SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Matko Pečanić

Zagreb, 2019.
DIPLOMSKI RAD

Mentori: Prof.dr. sc. Danijel Pavković, dipl. ing.

Student: Matko Pečanić

Zagreb, 2019.
Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru Danijelu Pavkoviću na podršci, FSB Racing Team-u na financijskim sredstvima i pruženoj prilici za razvijanje i testiranje diplomskog rada. Zahvaljujem se i kolegama Kruni Hrvatinić i Annie Kovač iz Rimac Automobili d.o.o. na korisnim savjetima.

Zahvaljujem se roditeljima na podršci tokom mog studiranja i ulaganju u moje znanje. Na kraju najveća hvala supruzi Martini i kćeri Loreni na podršci i strpljenju.

Matko Pečanić
SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE
Središnje povjerenstvo za završne i diplomske ispite
Povjerenstvo za diplomске radove studija strojarstva za smjerove:
proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment,
inženjerstvo materijala te mehatronika i robotika

DIPLOMSKI ZADATAK

Student: MATKO PEČANIĆ
Mat. br.: 0035194680

Naslov rada na hrvatskom jeziku: Projektoranje sustava upravljanja dinamikom formula student vozila eksperimentalna provjera na umanjenoj maketi vozila

Naslov rada na engleskom jeziku: Design of a formula student vehicle dynamics control system and experimental verification on a down-scaled vehicle model

Opis zadataka:
Sustavi regulacije dinamike vozila kao što su sustavi regulacije vučne sile (engl. Traction Control Systems) i sustavi za koordiniranu upravljanje okretnim momentom na pogonskim kotačima (engl. Torque Vectoring Systems) ključni su za sigurnost vožnje vozila u uvjetima smanjene adhezije između automobilske gume i podloge te za performanse vozila u trkačkim uvjetima. Stoga se kontinuirano radi na unaprijeđenju ovih sustava. U radu je potrebno napraviti sljedeće:

1. Dati kratki pregled sustava za upravljanje dinamikom cestovnih vozila i formulirati matematički model vozila koji uključuje uzdužnu i poprečnu dinamiku gibanja vozila, dinamiku rotacije oko centra mase vozila i model adhezije između automobilske gume i podloge.

2. Po potrebi pojednostaviti predloženi model vozila za karakteristične场景e (uzdužnu i poprečno gibanje te rotaciju oko centra mase) te na temelju pojednostavljenih modela treba predložiti odgovarajuće algoritme upravljanja (regulator) dinamičkih veličina vozila u gibanju.

3. Na temelju potpunog matematičkog modela treba implementirati simulacijski model dinamike gibanja vozila pogodan za ispitivanje upravljačkih algoritama, a koje treba ispitati i vrednovati za odabrane tipične situacije u vožnji.

4. Izraditi umanjeni model cestovnog vozila i opisati njegove karakteristične dijelove i skloposke komponente. Primjenom razvijenog umanjjenog modela vozila potrebno je eksperimentalno ispitati pojedine sustave regulacije dinamičke vožnje.

U radu je također potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Rok predaje rada: 09. svibnja 2019.

Zadatak zadao: Danijel Pavković

Predvideni datum obrane:
15. svibnja 2019.
17. svibnja 2019.

Predsjednica Povjerenstva: prof. dr. sc. Biserka Runje
SADRŽAJ

1. UVOD .. 1
 1.1. TCS - Traction Control System .. 1
 1.2. TV – Torque Vectoring ... 1
2. O VOZILU I PRIMJENI RAZVIJENIH SUSTAVA ... 2
 2.1. Primjena razvijenih sustava ... 2
 2.1.1. O FSB Racing Team-u ... 2
 2.1.2. O vozilu .. 2
3. TCS – Traction Control System .. 4
 3.1. Model sustava .. 4
 3.1.1. Osnovna dinamika .. 4
 3.1.2. Prijenos težine ... 5
 3.1.3. Električni motor .. 6
 3.1.4. Model gume .. 7
 3.2. Projektiranje regulatora na razini pogonskih kotača 10
 3.2.1. Regulator struje/okretnog momenta .. 10
 3.2.2. Regulator brzine vrtnje .. 14
4. Torque Vectoring .. 17
 4.1. Model sustava .. 17
 4.2. Projektiranje regulatora ... 25
5. Rezultati simulacija .. 27
6. Izrada makete .. 31
 6.1. Kupovne komponente .. 31
 6.2. Izrađene komponente .. 36
 6.3. Električna shema ... 39
 6.4. Programiranje .. 41
7. Rezultati eksperimentalnih mjerenja .. 47
8. ZAKLJUČAK .. 52
LITERATURA ... 53
PROGRAMSKI KOD .. 54
POPIS SLIKA

Slika 1. Električna formula .. 2
Slika 2. Model longitudinalne dinamike vozila 4
Slika 3. Model osnovne longitudinalne dinamike vozila 5
Slika 4. Model prijenosa težine .. 6
Slika 5. Model elektromotorova .. 7
Slika 6. Model gume (Fz=konst., karakteristika podloge=konst.) 8
Slika 7. Prošireni model gume .. 8
Slika 8. \(g(v_x,F_z) \) ... 9
Slika 9. Ovisnost sile trenja o postotku klizanja gume za razne vertikalne sile na kotač 9
Slika 10. Ovisnost longitudinalnih i lateralnih sila trenja o postotku klizanja ... 10
Slika 11. Blokovski dijagram podređenog regulacijskog kruga struje armature s PI regulatorom i komenzatorom utjecaje elektromotorne sile ... 11
Slika 12. Blokovski dijagram regulacijskog kruga struje na kojem se zasniva sinteza PI regulatora struje ... 12
Slika 13. Odziv regulacijskog kruga struje na skokovitu pobudu 13
Slika 14. Blokovski dijagram regulacijskog kruga brzine vrtnje s P regulatorom 14
Slika 15. Blokovski dijagram regulacijskog kruga brzine vrtnje s podređenim regulatorom struje 15
Slika 16. Regulator broja okretaja s prefiltrom 16
Slika 17. Odziv regulacijskog kruga broja okretaja na skokovitu pobudu i poremećaj (moment tereta) ... 17
Slika 18. Prikaz vozila sa označenim veličinama 18
Slika 19. Pacejka model gume .. 19
Slika 20. Karakteristike gume .. 20
Slika 22. Upravljaci kut skretanja ... 21
Slika 23. Trajektorija pasivnog ponašanja vozila 23
Slika 24. Horizontalne sile svakog kotača .. 24
Slika 25. Kut skretanja \(\beta \) i brzina zakreta vozila 24
Slika 26. Kut zakreta prednjih kotača .. 25
Slika 27. Regulator brzine zakreta vozila .. 25
Slika 28. Pojednostavljeni sustav s regulatorom 25
Slika 29. Ubrzanje sa i bez TCS-a .. 27
Slika 30. Robusnost pri nailasku na lošju podlogu 28
Slika 31. Usporedba trajektorije vozila sa i bez TV-a 29
Slika 32. Kut zakreta kotača .. 29
Slika 33. Brzine zakreta i aktivni Mz .. 30
Slika 34. Horizontalne sile svakog kotača .. 30
Slika 35. CAD model makete i izrađena maketa 31
Slika 36. TI Launchpad .. 32
Slika 37. Arduino Nano .. 32
Slika 38. DC motor s enkoderom .. 33
Slika 39. L298N PWM Modul .. 33
Slika 40. Senzor struje .. 33
Slika 41. Optički enkoder .. 34
Slika 42. Li-ion ĉelija Sony VTC6 .. 34
Slika 43. Battery Management System .. 35
Slika 44. RC servo motor .. 35
Slika 45. LM2595 ... 35
Slika 46. NRF24L01 .. 36
Slika 47. MPU-6050 .. 36
Slika 48. CAD podvozja ... 36
Slika 49. Podvozje .. 37
Slika 50. CAD prednjeg ovjesa (sakriven lijevi kotač) 37
Slika 51. Zakreti kotača - Ackermanovo skretanje 38
Slika 52. Baterija .. 38
Slika 53. Stari i nove verzije diska enkodera 38
Slika 54. Očitanje pomoću osciloskopa - Usporedba signala starog (lijevo) i novog (desno) enkodera pri vrtnji ... 39
Slika 55. Električna shema .. 40
Slika 56. Maketa i daljinski upravljač .. 41
Slika 57. Značajan šum senzora struje (0-100% struje) 42
Slika 58. Struktura PI regulatora TCS-a na mikrokontroleru 43
Slika 59. Odziv TCS-a na maketi .. 44
Slika 60. Zahtjevani moment kao poremećaj 45
Slika 61. Feedforward programski kod .. 46
Slika 62. Feedforward mjerenje .. 46
Slika 63. Ubrzanje bez TCS-a .. 47
Slika 64. Ubrzanje sa TCS-on ... 48
Slika 65. Prolazak makete kroz zavoj TV=off 49
Slika 66. Snimka prolaza zavoja TV=off 50
Slika 67. Prolazak makete kroz zavoj TV=on 50
Slika 68. Snimka prolaza zavoja TV=on 51

POPIS TABLICA
Tablica 1. Specifikacije bolida .. 3
<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>m/s²</td>
<td>akceleracija</td>
</tr>
<tr>
<td>b</td>
<td>m</td>
<td>udaljenost od težišta do prednje osovine vozila</td>
</tr>
<tr>
<td>c</td>
<td>m</td>
<td>udaljenost od težišta do stražnje osovine vozila</td>
</tr>
<tr>
<td>F</td>
<td>N</td>
<td>sila</td>
</tr>
<tr>
<td>g</td>
<td>m/s²</td>
<td>ubrzanje sile teže</td>
</tr>
<tr>
<td>hₕ</td>
<td>m</td>
<td>visina težišta</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>jakost struje</td>
</tr>
<tr>
<td>I₀₂</td>
<td>kg·m²</td>
<td>inercija vozila oko Z-osi</td>
</tr>
<tr>
<td>i</td>
<td></td>
<td>prijenosni omjer reduktora</td>
</tr>
<tr>
<td>J</td>
<td>kg·m²</td>
<td>inercija</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>pojačanje</td>
</tr>
<tr>
<td>Kₑ</td>
<td>V/(rad/s)</td>
<td>konstanta elektromotorne sile</td>
</tr>
<tr>
<td>Kₘ</td>
<td>Nm/A</td>
<td>momentna konstanta elektromotora</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>induktivitet</td>
</tr>
<tr>
<td>l</td>
<td>m</td>
<td>međuosovinski razmak</td>
</tr>
<tr>
<td>M</td>
<td>Nm</td>
<td>moment</td>
</tr>
<tr>
<td>m</td>
<td>kg</td>
<td>masa vozila</td>
</tr>
<tr>
<td>m₀</td>
<td>Nm</td>
<td>moment tereta</td>
</tr>
<tr>
<td>R</td>
<td>m</td>
<td>radijus skretanja</td>
</tr>
<tr>
<td>Rₐ</td>
<td>Ω</td>
<td>otpor armature motora</td>
</tr>
<tr>
<td>r</td>
<td>m</td>
<td>radijus kotača</td>
</tr>
<tr>
<td>sₓ,sᵧ</td>
<td>m</td>
<td>put</td>
</tr>
<tr>
<td>T</td>
<td>s</td>
<td>vremenska konstanta</td>
</tr>
<tr>
<td>t</td>
<td>m</td>
<td>trag kotača</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>napon</td>
</tr>
<tr>
<td>v</td>
<td>m/s</td>
<td>brzina</td>
</tr>
<tr>
<td>α</td>
<td>deg</td>
<td>kut klizanja kotača</td>
</tr>
<tr>
<td>β</td>
<td>deg</td>
<td>kut između usmjerenja vozila i vektora brzine vozila</td>
</tr>
<tr>
<td>βᵢ</td>
<td>deg</td>
<td>kut između usmjerenja vozila u poziciji kotača i vektora brzine kotača</td>
</tr>
<tr>
<td>δ</td>
<td>deg</td>
<td>kut zakreta kotača</td>
</tr>
<tr>
<td>ε</td>
<td>s</td>
<td>ekvivalentna vremenska konstanta</td>
</tr>
<tr>
<td>κ</td>
<td></td>
<td>longitudinalno klizanje gume</td>
</tr>
<tr>
<td>ψ</td>
<td>deg</td>
<td>zakret vozila u globalnom koordinatnom sustavu</td>
</tr>
<tr>
<td>ω</td>
<td>rad/s</td>
<td>kutna brzina vrtnje</td>
</tr>
</tbody>
</table>
SAŽETAK

Vozila pogonjena električnim motorima kod kojih svaki motor pogoni zasebni kotač dobra su platforma za razvoj sustava kontrole stabilnosti vozila zbog brzog odziva motora, laka upravljenosti i velike koristi takvih sustava. Cilj ovog rada je razviti i testirati takve sustave za trkaći bolid formule student. Jedan od sustava ima zadaću spriječiti suvišno proklizavanje pogonskih kotača preciznim i pravovremenim smanjivanjem momenta. Drugi sustav ima zadaću stabilizirati brzinu zakretanja vozila ostvarivanjem različitih momenta na lijevim i desnim pogonskim kotačima. Performanse ovih sustava testirane su u simulacijama za koje su razvijeni matematički modeli. Testovi su također provedeni i na umanjenoj maketi vozila. U oba slučaja ostvarena je zadaća sustava i uočeno znatno poboljšanje dinamike vozila.

Ključne riječi: formula student, kontrola dinamike vozila, kontrola vuče, kontrola bočne dinamike, umanjena maketa, sustav regulacije vuče, sustav stabilizacije vozila pomoću kontrolirane raspodjele momenata
SUMMARY

Vehicles powered by electric motors where each motor drives a separate wheel are a good platform for development of vehicle stability control systems due to the quick motor response, easy control and the great benefits of such systems. The aim of this paper is to develop and test such systems for the formula student racing car. One of the systems has the task of preventing excessive slip of the drive wheels by precise reduction in torque at right time. The second system has the task of stabilizing the speed of rotation of the vehicle by achieving different torque on the left and right driven wheels. The performance of these systems has been tested in simulations for which mathematical models have been developed. Tests were also performed on the scaled-down model of the vehicle. In both cases, the systems successfully accomplished the tasks and a significant improvement in the vehicle dynamics was observed.

Key words: formula student, vehicle dynamics control, traction control, lateral dynamics control, scaled-down version, Traction Control System, Torque Vectoring
1. UVOD

Pasivno ponašanje vozila u stacionarnim režimima vožnje je stabilno i prihvatljivo, no u ekstremnim uvjetima, kao što su utrke ili kod velikih snaga pogonskih sustava, ponašanje vozila postaje nelinearno tj. nestabilnije i nepredvidivije za vozača, a također i same promjene događaju se brže nego ih čovjek može pratiti i kontrolirati. Stoga je korisno projektirati sustave kontrole vozila koji će reagirati brže, preciznije i ponovljivije. Takvi sustavi mogu imati autoritet nad komandama kojima vozač nema pristupa i stabilizirali vozilo bolje od vozača kako bi se on mogao usredotočiti na svoju ulogu. Sustavi koji će se projektirati u ovom radu su sustav protiv proklizavanja kotača pri ubrzanju tj. kontrola vuče, u daljnjem tekstu TCS (eng. traction control system) i sustav stabilizacije zakreta vozila pomoću kontrolirane raspodjele momenata na pogonske kotače, u daljnjem tekstu TV (eng. Torque Vectoring).

1.1. TCS - Traction Control System

Ovaj sustav brine se o sprječavanju proklizavanja pogonskih kotača pri velikim momentima na kotačima. Točnije, automobilska guma uvijek malo proklizava u odnosu na podlogupri primijenjenom momentu, ono što je nepoželjno tj. što uzrokuje bočnu nestabilnost vozila i lošiju akceleraciju je prekomjerno klizanje. Stoga je zadaća sustava držati klizanje u optimalnom području kako bi se ostvarila maksimalna sila tj. akceleracija vozila i zadržala bočna stabilnost vozila.

1.2. TV – Torque Vectoring

Ovaj sustav nadzire brzinu zakretanja vozila i uspoređuje ju su sa očekivanom/predviđenom. Pri pojavi odstupanja tih dviju veličina sustav određuje potrebni moment oko vertikalne osi vozila koji će korigirati odstupanje i vozilu omogućiti predviđenu tj. očekivanu brzinu zakretanja. Moment oko vertikalne osi vozila ostvaruje se zadavanjem različitih pogonskih momenta na lijevim i desnim kotačima vozila.
2. O VOZILU I PRIMJENI RAZVIJENIH SUSTAVA

2.1. Primjena razvijenih sustava

Sustavi razvijeni i ispitani u sklopu ovog rada bit će implementirani u pravo trkaće vozilo. Radi se o formula student vozilu kojeg razvija studentska udruga HSA-SF tj. FSB Racing Team na Fakultetu strojarstva i brodogradnje. Vozilo će se utrkivati na brojim svjetskim Formula Student natjecanjima. Svrha tih natjecanja je osmišliti i izraditi trkaći jednosjed čija će se tehnička rješenja braniti pred sucima iz vrha autoindustrije. Performanse vozila bit će bodovane u raznim dinamičkim disciplinama poput testa ubrzanja, bočnog držanja, najbržeg kruga, i utrke izdržljivosti.

2.1.1. O FSB Racing Team-u

FSB Racing Team osnovan je 2004. godine i okuplja studente Sveučilišta u Zagrebu, primarno studente Fakulteta strojarstva i brodogradnje i Fakulteta elektrotehnike i računarstva ali i mnoge druge budući da je domena udruge također i ekonomija, marketing i novinarstvo.

2.1.2. O vozilu

Do sada je izrađeno pet bolida, a u izradi je novi bolid po prvi puta sa električnim pogonom za kojeg se razvijaju sustavi obrađeni u ovom radu. Po prvi puta se također koristi kompozitno podvozje od ugljičnih vlakana.

Slika 1. Električna formula
Tablica 1. Specifikacije bolida

<table>
<thead>
<tr>
<th>Specifikacija</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snaga</td>
<td>80 kW</td>
</tr>
<tr>
<td>Masa</td>
<td>215 kg</td>
</tr>
<tr>
<td>Moment na kotačima</td>
<td>2x 580Nm</td>
</tr>
<tr>
<td>Šasija</td>
<td>Monocoque – ugljična vlakna</td>
</tr>
<tr>
<td>Motori</td>
<td>2x zasebno upravljani sinkroni elektromotori sa permanentnim magnetima</td>
</tr>
<tr>
<td></td>
<td>- 7 kg</td>
</tr>
<tr>
<td></td>
<td>- 40 kW</td>
</tr>
<tr>
<td></td>
<td>- 14 000 rpm</td>
</tr>
<tr>
<td></td>
<td>- 45 Nm</td>
</tr>
<tr>
<td></td>
<td>- Vodeno hlađenje</td>
</tr>
<tr>
<td>Baterija</td>
<td>7.5 kWh</td>
</tr>
<tr>
<td></td>
<td>45 kg</td>
</tr>
<tr>
<td></td>
<td>Sony VTC6 ćelija</td>
</tr>
<tr>
<td></td>
<td>Hlađenje isparavanjem polimera</td>
</tr>
<tr>
<td>Reduktor</td>
<td>Jednobrzinski dvostepeni</td>
</tr>
</tbody>
</table>
3. TCS – Traction Control System

3.1. Model sustava

3.1.1. Osnovna dinamika

Za razvoj TCS-a dovoljan nam je model longitudinalne dinamike vozila.

![Model longitudinalne dinamike vozila.](image)

Na slici su prikazane sile koje djeluju na vozilo i dimenzije potrebne za osnovni proračun. Ovaj model predstavlja koncentriranu masu na definiranoj udaljenosti između prednje i stražnje osovine, te na definiranoj visini od tla. Pogon se nalazi samo na stražnjim kotačima.

Težina formule je:

\[F_g = m \cdot g \ [N] \]

\(F_g \) – težina formule [N]
\(m \) – masa formule [kg]
\(g \) – ubrzanje sile teže 9.81 [m/s\(^2\)]

Akceleracija formule proporcionalna je rezultantnoj sili koja na nju djeluje i obrnuto je proporcionalna masi:

\[a_x = \frac{F_{rx}}{m} \ [\frac{m}{s^2}] \]

\(a_x \) – ubrzanje vozila u x-osi [m/s\(^2\)]
\(F_{rx} \) – suma svih sile na vozilo u x-osi
Brzina formule je integral akceleracije u vremenu:

$$v_x = \int a_x \, dt \, \left[\frac{m}{s} \right]$$ \hspace{1cm} (3)

Prijeđeni put formule je integral brzine u vremenu:

$$s_x = \int v_x \, dt \, [m]$$ \hspace{1cm} (4)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{slika3.png}
\caption{Model osnovne longitudinalne dinamike vozila}
\end{figure}

3.1.2. Prijenos težine

Na svaku masu koja ubrzava djeluje prividna d'Alambertova sila u suprotnom smjeru od akceleracije sa hvatištem u težištu tijela [1]:

$$F_{ax} = m \cdot a_x \, [N]$$ \hspace{1cm} (5)

F_a – d’Alambertova sila \([N]\)

Tako se uslijed akceleracije, težina bolida pomiče ka stražnjoj osovini. Kako bi opisali ovu pojavu i izračunali vertikalne sile na pogonskim kotačima primijenit ćemo metodu sume momenata oko neke točke. Za izračun vertikalne sile stražnjih kotača računamo sumu momenata oko prednje kontaktne točke:

$$\sum M_p = 0$$ \hspace{1cm} (6)

$$mgb + a_x mh_g - (F_{z3} + F_{z4}) \cdot l = 0$$ \hspace{1cm} (7)

$$F_{z3} + F_{z4} = \frac{mgb + a_x mh_g}{l}$$ \hspace{1cm} (8)

$F_{z3}+F_{z4}$ – vertikalna sila stražnjih kotača \([N]\)

l – međuosovinski razmak \([m]\)

h_g – visina težišta formule \([m]\)

b,c – udaljenost od težišta do prednje tj. stražnje osovine \([m]\)
3.1.3. **Električni motor**

Kod sinkronog motora s permanentnim magnetima moment koji motor razvija jednak je struji koja protječe kroz faze motora pomnoženoj sa momentnom konstantom motora „K_m“ [2]:

$$M = I_{faz} * K_m \ [Nm]$$ (9)

- M – moment motora [Nm]
- I_{faz} – fazna struja motora [A]
- K_m – momentna konstanta elektromotora [Nm/A]

Induciran (generiran) napon u motoru uslijed vrtnje je:

$$EMS = \omega * K_e \ [V]$$ (10)

- EMS – generirani napon [V]
- K_e – konstanta elektromotorne sile [V/(rad/s)]
- ω – kutna brzina motora [rad/s]

Struja koja protječe motorom uzrokovana je razlikom između napona narinutog na faze motora i generiranog napona:

$$I_{faz} = \frac{U - EMS}{R_a} \ [A]$$ (11)

- I_{faz} – fazna struja [A]
- U – napon na motoru [V]
- R_a – otpor armature [Ω]
Izraz za moment motora tako glasi:

\[M = \frac{U - \omega * K_e}{R_a} * K_m \ [Nm] \] \hspace{1cm} (12)

Induktivitet elektromotora definira dinamiku prijelazne pojave struje, a ta prijelazna pojava može se opisati P1 članom gdje je vremenska konstanta:

\[T_a = \frac{L_a}{R_a} \ [s] \] \hspace{1cm} (13)

\[T_a \] – vremenska konstanta armature [s]

\[L_a \] – Induktivitet armature [H]

Izraz \(1/R_a\) zamijenit ćemo sa \(K_a\) [A/V] te je konačni model elektromotora:

Slika 5. Model elektromotora

3.1.4. Model gume

Za potrebe projektiranja TCS-a smatrat ćemo da ne postoji bočno klizanje i bočne sile budući da se fokusiramo na longitudinalnu dinamiku. Glavni ulazni podatak u model gume za izračun sila je uzdužno klizanje \(\kappa\):

\[\kappa = \frac{r \omega_k - v_x}{v_x} \] \hspace{1cm} (14)

\(v_x\) – longitudinalna brzina vozila [m/s]

\(r\) – radijus kotača [m]

\(\omega_k\) – kutna brzina kotača [rad/s]

Za izračun sila trenja iz uzdužnog klizanja i vertikalne sile koristit ćemo LuGre model [3]:

Fakultet strojarstva i brodogradnje 7
Kako se pri ubrzanju, zbog prijenosa težine, mijenja vertikalna sila F_z i kako postoji mogućnost nailaska na različite podloge (kiša, istrošen dio asfalta), model ćemo proširiti kako bi opisivao i te pojave.

Slika 7. Prošireni model gume
Gdje je $g(v_x,F_z)$:

![Diagram](image)

Slika 8. $g(v_x,F_z)$

Na slici 9. prikazana je ovisnost uzdužne sile trenja u ovisnosti o postotku klizanja za različite vertikalne sile.

![Graph](image)

Slika 9. Ovisnost sile trenja o postotku klizanja gume za razne vertikalne sile na kotač

Vidimo da je potencijal sile trenja najveći u području malih klizanja ~5%. Iako nam se može učiniti da nakon maksimuma sile trenja ne gubimo znatnu silu trenja sa povećanjem klizanja, ono što se događa je znatan gubitak moguće lateralne sile trenja što uzrokuje lateralnu nestabilnost vozila, vidjeti sliku 10. Stoga su koristi TCS-a i povećanje bočne stabilnosti vozila.
Budući da razmatrano vozilo ima precizno izračunati kapacitet baterije za završetak utrke radi smanjenja mase, još jedan od benefita smanjenja klizanja je smanjenje gubitaka u pogonu koji bi se morali nadoknaditi iz baterije.

3.2. **Projektiranje regulatora na razini pogonskih kotača**

U slučaju znatnog proklizavanja kotača (npr. primjena velikih momenta, ili skliska podloga) regulatorom broja okretaja zadržat ćemo broj okretaja pogonskih kotača samo nekoliko postotaka većim od brzine slobodno kotrljajućih kotača.

3.2.1. **Regulator struje/okretnog momenta**

Slika 11. Blokovski dijagram podređenog regulacijskog kruga struje armature s PI regulatorom i kompenzatorom utjecaja elektromotorne sile

K_{ch} – pojačanje pretvarača napona $2U_b/U_{cpu}$

T_{ch} – vremenska konstnta frekvencijskog pretvarača [s]

U_b – napon baterije [V]

U_{cpu} – radni napon mikrokontrolera [V]

m_L – moment tereta [Nm]

K_i – pojačanje senzora struje [V/A]

T_i – vremenska konstanta senzora struje [s]

Moment inercije kotača J zbroj je momenta inercije motora i momenta inercije kotača reduciranog na vratilo motora:

$$J = J_{motor} + J_{w\,\text{red}} \quad [kg \, m^2]$$ \hspace{1cm} (15)

J – regulirana inercija [kg m2]

J_{motor} – inercija rotora motora [kg m2]

$J_{w\,\text{red}}$ – inercija kotača reducirana na vratilo motora [kg m2]

$$J_{w\,\text{red}} = \frac{J_w}{i^2} \quad [kg \, m^2]$$ \hspace{1cm} (16)

J_w – inercija kotača [kg m2]

i – prijenosni omjer reduktora
„PI regulator se projektira uz pretpostavku da se elektromotorna sila (EMS) može smatrati vanjskim poremećajem (kojeg će kompenzirati kompenzator EMS-a ako se radi o brzim promjenama EMS ili samo PI regulator ako se radi o sporim promjenama“ [4]. Stoga u svrhu projektiranja regulatora možemo pojednostaviti regulacijski krug struje.

Slika 12. Blokovski dijagram regulacijskog kruga struje na kojem se zasniva sinteza PI regulatora struje

„Sinteza regulatora struje započinje podešavanjem vremenske konstante regulatora T_{ci}. Kako je vremenska konstanta armature T_a uobičajeno dominantna vremenska konstanta ($T_a >> T_h$, T_{ch}), odziv zatvorenog regulacijskog kruga struje može se značajno ubrzati ukoliko se nulom regulatora $(1 + T_{ci}s)$ pokrati dominantna dinamika (pol) objekta upravljanja $(1 + T_{as})$, odnosno ako se odabere $T_{ci} = T_a$. Nakon toga korištenjem optimuma dvostrukog odnosa (ODO) dobivamo pojačanje regulatora „K_{ci}“ i parametre za nadomjesni P1 član koji zamjenjuje cijeli zatvoren regulacijski krug struje. Postupak se zasniva na izjednačavanju karakterističnog polinoma prijenosne funkcije regulacijskog kruga s karakterističnim polinomom optimuma dvostrukog odnosa [4].

$$A(s) = D_nD_{n-1}^{2}...D_2^{n-1}T_e^n s^n + D_{n-1}^{2}D_{n-2}^{2}...D_2^{2}T_e^{n-2} s^{n-2} + ... + D_2^{2}T_e^{2} s^2 + T_e s + 1 \quad (17)$$

T_e – ekvivalentna vremenska konstanta (daje informaciju o brzini odziva)

D_i – karakteristični odnosi ($i=2,3...n$), koji određuju prigušenje sustava

Postavljanjem svih karakterističnih odnosa na optimalni iznos 0.5 postiže se kvazi-aperiodski odziv regulacijskog kruga sa 6% nadvišenja u odzivu. U svrhu pojednostavljenja sinteze parazitska dinamika regulacijskog kruga (naponski pretvarač T_{ch} i senzor struje T_i) može se apriskimirati PT₁ članom:
\[G_{par}(s) = \frac{K_{ch}}{1 + T_{ch}s} \frac{1}{1 + T_1s} = \frac{K_{ch}}{1 + (T_{ch} + T_1)s} = \frac{K_{ch}}{1 + T_{\Sigma_1}s} \] \hspace{1cm} (18)

\[T_{\Sigma_1} \text{ – parazitska vremenska konstnta regulacijskog kruga struje [s]} \]

Tako prijenosna funkcija regulacijskog kruga struje armature poprima slijedeći oblik:

\[G_{ci}(s) = \frac{i_s(s)}{i_{aR}(s)} = \frac{1}{1 + \frac{T_{ci}}{K_{ci}K_{ch}K_{a}}s^2} \]

\[G_{ei}(s) = \frac{1}{1 + T_{ei}s + D_{2i}T_{ei}^2s^2} \] \hspace{1cm} (19)

Odavde slijedi da je ekvivalentna vremenska konstanta zatvorenog regulacijskog kruga struje armature \(T_{ei} = T_{\Sigma_i}/D_{2i} \), što za \(D_2=0.5 \) iznosi \(T_{ei}=2T_{\Sigma_i} \). Nakon sredenja imamo izraz za optimalno pojačanje regulatora:

\[K_{ci} = \frac{T_{ci}}{T_{\Sigma_i}K_{ch}K_{a}} \rightarrow D_2 = 0.5 \rightarrow K_{ci} = \frac{T_{ci}}{T_{\Sigma_i}2K_{ch}K_{a}} \] \hspace{1cm} (20)

Nadomjesna vremenska konstanta parazitske dinamike:

\[T_{\Sigma_i} = T_i + T_{ch} \quad [s] \] \hspace{1cm} (21)

Integralna vremenska konstanta regulatora:

\[T_{ci} = T_{a} \quad [s] \] \hspace{1cm} (22)

Nadomjesna vremenska konstanta regulacijskog kruga struje:

\[T_{ei} = 2T_{\Sigma_i} = 2(T_i + T_{ch}) \quad [s] \] \hspace{1cm} (23)

Prikazat ćemo odziv sustava na skokovitu pobudu reference struje sa regulatorom izračunatih parametara:

\[\text{Slika 13. Odziv regulacijskog kruga struje na skokovitu pobudu} \]
Za test regulatora kotač nije bio u kontaktu s podlogom te stoga napon brzo raste jer prati brzi porast broja okretaja kotača. Odziv struje je zadovoljavajuće brz, stabilan i točan.

3.2.2. Regulator brzine vrtnje

Za potrebe sinteze regulacijskog kruga brzine vrtnje, regulacijski krug struje armature od referentne vrijednosti struje $i_{a,ref}$ do stvarne struje armature i_a opsat ćemo pojedostavljeno PT1 članom sa slijedećom prijenosnom funkcijom:

$$G_{ei(s)} = \frac{i_a(s)}{i_{aR}(s)} \approx \frac{1}{1 + T_{ei} s}$$

T_{ei} – nadomjesna vremenska konstanta regulatora struje [s]

Regulacijski krug brzine vrtnje sada možemo prikazati slijedećim blokovskim dijagramom:

![Slika 14. Blokovski dijagram regulacijskog kruga brzine vrtnje s P regulatorom](image)

Za ostvarivanje statičke točnosti s obzirom na skokovite promjene referentne vrijednosti brzine ω_{ref} bio bi dovoljan i P regulator (integriranje kutne akceleracije, uslijed momenta, u kutnu brzinu unosi integracijsko djelovanje u regulacijsku petlju). Međutim, kako bi se postigla stacionarna točnost regulacije brzine vrtnje u prisustvu skokovitih promjena momenata tereta m_L potrebno je dodati i I regulator. Kako bi se izbjegao efekt prenabijanja integratora u regulatoru čiji je izlaz limitiran (tipično na +/- dvostruku nazivnu struju), regulator također uključuje i reset-antiwindup intervenciju). Na slici 15 ova funkcionalnost je predstavljena samo simbolom limita radi lakše predodžbe ukupne funkcionalnosti.
Slika 15. Blokovski dijagram regulacijskog kruga brzine vrtnje s podređenim regulatorom struje

U svrhu pojednostavljenja sinteze PI regulatora brzine vrtnje parazitska dinamika regulacijskog kruga struje i vremena uzorkovanja aproksimira se slijedećim nadomjesnim članom:

$$ G_{par}(s) = \frac{1}{1 + T_{e\omega} s} \cdot \frac{1}{1 + T_u s} \approx \frac{1}{1 + (T_{e\omega} + T_u) s} = \frac{1}{1 + T_{\Sigma \omega} s} $$

(25)

$T_{\Sigma \omega}$ – parazitska vremenska konstanta regulacijskog kruga brzine vrtnje [s]

T_u – vrijeme uzorkovanja mikroprocesora [s]

Parametri PI regulatora brzine vrtnje određuju se primjenom kriterija optimuma dvostrukog odnosa na prijenosnu funkciju zatvorenog regulacijskog kruga brzine.

$$ G_{cw}(s) = \frac{\omega_m(s)}{\omega_R(s)} = \frac{1 + T_{cw} s}{1 + T_{cw} s + \frac{T_{cw}}{K_{cw} K_m} s^2 + \frac{T_{cw} T_u}{K_{cw}} T_{\Sigma \omega}} $$

(26)

Karakteristični polinom prijenosne funkcije zatvorenog regulacijskog kruga brzine vrtnje izjednačava se s karakterističnim polinomom optimuma dvostrukog odnosa:

$$ A_{odo}(s) = 1 + T_{e\omega} s + D_{2\omega} T_{e\omega}^3 s^2 + D_{3\omega} D_{2\omega} T_{e\omega} T_{\Sigma \omega} s^3 $$

(27)

Odavde se izravno dobije da je ekvivalentna vremenska konstanta zatvorenog kruga jednaka integraloj vremenskoj konstanti PI regulatora:

$$ T_{e\omega} = T_{cw} $$

(28)

Rješavanjem sustava jednadžbi:

$$ \frac{D_{3\omega} D_{2\omega}^2 T_{e\omega}^3}{D_{2\omega} T_{e\omega}^2} = D_{3\omega} D_{2\omega} T_{e\omega} = T_{\Sigma \omega} $$

$$ T_{cw} = T_{e\omega} = \frac{T_{\Sigma \omega}}{D_{3\omega} D_{2\omega}} $$

$$ \frac{D_{2\omega} T_{e\omega}^2}{T_{e\omega}} = D_{2\omega} T_{e\omega} = \frac{J}{K_{cw} K_m} $$

$$ K_{cw} = \frac{J}{D_{2\omega} T_{e\omega} K_m} = \frac{D_{3\omega} T_{e\omega}}{T_{\Sigma \omega} K_m} $$

(29)

(30)

Za $D_{2\omega} = D_{3\omega} = 0.5$
\[T_{c \omega} = T_{e \omega} = 4T_{E \omega} \ [s] \]
\[K_{c \omega} = \frac{J}{2T_{E \omega}K_m} \ [Nm/(rad/s)] \]

Prijenosna funkcija zatvorenog kruga je:

\[G_{c \omega} = \frac{w_m(s)}{w_R(s)} = \frac{1 + T_{e \omega}s}{1 + T_{e \omega}s + D_2 T_{e \omega}^2 s^2 + D_3 T_{e \omega}^3 s^3} \]

Kako bi poništili derivirajuće djelovanje nule u prijenosnoj funkciji zatvorenog kruga (\(T_{e \omega}s \) u brojniku) na referencu ćemo dodati prefiltar sa vremenskom konstantom \(T_f = T_{c \omega} \) koji će "smiriti" sustav pri skokovima reference, ali neće umanjiti performanse uklanjanja poremećaja.

Slika 16. Regulator broja okretaja s prefiltrom

Za parametre realne formule dobivamo \(K_{c \omega} = 3.66 \) i \(T_{c \omega} = 0.0125 \), te odziv regulatora na skokovitu pobudu i poremećaj skokovitog momenta tereta izgleda kako je dano na slici 17.:
Možemo uočiti poprilično brz odziv sa samo 2-3% prebačaja (prebačaj je puno veći bez prefiltra) i dobro prigušeno ponašanje zatvorenog regulacijskog kruga brzine vrtnje. Vidimo i brzu korekciju broja okretaja pri pojavu poremećaja tj. momenta tereta u 0.4 s.

4. Torque Vectoring

4.1. Model sustava

Za potrebe simulacije rada TCS-a bio je dovoljan samo model longitudinalne dinamike vozila, no za Torque Vectoring (skraćeno TV) potreban je dvotračni model vozila kako bi se dovoljno dobro opisale sile na kotačima koje zakreću vozilo. Za to je potrebno je uzeti u obzir lateralni transfer težine, i izračunati kuteve klizanja svakog kotača.
Za početak ćemo izračunati statičke sile na kotačima te promjenu tih sila uslijed longitudinalnog tj. lateralnog ubrzanja te izraziti rezultantu F_z za svaki kotač:

\[F_{z1\,stat}, F_{z2\,stat} = \frac{mg}{l} \times c \quad [N] \] (34)

\[F_{z3\,stat}, F_{z4\,stat} = \frac{mg}{l} \times b \quad [N] \] (35)

$F_{z1\,stat} = \text{vertikalna sila kotača za statični slučaj} \ [N]$

\[F_{z1\,long}, F_{z2\,long} = -\frac{a_{xv}mh_g}{l} \quad [N] \] (36)

\[F_{z3\,long}, F_{z4\,long} = \frac{a_{xv}mh_g}{l} \quad [N] \] (37)

$F_{z1\,long} = \text{promjena sile uslijed longitudinalne akceleracije} \ [N]$

a_{xv} – longitudinalna akceleracija vozila $[m/s^2]$

\[F_{z1\,lat}, F_{z3\,lat} = -\frac{a_{yv}mh_g}{t} \quad [N] \] (38)
Horizontalne sile koje se javljaju između vozila i podloge opisujemo modelom gume. Ulazi u model gume su: vertikalna sila F_{zi}, kut klizanja α i uzdužno klizanje κ. Pri pogonu uzdužno klizanje javljat će se samo na pogonskim kotačima tj. stražnjima. Uz pretpostavku da TCS ispunjava svoju ulogu, pri ubrzanju umjesto momenta na kotačima možemo definirati uzdužno klizanje koje će tako definirati uzdužnu silu koja ubrzava vozilo kako bi pojednostavili model. Stoga nam preostaje definirati kuteve klizanje kako bi imali sve ulaze u model gume. Model gume definiran je pomoću [5].

Slika 19. Pacejka model gume

F_{xw} – sila na kotač u smjeru osi x kotača [N]

F_{yw} – sila na kotač u smjeru osi y kotača [N]

Prikazat ćemo iznose sila za različite iznose kuteva klizanja pri različitim iznosima uzdužnih klizanja za dva iznosa vertikalne sile: $F_z = \frac{1}{4}G$ i 5% povećanja F_z.

$$F_{z2\ latex}, F_{z4\ latex} = \frac{a_{yv} mh_g}{t} \quad [N]$$

(39)

$$F_{zi} = F_{zi\ stat} + F_{zi\ long} + F_{zi\ lat} \quad [N]$$

(40)

$F_{zi \ latex}$ – promjena sile uslijed lateralne akceleracije [N]

a_{yv} – lateralna akceleracija vozila [m/s2]

F_{zi} – vertikalna sila kotača i [N]
Kuteve klizanja za svaki kotač definiramo kao kut između vektora brzine vozila u toj točki i kuta zakreta kotača.

\[\alpha_i = \delta_i - \beta_i \] \hspace{1cm} (41)

\(\alpha_i \) – kut klizanja kotača i \(\delta_i \) – kut zakreta kotača i \(\beta \) – kut između brzine vozila u kontaktnoj površini i uzdužne osi vozila [rad]

Stražnji kotači se ne zakreću te su stoga \(\delta_3 = \delta_4 = 0 \).
Iz zadane geometrije možemo izvesti:

\[l \cdot \cot(\delta_2) - l \cdot \cot(\delta_1) = t \] \hspace{1cm} (42)

\(t \)-trag kotača [m]

Možemo definirati kut skretanja za središnji virtualni kotač \(\delta_v \) koji će služiti kao upravljačka veličina iz kojeg ćemo definirati kut pojedinog kotača.

Možemo definirati kut skretanja za središnji virtualni kotač \(\delta_v \) koji će služiti kao upravljačka veličina iz kojeg ćemo definirati kut pojedinog kotača.

\[l \cdot \cot(\delta_v) - l \cdot \cot(\delta_1) = \frac{t}{2} \] \hspace{1cm} (43)

\[l \cdot \cot(\delta_2) - l \cdot \cot(\delta_v) = \frac{t}{2} \] \hspace{1cm} (44)

\(\delta_v \) – kut imaginarnog središnjeg kotača [rad]

Iz čega slijedi:

\[\delta_1 = \arctan\left(\frac{1}{\tan(\delta_v) - \frac{t}{2l}}\right) \text{ [rad]} \] \hspace{1cm} (45)

\[\delta_2 = \arctan\left(\frac{1}{\tan(\delta_v) + \frac{t}{2l}}\right) \text{ [rad]} \] \hspace{1cm} (46)

Preostaje nam odrediti kuteve \(\beta_i \):

Slika 22. Upravljački kut skretanja

\[l \cdot \cot(\delta_v) - l \cdot \cot(\delta_1) = \frac{t}{2} \] \hspace{1cm} (43)

\[l \cdot \cot(\delta_2) - l \cdot \cot(\delta_v) = \frac{t}{2} \] \hspace{1cm} (44)

\(\delta_v \) – kut imaginarnog središnjeg kotača [rad]

Iz čega slijedi:

\[\delta_1 = \arctan\left(\frac{1}{\tan(\delta_v) - \frac{t}{2l}}\right) \text{ [rad]} \] \hspace{1cm} (45)

\[\delta_2 = \arctan\left(\frac{1}{\tan(\delta_v) + \frac{t}{2l}}\right) \text{ [rad]} \] \hspace{1cm} (46)

Preostaje nam odrediti kuteve \(\beta_i \):
\[\beta_i = \arctan \left(\frac{V_{xvi}}{V_{yvi}} \right) \text{ [rad]} \] (47)

\[V_{xvi} = V_{xv} + \psi' \frac{t}{2} (-1)^i \quad i = 1, 2, 3, 4 \left[\frac{m}{s} \right] \] (48)

\[V_{yvi1}, V_{yvi2} = V_{yv} + \psi' \times b \left[\frac{m}{s} \right] \] (49)

\[V_{yvi3}, V_{yvi4} = V_{yv} - \psi' \times c \left[\frac{m}{s} \right] \] (50)

\(\psi' \) – brzina zakreta vozila [rad/s]

Jedine nepoznanice sada su horizontalne brzine vozila i brzina zakreta vozila:

\[v_{xv} = \int a_{xv} \, dt \left[\frac{m}{s} \right] \] (51)

\[v_{yv} = \int a_{yv} \, dt \left[\frac{m}{s} \right] \] (52)

\[\psi' = \int \psi'' \, dt \left[\frac{rad}{s} \right] \] (53)

\(\psi'' \) – kutna akceleracija vozila [rad/s²]

Akceleracije i kutna akceleracija su:

\[a_{xv} = \frac{\Sigma F_{xv}}{m} + a_c \sin(\beta) \left[\frac{m}{s^2} \right] \] (54)

\[a_{yv} = \frac{\Sigma F_{yv}}{m} - a_c \cos(\beta) \left[\frac{m}{s^2} \right] \] (55)

\[\psi'' = \frac{M_{zp}}{I_{zz}} \left[\frac{rad}{s^2} \right] \] (56)

\(a_c \) – centripetalna akceleracija vozila [m/s²]

\(M_{zp} \) – Moment vozila oko Z-osi uslijed pasivne dinamike vozila [Nm]

\(I_{zz} \) – Moment inercije vozila oko Z-osi [kg m²]
\[
M_z = - \left(F_{x1} \frac{t}{2} + F_{x3} \frac{t}{2} + F_{y3} c + F_{y4} c \right) + F_{x2} \frac{t}{2} + F_{x4} \frac{t}{2} + F_{y1} b + F_{y2} b \quad [\text{Nm}]
\]

(57)

\(F_{xi}\) – sila na kotač i u smjeru x-osi vozila \([N]\)

\(F_{yi}\) – sila na kotač i u smjeru y-osi vozila \([N]\)

Radijus zakretanja je:

\[
R = \frac{V_v}{(\beta + \psi)'} \quad [m]
\]

(58)

\(R\) - radijus zakretanja vozila \([m]\)

\(V_v\) – brzina vozila \(\sqrt{V_{xv}^2 + V_{yv}^2} \quad [\text{m/s}]\)

Te je centripetalna akceleracija:

\[
a_c = \frac{V_v^2}{R} \quad \left[\frac{m}{s^2}\right]
\]

(59)

2D transformacija sila kotača iz koordinatnog sustava kotača u koordinatni sustav vozila:

\[
\begin{bmatrix}
F_{xi} \\
F_{yi}
\end{bmatrix} = \begin{bmatrix}
\cos(\delta_i) & -\sin(\delta_i) \\
\sin(\delta_i) & \cos(\delta_i)
\end{bmatrix} \begin{bmatrix}
F_{xwi} \\
F_{ywi}
\end{bmatrix} \quad [N]
\]

(60)

Pokazat ćemo pasivnu dinamiku vozila u scenariju gdje vozač prolazi kroz kratki oštri zavoj te pritišče „gas“ u trenutku prolaska kroz zavoj u trenutku \(t_{gas} = 2.00\) s.

Slika 23. Trajektorija pasivnog ponašanja vozila
Vidimo da se ubrzo nakon primjene momenta odnosno pritiskanja papučice „gasa“ kod vozila javlja značajno preupravljanje (oversteer), tj. prekomjerno zanošenje/zakretanje vozila. Ovakvo ponašanje je nestabilno te ga je teško kontrolirati, a također rezultira i sporijim prolaskom kroz zavoj.

Slika 24. Horizontalne sile svakog kotača

Slika 25. Kut skretanja β i brzina zakreta vozila
Negativni kut β u lijevom zavoju ukazuje na preupravljanje (eng. oversteer) vozila, što je vidljivo i prikazanoj trajektoriji. Vozač ispravlja ponašanje vozila kratkim i naglim okretanjem volana u suprotnom smjeru.
Uočeno je da male razlike u vremenu reagiranja preko kuta zakreta uvelike utječu na ishod prolaska zavoja, točnije na okretanje/izljetanje. Brzine reagiranja su na rubu ljudskog vremena reagiranja.

4.2. Projektiranje regulatora

Kako smo ranije spomenuli TV određuje željenu brzinu zakreta vozila, uspoređuje ju sa stvarnom, te na tu razliku reagira momentom oko Z-osi vozila.

Kako bi mogli odrediti vrstu i pojačanja regulatora, vozilo ćemo reprezentirati inercijom na koje djeluju dva momenta oko Z-osi. Jedan je aktivni moment koji je izlaz iz regulatora i pasivni kojeg uzrokuju sile guma kojeg ćemo smatrati poremećajem. Odstupanje, tj. poremećaj na koji reagiramo će se javljati tak kada se vozilo ne ponaša kako smo predvidjeli, odnosno ne slijedi referentnu trajektoriju brzine skretanja.
Ranije smo za regulator brzine utvrdili da je dovoljan P regulator, ali smo dodali i I za stacionarnu točnost. Ponašanje P regulatora je predvidivo sa stajališta vozača i neovisno o vremenu, dok bi I djelovanje moglo uzrokovati neželjenu dinamiku i nepredvidivo/neponovljivo ponašanje vozila što je vozačima strogo nepoželjno. Stoga ćemo zadržati samo P djelovanje. U svrhu pojednostavljenja sinteze regulatora brzine zakreta parazitska dinamika regulacijskog kruga momenta i vremena uzorkovanja aproksimira se slijedećim nadomjesnim članom:

\[G_{par}(s) = \frac{1}{1 + T_{ei}s} \cdot \frac{1}{1 + T_u s} \approx \frac{1}{1 + (T_{ei} + T_u)s} = \frac{1}{1 + T_{\Sigma yaw}s} \]

\(T_{\Sigma yaw} \) – parazitska vremenska konstanta regulacijskog kruga brzine zakreta [s]

Prijenosna funkcija zatvorenog regulacijskog kruga tada je:

\[G_{yaw}(s) = \frac{\omega_m}{\omega_R} = \frac{1}{1 + \frac{I_{zz}}{K_{yaw}}s + \frac{T_{\Sigma yaw}I_{zz}}{P}s^2} \]

Izjednačavanjem karakterističnog polinoma s karakterističnim polinomom optimuma dvostrukog odnosa:

\[A_{odo}(s) = 1 + T_{eyaw}s + D_{2yaw}T_{eyaw}^2s^2 \]

Dobivamo sustav jednadžbi:

\[T_{eyaw} = \frac{I_{zz}}{K_{yaw}} \]

\[D_2T_{eyaw} = \frac{T_{\Sigma yaw}I_{zz}}{K_{yaw}} \]

Sređivanjem i uvrštavanjem \(D_2 = 0.5 \) dobivamo pojačanje regulatora:

\[K_{yaw} = \frac{0.5}{T_{\Sigma yaw}I_{zz}} \]

Za realnu formulu \(K_{yaw} = 45 \cdot I_{zz _formula} \), a za maketu je \(K_{yaw _maketa} = 33 \cdot I_{zz _maketa} \).
5. Rezultati simulacija

Prikazat ćemo ubrzanje formule sa i bez TCS-a

\[
\begin{align*}
\text{TCS} &= \text{isključen} \\
T_\text{80km/h} &= 5.2678 \text{ [s]} \\
TCS &= \text{uključen} \\
T_\text{80km/h} &= 2.7715 \text{ [s]}
\end{align*}
\]

Slika 29. Ubrzanje sa i bez TCS-a

Kako se natjecanja organiziraju na raznim lokacijama često staze nisu zasebne odvojene površine asfalta već prelaze preko raznih površina kao što su parking, prijelaz preko ceste, mini rampe između različitih visina staze. Takve prijelaze predstavit ćemo naglom promjenom kvalitete podloge, tj. trenja i provjeriti ponašanje sustava u takvim uvjetima.
Slika 30. Robustnost pri nailasku na lošiju podlogu

Vidimo da TCS regulator naglo reagira na promjenu karakteristike podloge u 2. sekundi kako bi klizanje imalo minimalno i što kraće odstupanje od zadanih 5%. Reagira sa naglim smanjenjem momenta kotača, a kada se karakteristika podloge ponovno promjeni u 4. sekundi reagira jednako dobro, ovaj put sa naglim povećanjem momenta.

Pokazat ćemo pasivnu dinamiku vozila u istom scenariju kao i prije gdje vozač prolazi kroz oštri zavoj te pritišće „gas“ za vrijeme prolaska zavoja, ali ovaj put sa TV-om uključenim. Ponašanje ćemo usporediti sa ponašanjem bez TV-a tako preklopimo trajektorije i orijentacije vozila za oba slučaja, sa i bez TV-a.
Možemo vidjeti da vozilo prolazi zavoj kontrolirano i bez preupravljanja ili podupravljanja. Također vidimo da vozilo sa TV-om zauzima manje bočnog prostora, i ima predvidljivije bočno ponašanje što omogućuje vozaču da bolje iskoristi punu širinu staze pri prolasku kroz zavoj. Također vozač nije morao vršiti korekcije zakretom volana.

Prikazat ćemo i dinamiku zakretanja vozila i djelovanje momenta oko Z-osi.
Slika 33. Brzine zakreta i aktivni Mz

Slika 34. Horizontalne sile svakog kotača

Prema simulacijama vidimo značajno poboljšanje dinamike vozila sa razvijenim sustavima te ćemo u svrhu realnijih testova i boljeg razumijevanja konstruirati umanjenu maketu vozila sa svim funkcionalnim sustavima koji su bitni za testiranje prethodno opisanih sustava.
6. Izrada makete

Slika 35. CAD model makete i izrađena maketa

6.1. Kupovne komponente

Mikrokontroler

Inicijalno je odabran je Texas Instruments Launchpad C2000 228379D zbog mogućnosti programiranja iz Matlab Simulinka, CAN linije i jakog procesora [6]. Ideja je bila razviti upravljački kod na maketi te približno isti takav koristiti na bolidu.

Specifikacije:
- dvojezgreni 32-bitni procesor 200 MHz
- 1024 KB Flash memorije
- 204 KB RAM memorije
- 24x 16-bit analogni ulaz
- 24x PWM izlaz
- komunikacije: CAN, SPI, UART, I2C
Unatoč brojnim poteškoćama pri početnom programiranju i lošoj on-line podršci mikrokontroler je uspješno programiran. No ubrzo se sa rastom kompleksnosti programa mikrokontroler pokazao nerobusnim na male izmjene u kodu. Rješavanje sve češćih problema postalo je dugotrajno, uz već nestabilnu UART komunikaciju prema računalu tijekom spremanja podataka za vrijeme rada, i ne funkcionalnu I2C komunikaciju sa senzorom zakreta. Zbog navedenih problema odabran je dobro poznat i pouzdan mikrokontroler sa obilnom i dostupnom on-line podrškom: Arduino Nano.

Specifikacije [7]:
- ATmega328 Procesor
-16 MHz
-32 KB Flash memorije
-2 KB RAM
-1KB EEPROM
-8x 12-bit ulaz
-14x digitalni ulaz/izlaz (6 pwm)
-2x interupt
-komunikacije: I2C, UART, SPI
Motori

Motori su klasični DC motori sa ugrađenim planetarnim reduktorom i enkoderom. Nominalni napon motora je 12V. Reduktor ima prijenosni omjer 4,4 : 1. Enkoder je izveden pomoću magneta na vratilu motora i Hallovog senzora koji daje 58,6 impulsa pri jednom okretaju izlaznog vratila. Nazivni moment na izlaznom vratilu je 0,16 Nm. Definirana je struja kratkog spoja 5.6A

![DC motor s enkoderom](image_url1)

Slika 38. DC motor s enkoderom

PWM modul

12V PWM modul je izveden pomoću L298N dvostrukog integriranog H-mosta, što omogućuje spajanje dva DC motora na jedan modul. Maksimalni radni napon je 35 V, a nazivna struja je 4A kontinuirano.

![L298N PWM Modul](image_url2)

Slika 39. L298N PWM Modul

Senzor struje

Modul senzora izveden je pomoću ACS712 integriranog kruga za mjerenje struje zasnovanom na Hallovom efektu. Osjetljivost je 185 mV/A. Senzor će biti korišten za informaciju o momentu motora.

![Senzor struje](image_url3)

Slika 40. Senzor struje
Optički enkoder

Služi za mjerenje brzine kotača, a sastoji se od optičkih vrata koja detektiraju prisutnost objekta između izvora svjetlosti i optičkog senzora, odnosno prekid svjetlosne zrake, i diska sa radijalnim prorezima koji se montira na kotač. Radijalni prorezi, ovisno o kutu zakreta diska prekida ili ne prekida zraku svjetlosti te tako na izlazu senzora, uslijed kontinuirane vrtnje kotača, dobivamo pravokutni signal frekvencije proporcionalne brzini vrtnje kotača.

![Slika 41. Optički enkoder](image1.png)

Baterija

Korištene su Litij-ionske Sony VTC6 ćelije. Nazivni napon ćelije je 3.6V ima kapacitet 3000 mAh, i maksimalnu kontinuiranu struju 15A. Baterijski paket sastoji se od četiri ovakve ćelije spojene u seriiju što daje radni napon u rasponu od 11,2 do 16,8V.

![Slika 42. Li-ion ćelija Sony VTC6](image2.png)

Battery Management System

BMS je električki sklop kojem je uloga spriječiti kratki spoj baterije, prepunjavanje ćelija, preveliko ispražnjivanje, te balansirati napone ćelija. Maksimalna struja je 20A.
Servo motor za skretanje

Za zakretanje kotača odabran je klasični modelarski servo motor. Napaja se sa 5V i može ostvariti ~1Nm momenta. Kut zakretaka zadaje se duljinom impulsa raspona 1-2ms svakih 20ms što odgovara kutevima 0-90° [8]

Slika 44. RC servo motor

5V napajanja

Za napajanje logičke elektronike korišten je LM7805 integriran na pločici H-mosta L298N zbog relativno niskih struja. Za potrebe servo motora koji potrebno je jače napajanje napona 5V te je stoga korišten DC-DC step-down modul LM2595 koji ujedno odvaja napajanje logičke elektronike od servomotora i smanjuje utjecaj šuma kojeg stvara rad snažnog servo motora

Slika 45. LM2595
Daljinsko upravljanje

Slika 46. NRF24L01

Senzor brzine zakreta

Za senzor brzine zakreta vozila korišten je jednostavni i vrlo popularni modul MPU-6050.

Slika 47. MPU-6050

6.2. Izrađene komponente

Osnovne dimenzije kao što su međuosovinski razmak i trag kotača skalirane su naspram realnog vozila. Modeli su izrađeni pomoću CAD programa Solidworks.

Podvozje

Slika 48. CAD podvozja
Na podvozju su konstruirani prihvati za većinu komponenata kao što su, nosači motora, servo motor, prednji ovjes i baterija. Debljina podvozja je 5mm i printana je sa 50% ispune iz materijala PLA.

Slika 49. Podvozje

Skretanje

Sa konstrukcijskog stajališta skretanje je jedno od najkompleksnijih sustava ove makete. Kopleksnosti pridnose zahtjevi na nosač kotača tj *Upright*, a to su:

- nošenje kotača koji se slobodno vrti oko svoje osi simetrije
- zakretanje oko Z osi koja prolazi kroz centar kotača
- pomak po Z osi
- prihvat enkodera
- Ackermanovo skretanje
- ostaviti dovoljno prostora za disk enkodera

Slika 50. CAD prednjeg ovjesa (sakriven lijevi kotač)

Ackermanovo skretanje, ukratko, nalaže da je pri skretanju unutarnji kotač zakrenut više od vanjskoga. Pri skretanju vozilo se zakreće oko neke točke u ravnini vozila. Za ravnomjernu raspodjelu sila po kotačima ta točka predstavlja sjecište osi svih kotača kao što je prikazano na...
slici niže. Ostvaruje se tako da, kada su kotači izravnati, pravci koji prolaze kroz osi zakreta svakog kotača i kroz zglob letve za skretanje sijeku u polovištu stražnje osovine [9].

Slika 51. Zakreti kotača - Ackermanovo skretanje

Baterija

Baterija je sastavljena od četiri Sony VTC6 ćelije spojene u seriju točkastim zavarivanjem. Napon baterijskog paketa je tako 16,8 V za puno tj 12V za prazne ćelije.

Slika 52. Baterija

Disk enkodera

Originalni disk enkodera ima vrlo uske proreze na malom rasponu radijusa što dovodi do puno loših očitanja prilikom vibracija i zračnosti sklopa. Također je nepraktičan za montažu. Izrađen je novi disk koji ima manji, ali i dalje dovoljan, broj proreza, a koji daju pouzdaniji signal. Disk sa užim prorezima ima pouzdaniji signal.

Slika 53. Stari i nove verzije diska enkodera
Pomoću osciloskopa vidljivo je da stari enkoder ima isprekidani signal, dok kod novoga nema niti jednog prekida u signalu.

6.3. Električna shema

Na slici niže prikazana je električna shema vozila. Shema je pojednostavljena u svrhu lakšeg razumijevanja ali su prikazani svi ključni dijelovi. Iz sheme su izostavljene komponente koje nisu ključne za razumijevanje funkcionalnosti, kao što su: prekidači kojima se uključuju i isključuju TCS i TV, potenciometar za fino podešavanje nekog proizvoljnog parametra i konektor punjača.
Slika 55. Električna shema
Prikazat će se ključni dijelovi upravljačkog algoritma. Iako je program pisan u razvojnog sučelju za Arduino mikrokontrolere, radi lakšeg razumijevanja njegova funkcionalnost bit će pilustrirana pomoću blokovskih dijagrama.

Zbog znatnog šuma senzora struje regulacija momenta na elektromotorima odrađena je preko poznatih odnosa napona motora, brzine vrtnje i momenta.
Slika 57. Značajan šum senzora struje (0-100% struje)

Iz (12) zaključujemo da ukoliko znamo napon motora i njegovu brzinu vrtnje možemo odrediti moment. Budući da napon motora sami zadajemo, a signal brzine vrtnje je puno manje zašumljen nego signal struje zaključujemo da je ovo kvalitetnija metoda određivanja momenta. Ukoliko konstante za otpor motora i moment zamijenimo jednom nepoznanicom, moment motora je (uz pretpostavku zanemarive dinamike struje armature, vidi poglavlje 3):

\[M = (U - \omega \cdot K_e) \cdot K_m' \quad [Nm] \quad (67) \]

\(K_m' \) – zamjenska momentna konstanta \(K_m' = K_m/R_a \)

Ovu jednu konstantu lako određujemo mjerenjem sile koju motor proizvodi za neku razliku između narinutog i generiranog napona. Određivanje generiranog napona tj. konstante \(K_e \) lako je izvedivo mjerenjem ostvarenih broja okretaja za neki napon na motoru kada on nije opterećen. Stoga je za ostvarivanje momenta \(M \) potrebno na motoru zadati napon:

\[U = \omega \cdot K_e + \frac{1}{K_m'} \cdot M \quad (68) \]

Regulatori za TCS su projektirani u situaciji gdje se konstantno zadaje referenca brzine stražnjih kotača kako bi se ostvarilo maksimalno ubrzanje. Za normalnu svakidašnju primjenu ovo nije način rada TCS-a, već se na kotače zadaje moment koji određuje vozač, a koji se umanjuje u slučaju prevelikog klizanja. Kako bi ostvarili realnu funkcionalnost sustava i zadržali izračunata pojačanja strukturu regulatora smo izmijenili na slijedeće.
Slika 58. Struktura PI regulatora TCS-a na mikrokontroleru

Na ovaj način, kada nema znatnog klizanja korisnikov zahtjev za moment se neometano prosljeđuje kotačima. Ukoliko se brzina stražnjih kotača poveća iznad npr. 10% prednjih PI regulator izračunava moment kojim će umanjiti korisnikov zahtjev.

Ako u prijašnje izračune za Traction control uvrstimo parametre umanjene makete dobivamo $K_{cu}=0.000339$ i $T_{cu}=0.0643$. Pojačanja na mikrokontroleru izvedena su u drugoj strukturi i drugim jedinicama te ih konvertiramo u $K_p=0.0011$ i $K_i=0.0245$. Parametri regulatora su dodatno fino podešeni. K_i vrijednost je zadovoljavajuća, no K_p je pojačan na $K_p=0.002$. Kako točnost parametara direktno ovisi o točnosti parametara opisanog sustava očekivano je odstupanje iz više razloga. Za kupovne komponente poput motora i kotača informacija o inerciji nije deklarirana budući da su komponente hobi razine gdje te informacije nisu bitne. Stoga su inercije određene iz poznatih ili pretpostavljenih dimenzija i gustoća. Također odstupanja postoje i u mjerenom momentu kotača. Za realnu formulu sve ove veličine su precizno određene. Dobiven je odziv prikazan na slici 59:
Slika 59. Odziv TCS-a na maketi

Vidimo da regulator solidno održava brzinu kotača i kompenzira moment tereta koji se pojavljuje nakon prijelazne pojave, no sama prijelazna pojava ima popriličan prebačaj. Razlog je taj što nije dodan prefiltar na referencu te se pojavljuje ranije spomenuti znatni prebačaj. Dodavanjem prefiltara koji bi smanjio prebačaj znatno se produžuje vrijeme uzorkovanja sa 12 ms na 20–30 ms zbog brojnih prebacivanja unutar memorije mikroprocesora i brojnih operacija dijeljenja. Ovakvo usporenje mikroprocesora jednako šteti koliko i sam prefiltar doprinosi prijelaznoj pojavi, a kompenziranje poremećaja lošije. Stoga je odlučeno ne koristiti prefiltar jer promjene...

Budući da je korisnikov zahtjev poznata informacija, pa tako i njene promjene, poželjno ih je uzeti u obzir u regulatoru kako se ona ne bi morala kompenzirati kao nepoznanica. Ovakav način rada zove se Feedforward.

Slika 60. Zahtijevani moment kao poremećaj
Možemo uočiti da pri promjenama zahtjeva (dok smo u području rada TCS-a) ne dolazi do promjena u brzini kotača, a moment TCS-a, kao i izlazni moment na kotač, je stabilan bez oscilacija. *Feedforward* bi se mogao napraviti i za neke ostale poznate promjene, kao npr. transfer težine, čime bi se dodatno poboljšala regulacija.
7. Rezultati eksperimentalnih mjerenja

Ubrzanje bez TCS-a:

Vidimo da je brzina stražnjih kotača znatno veća od prednjih. Prosječno vrijeme ubrzanja 0-2.5 m/s je 0.74 s. Uz to, od početka ubrzanja vidimo povećanje brzine zakreta vozila, na koje vozač mora reagirati zakretanjem volana u drugu stranu. Uzrok je, kako je ranije objašnjeno, smanjeno bočno trenje gume kada su uzdužna klizanja velika. Također brzine lijevog i desnog kotača se razlikuju što dodatno pogoršava situaciju. Razlog tome je što motori nemaju identične karakteristike iako bi trebali biti identični. Ovakvo lateralno ponašanje vozila nikako nije poželjno u zavoju jer uzrokuje instantno okretanje/izlijetanje ukoliko za volanom nije iskusni vozač koji dobro poznaje vozilo i može kompenzirati ovakve pojave.
Uočeno je da se sa povećanjem dopuštenog klizanja sa 10 na 30% vremena ubrzanja poboljšavaju. Prosječno vrijeme ubrzanja 0-2.5 m/s je 0.79 s. Dakle nešto lošije nego bez TCS-a. Pretpostavka je da guma na maketi u dodiru s podlogom od kućnog laminata nema istu karakteristiku kao i automobiljska guma u dodiru sa asfaltom budući vidimo da se brzina održava na željenoj, a ubrzanje je lošije nego kada klizanje puno veće.

Iako sustav u načelu funkcionira, brzina stražnjih kotača ima popriličan šum i odstupanja. Prvi razlog je inherentni šum enkodera stražnjih kotača. Stražnji enkoder nije disk sa prorezima za optički senzor već je disk magnetni kojem se prisustvo polova očitava hallovim senzorom. Pretpostavka je da ti polovi nisu precizni kao prorezni na optičkom enkoderu, što se da zaključiti

Prolazak zavoja bez TV-a:

Slika 65. Prolazak makete kroz zavoj TV=off
Možemo uočiti znatno odstupanje referentne i stvarne brzine zakreta vozila, što u ovom slučaju ukazuje na znatno preupravljanje.

Slika 66. Snimka prolaza zavoja TV=off

Slika 67. Prolazak makete kroz zavoj TV=on
Kada je TV uključen možemo uočiti bolje ostvarivanje referentne brzine zakretanja vozila, pa tako i stabilnost vozila tokom prolaska kroz zavoj. Vidimo da se znatni moment oko Z-osi pojavljuje tek pri prelaznim pojavama. Također vidimo da je brzina zakretanja poprilično kostantna i stabilna dok se zakret kotača ne mijenja što je poželjno.

Slika 68. Snimka prolaza zavoja TV=on

Kao i na grafovima, ovdje uočavamo da sa TV-om uključenim nema prekomjernog zanošenja vozila pri kraju zavoja te zaključujemo da svi sustavi rade kako je predviđeno i omogućuju predvidivo i stabilno ponašanje vozila.
8. ZAKLJUČAK

U radu je predstavljen dizajn sustava upravljanja uzdužnom dinamikom vozila i dinamikom skretanja koji se u prvom slučaju sastoje od sustava kontrole vuče (engl. Traction Control System, TCS), odnosno u potonjem sustava razdiobe okretnih momenata na kotačima (engl. Torque Vectoring, TV). Za potrebe ispitivanja navedenih sustava provedeno je detaljno matematičko modeliranje na temelju kojeg su izrađeni simulacijski modeli dinamike vozila. Nadalje, za potrebe eksperimentalnog ispitivanja funkcionalnosti navedenih sustava izrađeno je umanjeno daljinski upravljano eksperimentalno vozilo. Na njemu su savladani problemi koji ne postoje u simulacijama poput diskretnog vremena uzorkovanja, šuma senzora, kašnjenja, te naravno programiranja samog mikrokontrolera i usklađivanja rada svih sustava. Umanjeno vozilo pokazalo je slična poboljšanja u dinamici vozila tako što je sa stajališta vozača vozilo puno upravljivije i smirenije što omogućava lakše usavršavanje putanje kroz zavoje i smanjenje vremena prolaska staze.

Budući rad na ovoj problematiči uključit će eksperimentalno ispitivanje navedenih sustava na realnom vozilu Formula Student koje izrađuje FSB Racing Team.
LITERATURA

[3] FSB kolegij: „Automobilski mehatronički sustavi“, auditorne vježbe:
[5] FSB Racing Team, odjel ovjesa + suradnja sa Rimac Automobili d.o.o
POGRAMSKI KOD

float max_F=2.5; //maksimalna sila kotača
float wsf_min = 0.25; //minimalna brzina prednjih kotača
float allowed_slip = 1.15; //relativno dozvoljeno klizanje
float fixed_slip=0.1; //apsolutni dodatak klizanja

float Kp_omega = 0.002; // 0.002 in air eksperimentalno
float Ki_omega = 0.0245; // 0.01 eksperimentalno

float Mz_Kp=0;
boolean tcs_on = 0 ;
boolean TV_on = 0 ;
float Ki_tL = 5.6*1.25; //Km' + kompenzacija razlike u motorima
float Ki_tR = 5.6;
float Ke_left = 1.47; //Ke
float Ke_right= 1.7;

#include <Wire.h> // I2C komunikacija
long accelX, accelY, accelZ; //varijable giroskopa
float gForceX, gForceY, gForceZ;
long gyroX, gyroY, gyroZ;
float rotX, rotY, rotZ;

int e1p = 6;
int e2p = 5;
int e3p = 11;
int e4p = 12;
unsigned long e1r = 0;
unsigned long e2r = 0;
unsigned long e3r = 0;
unsigned long e4r = 0;

int MLp = 10; //pin lijevi motor
int MRp = 9; //pin desni motor
int THRp = A1; //pin "gasa"
int STRp = A2; //pin senzora skretanja
int POTp = A0; //pin potenciometra za fino podešavanje
int THRr = 0;
float THR = 0;
float BRK = 0;
int POTr = 0;
int Ntf = 20; //broj zubi prednjeg enkodera
float Ntr = 52.8; //broj zubi stražnjeg enkodera
float rw = 0.063 / 2; //radijus kotača
float speed_factor_front=0;
float speed_factor_rear=0;
float ws1 = 0; //brzina kotača 1
float ws2 = 0; //brzina kotača 2
float ws3 = 0; //brzina kotača 3
float ws4 = 0; //brzina kotača 4
int MLpwm = 128; //0V na motoru
int MRpwm = 128; //0V na motoru
int IL = 0; //struja sa senzora lijevi
int IR = 0; //struja sa senzora desni
float TL = 0; //okretni moment lijevog kotača
float TR = 0; //okretni moment desnog kotača
float TL_tcs = 0;
float TR_tcs = 0;
float Ubat = 0; //napon baterije
float UL = 0; //napon na lijevom motoru
float UR = 0; //napon na desnom motoru
float EMFL = 0; //EMF lijevog motora
float EMFR = 0; //EMF desnog motora
float FL = 0; //sila lijevog kotača
float FR = 0; //sila desnog kotača
float FL_tcs = 0;
float FR_tcs = 0;
float deltaUL = 0;
float deltaUR = 0;
float Vx = 0; //brzina vozila
float yaw_rate = 0; //brzina zakreta
float yaw_rate_target = 0;
float Rt = 0; //radijus skretanja
float l_c = 0.196; //trag kotača
float Izz = 0.007; //inercija vozila
float steering_angle = 0;
float Mz = 0;
float Mz_feedback=0;
float F_user_cmd=0;
float FL_user_cmd = 0;
floa FR_user_cmd = 0;

float eFL = 0;
float eFR = 0;

float UL_cmd = 0.0;
float UR_cmd = 0.0;

float ws1_fake = wsf_min;
float ws2_fake = wsf_min;
float omega3_ref = 0;
float omega4_ref = 0;
float omega1 = 0;
float omega2 = 0;
float omega3 = 0;
float omega4 = 0;

float e_omega3 = 0;
float e_omega4 = 0;

float FL_cmd = 0;
float FR_cmd = 0;

float TL_p = 0;
float TL_i = 0;
float TR_p = 0;
float TR_i = 0;
int i = 0;
int j = 0;

boolean tcsL = 0; // TCS aktivan
boolean tcsR = 0;

float tcsL_force_reduction = 0;
float tcsR_force_reduction = 0;
float F_reduction=0;
float FL_user_Feedforward=0;
float FR_user_Feedforward=0;
float FL_user_cmd_z1=0;
float FR_user_cmd_z1=0;
float v_avg=0;

volatile unsigned long int left_time=0;
volatile unsigned long int right_time=0;
volatile unsigned long int left_time_memory=0;
volatile unsigned long int right_time_memory=0;
volatile unsigned long int left_time_period=0;
volatile unsigned long int right_time_period=0;

float timestep = 0;

unsigned long int t = 0;
unsigned long int t1=0;
void setup() {
 TCCR1B = (TCCR1B & 0b11111000) | 0x01; //31.37255 [kHz] //promjena frekvencije PWM-a
 Serial.begin(115200); //UART komunikacija
 // definiranje funkcije ulaza/izlaza
 pinMode(e1p, INPUT);
 pinMode(e2p, INPUT);
 pinMode(e3p, INPUT);
 pinMode(e4p, INPUT);
 pinMode(MLp, OUTPUT);
 pinMode(MRp, OUTPUT);
 pinMode(THRp, INPUT);
 pinMode(STRp, INPUT);
 pinMode(POTp, INPUT);
 pinMode(7, INPUT_PULLUP); // tcs on
 pinMode(8, INPUT_PULLUP); // TV on
 Wire.begin(); //setupMPU(); //giroskop
 Wire.beginTransmission(0b1101000); //This is the I2C address of the MPU (b1101000/b1101001 for AC0 low/high datasheet sec. 9.2)
 Wire.write(0x6B); //Accessing the register 6B - Power Management (Sec. 4.28)
 Wire.write(0b00000000); //Setting SLEEP register to 0. (Required; see Note on p. 9)
 Wire.endTransmission();
 pinMode(2, INPUT); //interrupti prendjih enkodera
 pinMode(3, INPUT);
 attachInterrupt(digitalPinToInterrupt(3), left_event, RISING);
 attachInterrupt(digitalPinToInterrupt(2), right_event, RISING);
if(digitalRead(7)==LOW) //TCS ukljucen
{
 tcs_on=1;
 digitalWrite(13, HIGH);
 delay(1000);
 digitalWrite(13, LOW);
 delay(200);
}

if(digitalRead(8)==LOW) //TV ukljucen
{
 TV_on=1;
 digitalWrite(13, HIGH);
 delay(200);
 digitalWrite(13, LOW);
 delay(200);
 digitalWrite(13, HIGH);
 delay(200);
 digitalWrite(13, LOW);
 delay(200);
}

speed_factor_front=1000000*(1./Ntf)*2.*rw*3.14; //faktor za izračun brzine stražnjih kotača

speed_factor_rear=1000000*(1./Ntr)*2.*rw*3.14;

Ki_omega = Ki_omega/1000000.;

//=================== MAIN LOOP ===============

void loop()
{

read_speed(); //očitanje brzine vozila
timestep = micros() - t;

read_driver_input(); //korisnikovi ulazi
read_yaw(); //očitanje brzine zakreta
calc_yaw_rate_desired(); //izračun referentne brzine zakreta
calc_Mz_cmd(); //izračun potrebnog Mz

read_torque(); //očitanje momenta kotača
tcs();

POTr = analogRead(POTp); //potenciometar ta fino podešavanje
Mz_Kp=(POTr/1024.)*50.;
i++;

void read_speed()
{
 unsigned long timeout = 50000;

 //izmjena redosljeda čitanja brzine stražnjih kotača
 //radi eliminacije kašnjenja stalno istoga signala
 if(i%2==0)
 {
 e3r = pulseIn(e3p, HIGH, timeout);
 e4r = pulseIn(e4p, HIGH, timeout);
 }
 else
 {
 e4r = pulseIn(e4p, HIGH, timeout);
 }
}
e3r = pulseIn(e3p, HIGH, timeout);
}

e1r=left_time_period;
e2r=right_time_period;

//izračun brzine iz duljine impulsa

if (e1r == 0) ws1 = 0;
else if (e1r > 600) ws1 = speed_factor_front/e1r;
ws1_fake = constrain(ws1, wsf_min, 100);

if (e2r == 0) ws2 = 0;
else if (e2r > 600) ws2 = speed_factor_front/e2r;
ws2_fake = constrain(ws2, wsf_min, 100);

if (e3r == 0) ws3 = 0;
else ws3 = speed_factor_rear/(e3r*2);

if (e4r == 0) ws4 = 0;
else ws4 = speed_factor_rear/(e4r*2);

omega1 = ws1 / rw;
omega2 = ws2 / rw;
omega3 = ws3 / rw;
omega4 = ws4 / rw;
v_avg=(ws1+ws2)/2.;
}
void read_driver_input()
{
 THRr = analogRead(THRp);
 steering_angle = analogRead(STRp)*10.;
 steering_angle = map(steering_angle, 3900, 6900, 280, -280)/10.; //mapiranje u kut zakreta kotača
 THR = map(THRr, 440, 770, 0, 100); //mapiranje gasa
 THR = constrain(THR, 0, 100);
 BRK = map(THRr, 250, 380, 100, 0);
 BRK = constrain(BRK, 0, 100);
}

void read_yaw()
{
 Wire.beginTransmission(0b1101000); //I2C address of the MPU
 Wire.write(0x43); //Starting register for Gyro Readings
 Wire.endTransmission();
 Wire.requestFrom(0b1101000, 6); //Request Gyro Registers (43 - 48)
 while (Wire.available() < 6);
 gyroX = Wire.read() << 8 | Wire.read(); //Store first two bytes into accelX
 gyroY = Wire.read() << 8 | Wire.read(); //Store middle two bytes into accelY
 gyroZ = Wire.read() << 8 | Wire.read(); //Store last two bytes into accelZ
 rotX = gyroX / 131.0;
 rotY = gyroY / 131.0;
 rotZ = gyroZ / 131.0 + 1.3;
}

void read_torque()
{
 Ubat = analogRead(A3) / 1023.*5.*4.;
 Ubat = constrain(Ubat, 12.1, 18.1);
 UL = (MLpwm-135)/110. *(Ubat-2); //za pwm 135 napon na motoru je 0V
 UR = (MRpwm-135)/110. *(Ubat-2);
 EMFL = ws3 * Ke_left;
 EMFR = ws4 * Ke_right;
 deltaUL = UL - EMFL;
 FL = deltaUL * (1.25/7)/1.25 ;
 TL = FL * rw;
 deltaUR = UR - EMFR;
 FR = deltaUR * (1.25/7);
 TR = FR * rw;
 Mz_feedback=(-FL+FR)*(track/2);
}

void read_current()
{
 IL = analogRead(A7);
 IR = analogRead(A6);
}

void calc_yaw_rate_desired()
{
 Vx = (ws1 + ws2) / 2.;
 if (tcs == 1) //računanje brzine pomoću svih kotaća ako je TCS uključen - manji šum
 {
 Vx = (ws1 + ws2 + ws3 + ws4) / 4.;
 }
void calc_Mz_cmd()
{
 yaw_rate = (rotZ / 360.) * 2 * 3.14;
 Mz = (yaw_rate_target - yaw_rate) * Izz * Mz_Kp; //POTr/20.;
 Mz = constrain(Mz, -0.3, 0.3);
}

void tcs()
{
 F_u = THR / 100 * max_F;
 FL_user_cmd = THR / 100 * max_F; // BRK / 2.;
 FR_user_cmd = THR / 100 * max_F; // BRK / 2.;
 if (TV_on == 1) // dodavanje Mz na korisnikov ulaz
 {
 FL_user_cmd = FL_user_cmd - Mz / track;
 FR_user_cmd = FR_user_cmd + Mz / track;
 }

 if (tcs_on == 1)
 {
 omega3_ref = (ws1_fake * speed_ref_for_tcs + fixed_slip) / rw ;
 e_omega3 = omega3_ref - omega3; // računanje odstupanja
 }

 Rt = tan((-steering_angle - 90) * ((2 * 3.14) / 360)) * 1_c; // izračun radijusa skretanja
 yaw_rate_target = (Vx / Rt) * 0.9 * 1; // 0.5 is neutral when last factor i *1 car is neutral
 yaw_rate_target = yaw_rate_target * (1 - (Vx / 12.)); //3 is 0, 6 is 0.5, 12 is 0.75
}
\[TL_p = e_{\text{omega}3} \times K_{p_{\text{omega}}} \] \quad // P regulator
\[TL_p = \text{constrain}(TL_p, -\text{max}_F*rw, 0) \] \quad // P limit
\[TL_i = e_{\text{omega}3} \times K_{i_{\text{omega}}} \times \text{timestep} + TL_i \] \quad // I regulator
\[TL_i = \text{constrain}(TL_i, -\text{max}_F*rw, 0) \] \quad // I limit
\[TL_{\text{tcs}} = TL_p + TL_i; \]

\[\text{FL_user_Feedforward}=\text{FL_user_cmd}\text{-FL_user_cmd_z1}; \quad //\text{derivacija korinikovog ulaza za feedforward} \]

\[\text{FL_user_cmd_z1}=\text{FL_user_cmd}; \]

if \((\text{TL_tcs}<0)\) \(\text{tcsL}=1;\)
else \(\text{tcsL}=0;\)

\[\text{TL_i}=\text{TL_i}\text{-FL_user_Feedforward}\times\text{rw}\times\text{tcsL}; \quad //\text{feedforward ako je tcs aktivan} \]

\[\text{TL_tcs} = \text{TL_p} + \text{TL_i}; \]
\[\text{FL_tcs} = \text{TL_tcs}\text{/rw}; \]

\} else \(\text{FL_tcs}=0;\)

if \((\text{tcs_on} == 1)\)
{
\[\omega_{\text{ref}} = (\text{ws2_fake} \times \text{speed_ref_for_tcs} + \text{fixed_slip}) / \text{rw} ; \]
\[e_{\text{omega}4} = \omega_{\text{ref}} - \omega_{\text{4}}; \]
\[\text{TR_p} = e_{\text{omega}4} \times K_{p_{\text{omega}}}; \]
\[\text{TR_p} = \text{constrain}(\text{TR_p}, -\text{max}_F*rw, 0); \]
\[\text{TR_i} = e_{\text{omega}4} \times K_{i_{\text{omega}}} \times \text{timestep} + \text{TR_i}; \]
\[\text{TR_i} = \text{constrain}(\text{TR_i}, -\text{max}_F*rw, 0); \]
\[\text{TR_tcs} = \text{TR_p} + \text{TR_i}; \]
\[\text{FR_user_Feedforward}=\text{FR_user_cmd}\text{-FR_user_cmd_z1}; \]
\[\text{FR_user_cmd_z1}=\text{FR_user_cmd}; \]

if \((\text{TR_tcs}<0)\) \(\text{tcsR}=1;\)
else tcsR=0;
TR_i=TR_i-FR_user_Feedforward*tcsR;
TR_tcs = TR_p + TR_i;
FR_tcs = TR_tcs / rw;
}
else FR_tcs=0;

// eliminiranje stvaranja dodatnog Mz zbog tcs-a jednačima reduciranjem momenta na oba kotača
F_reduction=min(FL_tcs, FR_tcs);
FL_cmd = FL_user_cmd+F_reduction;
FR_cmd = FR_user_cmd+F_reduction;

eFL = FL_cmd - FL;
eFR = FR_cmd - FR;
UL_cmd = UL + Ki_tL * eFL; //određivanje potrebnog napona za zadani moment
UR_cmd = UR + Ki_tR * eFR;
// mapiranje napona za pwm naredbu
ML_pwm = map(UL_cmd * 100, 0, (Ubat-2)* 100, 13500, 25500) / 100.;
ML_pwm = constrain(ML_pwm, 135, 255);
MR_pwm = map(UR_cmd * 100, 0, (Ubat-2)* 100, 13500, 25500) / 100;
MR_pwm = constrain(MR_pwm, 135, 255);
analogWrite(MLp, ML_pwm); // zadavanje napona na motore
analogWrite(MRp, MR_pwm);
if (BRK > 25) //kočenje i nazad
{
analogWrite(MLp, 128 - BRK/1.5);
analogWrite(MRp, 128 - BRK/1.5);
void left_event() // interrupt lijevog enkodera
{
 left_time=micros();
 left_time_period=left_time-left_time_memory;
 left_time_memory=left_time;
}

void right_event() // interrupt desnog enkodera
{
 right_time=micros();
 right_time_period=right_time-right_time_memory;
 right_time_memory=right_time;
}