6 and Figure 6.7 show the power generation, aggregated by fuel, for the 

average, dry and wet year, respectively as results from MTHC model. 
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Figure 6.5.  Power generation aggregated by fuel for the average (2015) year in GWh 

 

Figure 6.6.  Power generation aggregated by fuel for the dry (2007) year in GWh 

 

Figure 6.7.  Power generation aggregated by fuel for the wet (2010) year in GWh 
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Comparing the power generation figures for an average year with dry and wet years, it can be 

stated that with higher hydropower generation, other power sources are pushed out of the 

generation mix. It can be seen that the gas-fired units are covering the shortages of hydropower 

generation, while at the start and end of the year, even coal-fired units are pushed out. For the 

dry year scenario, gas units are mostly covering the shortage of hydropower generation. 

6.2. Results from a Dispa-SET Unit Commitment and Dispatch model 

Dispa-SET UCD model was run for the three different hydrological years. Region and country 

aggregated results will be shown in the next section. Results of the MTHC model were used as 

inputs for the different scenario models in Dispa-SET UCD model.  

Region aggregated results are shown in Table 6.10. 

Table 6.10. Region aggregated results for dry (2007), average (2015) and wet (2010) year 

Region aggregated statistics Unit Dry Average Wet 

Average electricity cost  €/MWh 21.023 17.897 17.142 

Total consumption TWh 157.534 157.534 157.534 

Peak load GW 26.751 26.751 26.751 

Net imports  TWh 17.529 17.529 17.529 

NUC generation  TWh 5.3787 5.3782 5.3785 

LIG generation  TWh 91.112 86.942 75.189 

HRD generation TWh 2.5262 0.1635 2.4989 

BIO generation TWh 0 0.0011 0.00033 

GAS generation TWh 1.4738 0.1747 0.2441 

WST generation TWh 0.0853 0.0896 0.08122 

SUN generation TWh 3.9924 3.9924 3.9924 

WIN generation TWh 4.3343 4.3343 4.3343 

WAT generation  TWh 31.144 38.941 48.308 

Spillage TWh 2.124 3.899 5.530 

Start-ups (All units) No 5,566 25,245 10,634 

Shutdowns (All units) No 5,481 25,163 10,544 

Start-ups (Thermal PP) No 249 201 272 

Shutdowns (Thermal PP) No 227 176 253 

 * fuel list related to Dispa-SET supported fuels in documentation [75] and in the list of abbreviations and definitions 

As seen in Table 6.10, the average electricity cost falls with a higher amount of hydropower 

production followed by a decrease in generation from lignite and gas fired thermal power plants. 

Not so notable gap for average electricity cost between average and wet year, as seen between 

dry and average year, could be explained by higher amount of power generated from hard coal 
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(15.3 times higher) and gas-fired power plants (1.4 times higher), even though the lignite-fired 

power plant’s generation decreased by 13.52%. 

Comparing the number of total and only thermal power plant start-ups and shutdowns, it can 

be noticed that thermal power units account for only 4.3, 0.75 and 2.48% of total start-ups and 

shutdowns for dry, average and wet year, respectively. That suggests that mostly hydropower 

plants account for the total number of start-ups and shutdowns. When comparing a number of 

start-ups and shutdowns of thermal power plants for a dry and wet year, expected results of a 

slight increase in total number of start-ups from 249 to 272 and shutdowns from 227 to 253 can 

be observed. The numbers for average year fall off of expected trend, which could be explained 

by a number of committed thermal power units with numbers of 36, 31 and 37 for dry, average 

and wet year, respectively. 

Wind and solar generated power is the same across the simulated years, due to the same capacity 

factor being used as the input data. 

Compared hydropower generation between model results and statistical obtained data from [49] 

and [62], for the year 2015, can be seen in Table 6.11. 

Table 6.11.  Comparison of hydropower production for average (2015) year,[49],[62] 

Country 
IEA 

[GWh] 

∆/IEA 

[%] 

ENTSO-E 

[GWh] 

∆/ENTSO-E 

[%] 

UCD model 

[GWh] 

Albania 5,895 -20.52 / / 4,685 

Bosnia and Herzegovina 5,551 -43.87 5,650 -44.86 3,116 

Greece 6,150 25.29 6,091 26.5 7,705 

Croatia 6,556 -28.94 5,657 -17.55 4,659 

Montenegro 1,491 56.84 1,415 65.26 2,339 

North Macedonia 1,865 -17.1 1,514 2.12 1,546 

Serbia 10,789 0.78 10,633 2.26 10,873 

Slovenia 4,091 -6.39 4,060 -5.68 3,830 

Kosovo 140 34.79 / / 188.7 

Sum 42,528 8.44 35,013 11.22 38,941 

Results show that, for the most of the countries on a country level results representation, there 

is a substantial difference between model results and statistical values, which get as high as 

56.84 to 65.26% for Montenegro and -43.87 to -44.86% for Bosnia and Herzegovina. 

Exceptions are results related to Serbia and Slovenia with 0.78 to 2.26% difference and -6.39 

to -5.68% difference, respectively. Values on a regional level are summed up close to the 

statistical values with differences of 8.44 to 11.22%. Hydropower generation on a yearly basis, 

aggregated by region, can be seen in Figure 6.8. Hydropower generation compared on a 
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monthly basis for the year 2015, between UCD model results and ENTSO-E data can be seen 

in Figure 6.9. 

 

Figure 6.8.  Region aggregated hydropower generation for dry (2007), average (2015) and 

wet (2015) year, UCD model 

 

Figure 6.9.  Comparison of region aggregated hydropower generation between UCD model 

results and ENTSO-E data for the year 2015 

Comparing hydropower generation shown in Figure 6.8., one can state that a higher amount of 

hydropower generation for a wet year, compared with average, comes from January and later 

autumn months, November and December. Comparing dry to both wet and average year, it can 

be seen that hydropower generation for the dry year is mostly below values for wet and average 

year, with some exceptions of similar hydropower generation for a part of February, and 

November to December, for dry-wet and dry-average year comparison, respectively. 
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Comparing model results with ENTSO-E data shown in Figure 6.9, close follow up trend can 

be noticed with slightly higher differences of -489.63, -388.24 and -309.8 GWh for February, 

May and August, respectively. 

Total hydropower production of each country and statistically obtained values for a dry and wet 

year are shown in Table 6.12 and Table 6.13, respectively. The statistical values are not to 

compare to the model values for the dry and wet years, due to the only input changed being 

water inflow, while other power generation related input data stayed the same as the reference 

year. 

Table 6.12. Hydropower generation for dry (2007) year,[49],[62] 

Country 
IEA 

[GWh] 

∆/IEA 

[%] 

ENTSO-E 

[GWh] 

∆/ENTSO-E 

[%] 

UCD model 

[GWh] 

Albania 2,788 40.41 / / 3,915 

Bosnia and Herzegovina 4,001 -31.09 4,001 -31.09 2,757 

Greece 3,376 21.37 3,367 21.37 4,098 

Croatia 4,864 -29.66 4,361 -29.66 3,421 

Montenegro 1,284 49.51 1,292 49.51 1,920 

North Macedonia 1,010 -33.63 1,054 -33.63 670.34 

Serbia 10,037 5.06 9,928 5.06 10,545 

Slovenia 3,266 5.95 2,814 5.95 3,460 

Kosovo 94 281.1* / / 358.28 

Sum 30,720 1.38 26,817 0.2 31,144 
 *  due to the big difference between the model result and statistical data, combined with small value number, results with a 

percentage higher than 100% 

Table 6.13. Hydropower generation for wet (2010) year [49],[62] 

Country 
IEA 

[GWh] 

∆/IEA 

[%] 

ENTSO-E 

[GWh] 

∆/ENTSO-E 

[%] 

UCD model 

[GWh] 

Albania 7,567 -1 / / 7,491 

Bosnia and Herzegovina 8,026 -31.75 7,870 -30.4 5,478 

Greece 7,485 -5.07 7,457 -4.72 7,105 

Croatia 9,232 -57.75 8,313 -53.07 3,901 

Montenegro 2,750 3.58 2,738 4.04 2,849 

North Macedonia 2,431 -21.62 2,316 -17.73 1,905 

Serbia 12,571 20.47 12,453 21.61 15,144 

Slovenia 4,703 -13.36 4,249 -0.04 4,075 

Kosovo 156 130.8* / / 360 

Sum 54,921 -12.04 45,396 -10.88 48,308 
 *  due to the big difference between the model result and statistical data, combined with small value number, results with a 

percentage higher than 100% 

Total installed power generation capacities can be seen in Figure 6.10, while total power 

generation, aggregated by fuel for each country, for dry, average and wet year can be seen in 

Figure 6.11., Figure 6.12. and Figure 6.13., respectively. 

Power dispatch and unit commitments for each country are displayed in the appendix. 
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Figure 6.10. Installed power generation capacities  

(country and fuel codes are shown in abbreviation and definition list) 

 

Figure 6.11. Power generation, aggregated by fuel for dry (2007) year 

(country and fuel codes are shown in abbreviation and definition list) 
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Figure 6.12. Power generation, aggregated by fuel, for average (2015) year 

(country and fuel codes are shown in abbreviation and definition list) 

 

Figure 6.13. Power generation, aggregated by fuel, for dry (2010) year 

(country and fuel codes are shown in abbreviation and definition list) 
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7. CONCLUSION AND FUTURE WORK 

This study describes the implementation of three different models for detailed analysis of 

impacts on the regional power system for different hydrological conditions. Countries included 

in the study are six Western Balkan countries, Bosnia and Herzegovina, Serbia, Albania, 

Montenegro, North Macedonia, Kosovo, and three neighboring countries, Croatia, Slovenia and 

Greece. Combining results in form of water inflows from hydrological model LISFLOOD with 

Dispa-SET models, three different scenarios for dry, average and wet year were conducted. The 

first part of the study included gathering data needed for detailed representations of regional 

power system participants. Data was obtained from multiple sources, mostly from available 

databases and documentation published by regional TSO’s.  

Detailed information on hydropower plants data were gathered for Dispa-SET MTHC model. 

Hydropower generation of run-of-river units and reservoir levels for each hydropower plant 

with storage are results from the mentioned model needed for unit commitment and dispatch 

model Dispa-SET UCD. Besides the mentioned results, Dispa-SET MTHC model results 

include total power generation for each unit included in the model. Yearly region and country 

aggregated results for the reference year were compared to available statistical data from 

Internatial Energy Agency and ENTSO-E Transparency platform. Differences between yearly 

region aggregated statistical data and MTHC model results on hydropower production are -

2.98% regarding the IEA data, and 0.54% regarding the ENTSO-E data. 

Besides power generation, results from UCD model include economical, commitment and 

power dispatch values for each unit and can be aggregated by country or region. Results show 

an increase of hydropower generation of 31.14, 38.94 and 48.31 GWh for dry, average and wet 

year, respectively, mostly on the expense of a decrease in power generation of lignite and gas-

fired power plants. Inversely proportional to increase of hydropower generation, average 

electricity cost decreased from 21.023 €/MWh for the dry year to 17.879 and 17.142 €/MWh 

for an average and wet year, respectively. Compared results from UCD model for region 

aggregated hydropower generation with statistically obtained values show differences of 8.44% 

regarding the IEA data, and 11.22% regarding the ENTSO-E data.  

The individual production of power plants has not been compared to historical data due to 

several reasons. The MTHC model uses clusters for all powerplants except the hydropower 

plants, while water inflows have been clustered to a single point if dams are located in the range 

of 5 km. Moreover, it is hard to obtain the exact production data of certain hydropower plant 
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for referent year so in most cases the average production data are available. A similar problem 

is present with obtaining the historical measured data on the stored water or water levels in the 

reservoirs. The UCD model provides more detail on the operation of single power plants but it 

has not been the main focus of this study. In the future work, it will be necessary to check 

hundreds of single power plants and their production in order to determine water-power nexus 

and impacts of different water inflows to the operation of a single powerplant or representative 

clusters of power plants.   

Future work will also include the addition of Hungarian, Bulgarian and Romanian power 

systems, with the possibility of including the Turkish power system. Also, data on missing 

hydropower plants for countries included in this study will be available in future work. As 

previously mentioned in the study, additional data on water withdrawal and consumption for 

cooling of thermal power units, and water consumption for non-energy purposes is needed for 

better representation of water-power nexus. 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 78 

REFERENCES 

[1] Fernandez Blanco Carramolino, R., Kavvadias, K., Hidalgo Gonzalez, I., Water-

related modelling in electric power systems - WATERFLEX Exploratory Research 

Project: version 1, EUR 29039 EN, Publications Office of the European Union, 

Luxembourg, 2017, ISBN 978-92-79-77631-1, doi:10.2760/482511, JRC109941 

[2] Ricardo FERNANDEZ-BLANCO CARRAMOLINO, Konstantinos KAVVADIAS, 

Ad De ROO, Bernard BISSELINK, Ignacio HIDALGO GONZALEZ, The water-

energy nexus and the implications for the flexibility of the Greek power system, 

Luxembourg: Publications Office of the European Union, 2016 

[3] S. Roehrkasten, D. Schaeuble and S. Helgenberger, Secure and sustainable energy 

in a water-constrained world, Institute for Advanced Sustainability Studies (IASS), 

Potsdam, 2016 

[4] International Energy Agency, “Water for Energy: Is energy becoming a thirstier 

resource?,” 2012. 

[5] “Power in Europe,” S&P Global Platts, no. 729, pp. 1-33, July 2016. 

[6] DE FELICE, M., GONZÁLEZ APARICIO, I., HULD, T., HIDALGO GONZÁLEZ, 

I., Analysis of the water-power nexus in the West African Power Pool - Water-

Energy-Food-Ecosystems project, EUR 29617 EN, Publications Office of the 

European Union, Luxembourg, 2018, ISBN 978-92-79-98138-8, 

doi:10.2760/362802, JRC115157. 

[7] Peter Burek, Johan van der Knijff, Ad de Roo, LISFLOOD Distributed Water 

Balance and Flood Simulation Model, Luxemburg, Publication Office of the 

European Union, 2013 

[8] Quoilin S., Hidalgo Gonzalez I., Zucker A., Modelling Future EU Power Systems 

Under High Shares of Renewables - The Dispa-SET 2.1 open-source model, EUR 

28427 EN, doi:10.2760/25400, 2017 

[9] Fernandez Blanco Carramolino, R., Kavvadias, K., Hidalgo Gonzalez, I., Hydro-

related modelling for the WATERFLEX Exploratory Research Project, EUR 28419 

EN, doi: 10.2760/386964, 2016 

[10] Western Balkan Investment Framework,  

https://www.wbif.eu/content/stream//Sites/website/library/WBEC-REG-ENE-01-

BR-2-Hydrology-Water-Management-05.12a.pdf, (accessed December 17, 2018.) 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 79 

[11] International Sava River Basin Commission , Sava River Basin Management Plan, 

2014 

[12] “World Bank Group. 2014. Turn Down the Heat : Confronting the New Climate 

Normal. Washington, DC: World Bank. © World Bank. 

https://openknowledge.worldbank.org/handle/10986/20595 License: CC BY-NC-

ND 3.0 IGO.” 

[13] International Energy Agency (IEA), World Energy Outlook 2016. Paris, 2016. 

[14] “The Water-Energy Nexus: Challenges and Opportunities,” U.S. Department of 

Energy, 2014. 

[15] S. Roehrkasten, D. Schaeuble, and S. Helgenberger, “Secure and Sustainable 

Energy in a Water- Constrained World,” 2016. 

[16] https://ec.europa.eu/jrc/en/news/exploiting-modelling-better-address-issues-related-

water-energy-nexus (accessed February 23, 2019) 

[17] Fernandez Blanco Carramolino, R., Kavvadias, K., Adamovic, M.,,Bisselink, B., de 

Roo, A., Hidalgo Gonzalez, I., The water-power nexus of the Iberian Peninsula 

power system: WATERFLEX project, EUR 29127 EN, Publications Office of the 

European Union, Luxembourg, 2017, ISBN 978-92-79-80209-6, 

doi:10.2760/739963, JRC109944 

[18] L. Hardy, A. Garrido, and L. Juana, “Evaluation of Spain’s Water-Energy Nexus,” 

Int. J. Water Resour. Dev., vol. 28, no. 1, pp. 151–170, 2012. 

[19] D. Zafirakis, C. Papapostolou, E. Kondili, and J. K. Kaldellis, “Evaluation of 

wateruse needs in the electricity generation sector of Greece,” Int. J. Environ. 

Resour., 

vol. 3, no. 3, pp. 39–45, 2014. 

[20] I. Ziogou and T. Zachariadis, “Quantifying the water–energy nexus in Greece,” in 

Proceedings of the 14th International Conference on Environmental Science and 

Technology, 2015, pp. 1–11. 

[21] Z. Khan, P. Linares, and J. García-gonzález, “Adaptation to climate-induced 

regional water constraints in the Spanish energy sector: An integrated 

assessment,” Energy Policy, vol. 97, pp. 123–135, 2016. 

[22] Z. Khan, P. Linares, and J. García-gonzález, “Integrating water and energy models 

for policy driven applications. A review of contemporary work and 

recommendations for future developments,” Renew. Sustain. Energy Rev., vol. 67, 

pp. 1123–1138, 2017. 

https://ec.europa.eu/jrc/en/news/exploiting-modelling-better-address-issues-related-water-energy-nexus
https://ec.europa.eu/jrc/en/news/exploiting-modelling-better-address-issues-related-water-energy-nexus


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 80 

[23] P. Behrens, M. T. H. Van Vliet, T. Nanninga, B. Walsh, and J. F. D. Rodrigues, 

“Climate change and the vulnerability of electricity generation to water stress in 

the European Union,” Nat. Energy, vol. 2, no. July, pp. 1–7, 2017. 

[24] B. R. Scanlon, I. Duncan, and R. C. Reedy, “Drought and the water–energy nexus 

in Texas,” Environ. Res. Lett., vol. 8, no. 4, pp. 1–14, 2013. 

[25] T. A. DeNooyer, J. M. Peschel, Z. Zhang, and A. S. Stillwell, “Integrating water 

resources and power generation: The energy-water nexus in Illinois,” Appl. Energy, 

vol. 162, pp. 363–371, 2016. 

[26] A. Siddiqi and L. Diaz Anadon, “The water – energy nexus in Middle East and North 

Africa,” Energy Policy, vol. 39, pp. 4529–4540, 2011. 

[27] Western Balkan Investment Framework 

https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-

Final- Report-05.12a.pdf, (accessed  December 17, 2018.) 

[28] Nike Sommerwerk, Thomas Hein, Martin Schneider-Jakoby, Christian Baumgartner, 

Ana Ostojić, Rivers of the Europe: The Danube River Basin, Italy, 2009. 

[29] ICPDR 

https://www.icpdr.org/main/publications/maps, (accessed  January 15, 2019.) 

[30] Western Balkan Investment Framework, 

https://www.wbif.eu/content/stream//Sites/website/library/WBEC-REG-ENE-01-

BR-3-Environment-05.12.pdf, (accessed December 17, 2018.) 

[31] Kupa River 

https://en.wikipedia.org/wiki/Kupa, (accessed February 17, 2019.) 

[32] Balkan Rivers - The Blue Heart of Europe, Hydromorphological Status and Dam 

Projects 

https://www.balkanrivers.net/en/campaign, (accessed December 17, 2018) 

[33] Nikolaos Th. Skoulikidis, Alcibiades N. Economou, Konstantinos C. Gritzalis and 

Stamatis Zogaris, Rivers of the Europe: Rivers of the Balkans, Italy, 2009. 

[34] The Cetina River, Wikipedia 

https://hr.wikipedia.org/wiki/Cetina, (accessed February 23, 2019) 

[35] The Krka River, Wikipedia 

https://hr.wikipedia.org/wiki/Krka, (accessed February 23, 2019) 

[36] The Zrmanja River, Wikipedia 

https://en.wikipedia.org/wiki/Zrmanja, (accessed February 23, 2019) 

https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-Final-
https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-Final-
https://www.icpdr.org/main/publications/maps
https://en.wikipedia.org/wiki/Kupa
https://www.balkanrivers.net/en/campaign
https://hr.wikipedia.org/wiki/Cetina
https://hr.wikipedia.org/wiki/Krka
https://en.wikipedia.org/wiki/Zrmanja


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 81 

[37] The Soča River, Wikipedia 

https://en.wikipedia.org/wiki/Soča, (accessed February 23, 2019) 

[38] SEE River 

http://www.see-river.net/about-river.3.html, (accessed February 23, 2019) 

[39] Western Balkan Investment Framework, 

https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-

BR-1-Role-of-hydropower-04.12b.pdf , (accessed December 17, 2018.) 

[40] Balkan Energy Prospect 

http://wb6energyprospect.com/albania.php, (accessed December 17, 2018.) 

[41] A case study applying the Dispa-SET model on the Western Balkans, European 

Commission 

[42] Central and Eastern European Hydro Power Outlook 

https://www.kpmg.de/docs/central_and_eastern_european_hydro_power_outlook_

web_secured.pdf, (accessed January 7, 2019.) 

[43] Hydro Energy Potential in Albania 

http://aea-al.org/wp-content/uploads/2012/04/HYDRO-ENERGY-ALBANIA.pdf, 

(accessed January 23, 2019) 

[44] SECURITY OF SUPPLY STATEMENT OF THE REPUBLIC OF ALBANIA, 

PREPARED BY THE MINISTRY OF THE ECONOMY, TRADE AND ENERGY 

IN COOPERATION WITH ERE AND TSO.Tirana, May 2009 

[45] K.Kanellopoulos, I. Hidalgo, H.Medarac, A.Zucker,The Joint Research 

CentrePower Plant Database (JRC-PPDB)-A European Power Plant Database for 

energy modelling,EUR28549 EN,doi:10.2760/329310 

[46] VE Mesihovina 

https://hr.wikipedia.org/wiki/Vjetroelektrana_Mesihovina, (accessed 28 February 

2019) 

[47] Krnovo Wind Powerplant,  

http://www.bankar.me/2018/01/16/arapi-kupili-49-odsto-vjetroelektrane-krnovo/ 

[48] Western Balkan Investment Framework 

https://www.wbif.eu/content/stream//Sites/website/library/WBEC-REG-ENE-01-

BR-6-Grid-Connections-05.12.pdf, (accessed December 17, 2018) 

https://en.wikipedia.org/wiki/Soča
http://www.see-river.net/about-river.3.html
https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-BR-1-Role-of-hydropower-04.12b.pdf
https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-BR-1-Role-of-hydropower-04.12b.pdf
http://wb6energyprospect.com/albania.php
https://www.kpmg.de/docs/central_and_eastern_european_hydro_power_outlook_web_secured.pdf
https://www.kpmg.de/docs/central_and_eastern_european_hydro_power_outlook_web_secured.pdf
http://aea-al.org/wp-content/uploads/2012/04/HYDRO-ENERGY-ALBANIA.pdf
https://hr.wikipedia.org/wiki/Vjetroelektrana_Mesihovina
http://www.bankar.me/2018/01/16/arapi-kupili-49-odsto-vjetroelektrane-krnovo/
https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-BR-6-Grid-Connections-05.12.pdf
https://www.wbif.eu/content/stream/Sites/website/library/WBEC-REG-ENE-01-BR-6-Grid-Connections-05.12.pdf


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 82 

[49] IEA Statistics, 

https://www.iea.org/statistics/?country=FYROM&year=2016&category=Electricity

&indicator=ElecGenByFuel&mode=chart&dataTable=ELECTRICITYANDHEAT

, (accessed January 12, 2019) 

[50] Termoelektrane Srbija, 

http://www.elektroenergetika.info/te-sr.htm, (accessed 14 January 2019) 

[51] Wind power Serbia 

https://ba.ekapija.com/news/2249592/u-srbiji-otvoren-vjetropark-vrijedan-80-mil-

eur, (accessed 28 February 2019) 

[52] Elektromreža Srbija 

http://www.ems.rs/page.php?kat_id=191, (accessed January 28, 2019) 

[53] HSE Company 

http://www.hse.si/en/hse-group/production-of-electricity/, (accessed February 21, 

2019) 

[54] Report on the energy sector in Slovenia 

https://www.agen-rs.si/documents/54870/68629/a/78f74b68-dbfc-415e-ab88-

882652558d94, (accessed February 21, 2019) 

[55] Dispa-SET Balkans – Dataset 

https://zenodo.org/record/2551747#.XHu6u7h7lPZ, (accessed February 19, 2019) 

[56] Power and heating plant Ljubljana, Company profile, April 2008, Slovenia 

[57] TPP Brestenica 

https://www.teb.si/en/ 

[58] TPP Šoštanj, 

http://www.te-sostanj.si/en/, (accessed February 21,2019) 

[59] B. Kladnik, G. Artač, B. Kozan, A.F. Gubina, K. Nagode, M. Dusak, Scheduling the 

Slovenian cascaded hydro system on the river Sava, Ljubljana, 2011 

[60] Savske Elektrarne Ljubljana, 

http://www.sel.si/elektrarne, (accessed February 21, 2019) 

[61] ENTSO-E Transparency Platform 

https://transparency.entsoe.eu, (accessed December 17, 2018) 

[62] TSO Slovenia 

http://defender-project.eu/pilot-3/, (accessed February 21, 2019) 

[63] HEP Proizvodnja 

https://www.iea.org/statistics/?country=FYROM&year=2016&category=Electricity&indicator=ElecGenByFuel&mode=chart&dataTable=ELECTRICITYANDHEAT
https://www.iea.org/statistics/?country=FYROM&year=2016&category=Electricity&indicator=ElecGenByFuel&mode=chart&dataTable=ELECTRICITYANDHEAT
http://www.elektroenergetika.info/te-sr.htm
http://www.ems.rs/page.php?kat_id=191
http://www.hse.si/en/hse-group/production-of-electricity/
https://www.agen-rs.si/documents/54870/68629/a/78f74b68-dbfc-415e-ab88-882652558d94
https://www.agen-rs.si/documents/54870/68629/a/78f74b68-dbfc-415e-ab88-882652558d94
https://zenodo.org/record/2551747#.XHu6u7h7lPZ
https://www.teb.si/en/
http://www.te-sostanj.si/en/
https://transparency.entsoe.eu/
http://defender-project.eu/pilot-3/


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 83 

http://proizvodnja.hep.hr/proizvodnja/osnovni/hidroelektrane/default.aspx, 

(accessed December 17, 2018) 

[64] M.Pavičević, T. Pukšec, Comparison of different power plant clustering approaches 

for modelling future power systems, Zagreb, 2019 

[65] HES Vinodol, 

Adrian Lisac, HE Vinodol, Delnice, February 2015 

[66] Josip Kožul, Hidrološka analiza srednjih mjesečnih i godišnjih protoka na postaji 

Han (1947.-2016. g.), Split, 2018 

[67] Martin Konig, Diplomski rad, Zagreb, 2010 

[68] HOPS, 

https://www.hops.hr/wps/portal/hr/web/hees/podaci/shema, (accessed January 27, 

2019) 

[69] Ioannis Argyrakis, Hydroelectric Power Plants of PPC S.A. in Greece, Hydroelectric 

Generation Department 

http://www.iene.eu/microsites/developing-albania-hydroelectric 

potential/articlefiles/2nd_Session/HPP_OF_PPC_Argyrakis.pdf. (accessed 

December 15, 2018) 

[70] Nikolaos Koltsaklis and Athanasios Dagoumas, Policy Implications of Power 

Exchanges on Operational Scheduling: Evaluating EUPHEMIA’s Market Products 

in Case of Greece, Piraeus, Greece, October 2018 

[71] Peter Burek, Johan van der Knijff, Ad de Roo, LISFLOOD, Distributed Water 

Balance and Flood Simulation Model, Luxemburg, Publications Office of the 

European Union, 2013 

[72] J. M. Van Der Knijff , J. Younis & A. P. J. De Roo (2010) LISFLOOD: a GIS‐based 

distributed model for river basin scale water balance and flood simulation, 

International Journal of Geographical Information Science, 24:2, 189-212, DOI: 

10.1080/13658810802549154 

[73] Fernandez Blanco Carramolino, R., Kavvadias, K., Hidalgo Gonzalez, I., Hydro-

related modelling for the WATERFLEX Exploratory Research Project, EUR 28419 

EN, doi: 10.2760/386964 

[74] “GAMS Development Corporation. General Algebraic Modeling System (GAMS) 

Release 24.2.1.” Washington, DC, USA, 2013. 

[75] Dispa-SET 

http://www.dispaset.eu/en/latest/data.html , (accessed December 15, 2018) 

http://proizvodnja.hep.hr/proizvodnja/osnovni/hidroelektrane/default.aspx
https://www.hops.hr/wps/portal/hr/web/hees/podaci/shema
http://www.iene.eu/microsites/developing-albania-hydroelectric%20potential/articlefiles/2nd_Session/HPP_OF_PPC_Argyrakis.pdf
http://www.iene.eu/microsites/developing-albania-hydroelectric%20potential/articlefiles/2nd_Session/HPP_OF_PPC_Argyrakis.pdf


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 84 

[76] Kavvadias K., Hidalgo Gonzalez I., Zucker A., Quoilin S., Integrated modelling of 

future EU power and heat systems-The Dispa-SET 2.2 open-source model, EUR 

29085 EN,Publications Office of the European Union, Luxembourg, 2018, 

ISBN:978-92-79-77866-7, doi:10.2760/860626, JRC110305 

[77] Sylvain Quolin, DispaSET Documentation Release v2.2-81-gb551f3d, October 20, 

2018 

[78] Antoni Šarić, Analiza isplativosti proizvodnje električne energije, Diplomski rad, 

Osijek, 2016 

[79] Electricity Generation Costs, Department of Energy and Climate Change, 2012 

[80] Sascha Samadi, The Social Costs of Electricity Generation—Categorising Different 

Types of Costs and Evaluating Their Respective Relevance, March, 2017, Germany 

[81] Branislav Radonjić, Ilija Vujošević, Ekonomski aspekti proizvodnje električne 

energije, Matica Crnogorska, 2013 

[82] Sveta Petka 

http://www.elem.com.mk/?page_id=1817&lang=en , (accessed January 14, 2018) 

[83] Avche 

https://www.seng.si/hidroelektrarne/crpalne-hidroelektrarne/, (accessed February 4, 

2019) 

[84] Formin 

https://sl.wikipedia.org/wiki/Hidroelektrarna_Formin, (accessed February 4, 2019) 

[85] Zatolicje 

https://sl.wikipedia.org/wiki/Hidroelektrarna_Zlatoli%C4%8Dje, (accessed 

February 4, 2019) 

[86] Blanca, Bostanj 

http://www.he-ss.si/he-blanca-splosno.html, (accessed February 4, 2019) 

[87] Doblar, Plave, Solfkan 

https://www.seng.si/hidroelektrarne/velike-hidroelektrarne/, (accessed February 4, 

2019) 

[88] Dravograd 

http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Dravograd, 

(accessed February 4, 2019) 

[89] Fala 

http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Fala, (accessed 

February 4, 2019) 

https://www.seng.si/hidroelektrarne/crpalne-hidroelektrarne/
https://sl.wikipedia.org/wiki/Hidroelektrarna_Formin
https://sl.wikipedia.org/wiki/Hidroelektrarna_Zlatoli%C4%8Dje
http://www.he-ss.si/he-blanca-splosno.html
https://www.seng.si/hidroelektrarne/velike-hidroelektrarne/
http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Dravograd
http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Fala


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 85 

[90] Mariborski Otok 

http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Mariborski-otok 

(accessed February 4, 2019) 

[91] Mavcice 

https://sl.wikipedia.org/wiki/Hidroelektrarna_Mav%C4%8Di%C4%8De (accessed 

February 4, 2019) 

[92] Medvode 

https://www.ibe.si/bs/references/energy/Pages/referencedetails.aspx?referenceid=1

103 , (accessed February 4, 2019) 

[93] Moste, 

http://www.sel.si/HE-moste (accessed February 4, 2019) 

[94] Ozbalt, 

http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Ozbalt, (accessed 

February 4, 2019) 

[95] Vrhovo 

http://globalenergyobservatory.org/geoid/44881 (accessed February 4, 2019) 

[96] Vuhred 

http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Vuhred (accessed 

February 4, 2019) 

[97] Vuzenica 

https://sl.wikipedia.org/wiki/Hidroelektrarna_Vuzenica (accessed February 4, 2019) 

[98] ENTSO-E Power Statistics 

https://www.entsoe.eu/data/power-stats/, (accessed December 16, 2018) 

[99] SETIS, EHMIRES dataset 

https://setis.ec.europa.eu/EMHIRES-datasets, (accessed January 15, 2019) 

[100] Renewables ninja 

I. Staffell and S. Pfenninger, 2016. Using Bias-Corrected Reanalysis to Simulate 

Current and Future Wind Power Output. Energy, 114, 1224–1239. 

http://dx.doi.org/10.1016/j.energy.2016.08.068 

[101] Identification of Network Elements Critical for Increasing NTC Values in South East 

Europe South East Cooperation Initiative Transmission System Planning Project 

(SECI TSP), November 7, 2014 

 

http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Mariborski-otok
https://sl.wikipedia.org/wiki/Hidroelektrarna_Mav%C4%8Di%C4%8De
http://www.sel.si/HE-moste
http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Ozbalt
http://globalenergyobservatory.org/geoid/44881
http://www.dem.si/sl-si/Elektrarne-in-proizvodnja/Elektrarne/HE-Vuhred
https://sl.wikipedia.org/wiki/Hidroelektrarna_Vuzenica
https://www.entsoe.eu/data/power-stats/


Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 86 

APPENDIX 

 

 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 87 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 88 

 

 
  



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 89 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 90 

 

 
 

 

  



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 91 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 92 

 

 
 

  



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 93 

 

 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 94 

 

 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 95 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 96 

 

 
  



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 97 

 

 

 

 



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 98 

 

 
  



Goran Stunjek Master's Thesis 

Fakultet strojarstva i brodogradnje 99 

 

 

 

 

 

 


