DIPLOMSKI RAD

Mentor: Prof. dr. sc. Hrvoje Kozmar

Studentica: Tamara Petranović

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru, prof. dr. sc. Hrvoju Kozmaru, i dr. sc. Andriji Buljcu jer su svojim znanjem i savjetima doprinojeli izradi ovog rada te su uvijek imali strpljenja i vremena za moje upite.

Također, zahvaljujem se roditeljima Marku i Ani te suprugu Eduardu koji su me podržavali i bili uz mene tijekom cijelog studija.

Tamara Petranović
DIPLOMSKI ZADATAK

Student: Tamara Petranović
Mat. br.: 0035189951

Naslov rada na hrvatskom jeziku: Aerodinamika vozila na mostovima s cestovnim vjetrobranim
Naslov rada na engleskom jeziku: Vehicle aerodynamics on bridges equipped with roadway wind barriers

Opis zadatka:
Snažni bočni vjetrovi koji pušu na mostovima mogu dovesti do dinamičke nestabilnosti vozila koja prelaze most što dovodi do čestog zatvaranja mostova za promet. Stoga se na mostove postavljaju zaštitni vjetrobrani koji omogućuju neometano odvijanje prometa u periodima snažnog bočnog vjetra. Zaštitni vjetrobrani značajno utječu na karakteristike strujanja zraka iznad kolnika mosta kojim prometuju vozila.

U radu je potrebno, uz pomoć programskog paketa za računalnu dinamiku fluida, modelirati nastružavanje vjetra na vozilo koje se nalazi na mostu s cestovnim vjetrobranom. Potrebno je ispitati karakteristike strujanja zraka u okolici vozila (slike koeficijenta tlaka na površini vozila, brzine strujanja zraka te vrtilošću struje zraka u okolini vozila) te promjene u integralnim veličinama aerodinamičkih opterećenja koja djeluju na vozilo koje se nalazi na mostu u slučaju postavljanja zaštitnih vjetrobrana. Također je potrebno ispitati utjecaj ključnih parametara cestovnih vjetrobrana na karakteristike strujanja zraka u okolini vozila, i to: a) visine cestovnih vjetrobrana, b) poroznosti cestovnih vjetrobrana.

U radu je potrebno koristiti model stacionarnog trodimenzionalnog turbulentnog strujanja nestlačivog fluida. Rezultate računalnih simulacija potrebno je usporediti s rezultatima iz dostupne literature.

Rad treba sadržavati:
1. Uvod s opisom teme, pregledom relevantne literature i ciljevima ovog rada.
2. Opis metode konačnih volumena kao alata računalne dinamike fluida.
3. Matematičke osnove modeliranja turbulencije.
4. Opis računalnog modela za nastružavanje vjetra na vozila na mostu s cestovnim vjetrobranom.
5. Prikaz i analizu rezultata računalnih simulacija.

Rezultate proračuna potrebno je prikazati odgovarajućim tablicama, dijagramima i slikama. U radu je također potrebno navesti literaturu i eventualno dobivenu pomoć tijekom izrade.

Prof. dr. sc. Hrvoje Kozmar

Zadatak zadao: Prof. dr. sc. Tanja Jurčević Lulić

Datum predaje rada: Prjevideni datum obrane:
SADRŽAJ

SADRŽAJ .. I
POPIS SLIKA ... II
POPIS TABLICA ... IV
POPIS OZNAKA ... V
SAŽETAK .. VII
SUMMARY ... VIII

1. UVOD .. 1
2. OSNOVNE JEDNADŽBE DINAMIKE FLUIDA ... 4
 2.1. Opći oblik zakona očuvanja fizikalnog svojstva 5
 2.2. Osnovne jednadžbe dinamike fluida .. 6
 2.3. Turbulentno strujanje ... 8
 2.4. Vremenski osrednjene Navier–Stokes (RANS) jednadžbe 10
 2.5. Vremenski osrednjene jednadžbe za slučaj nestlačivog strujanja 11
 2.6. Model turbulencije .. 11
 2.7. \(k-\omega \) SST model turbulencije ... 13
 2.8. Strujanje u blizini zida .. 14
3. METODA KONAČNIH VOLUMENA ... 16
 3.1. Uzvodna shema prvog reda ... 19
 3.2. Linearno uzvodna shema ... 20
4. AERODINAMIČKE SILE I MOMENTI ... 22
5. POSTAVKE RAČUNALNE SIMULACIJE .. 25
 5.1. Računalni modeli ... 25
 5.2. Geometrijska diskretizacija računalne domene 31
 5.3. Postavke računalne simulacije ... 34
6. REZULTATI RAČUNALNIH SIMULACIJA ... 35
ZAKLJUČAK .. 52
LITERATURA ... 53
POPIS SLIKA

Slika 2. Tranzicija iz laminarnog u turbulentno strujanje pri opstrujavanju ravne ploče [16]... 9
Slika 3. Shematski prikaz dijagrama bezdimenzijske brzine u funkciji bezdimenzijske udaljenosti od stijenke [16] .. 15
Slika 4. Dio diskretiziranog područja proračuna [15]... 16
Slika 5. Numerička shema prvog reda točnosti [19]... 19
Slika 6. Uzvodna shema drugog reda točnosti [19]... 20
Slika 7. Rezultantna sila s komponentama [20].. 22
Slika 8. Geometrija mosta, vozila i vjetrobrana .. 25
Slika 9. Dimenzije poprečnog presjeka mosta u decimetrima [21].. 26
Slika 10. Geometrija vjetrobrana u decimetrima [21]; strujanje slijeva nadesno. 27
Slika 11. Vjetrobran visine 3 m i poroznosti 30% na mostu s vozilom, pogled iz smjera strujanja .. 28
Slika 12. Vjetrobran visine 5 m i poroznosti 30% na mostu s vozilom, pogled iz smjera strujanja .. 28
Slika 13. Vjetrobran visine 7 m i poroznosti 30% na mostu s vozilom, pogled iz smjera strujanja .. 28
Slika 14. Vjetrobran visine 5 m i poroznosti 50% na mostu s vozilom, pogled iz smjera strujanja .. 28
Slika 15. Vjetrobran visine 5 m i poroznosti 0% na mostu s vozilom, pogled iz smjera strujanja .. 29
Slika 16. Osnovne dimenzije Ahmedovog tijela izražene u milimetrima [23].......................... 29
Slika 17. Položaj vozila na mostu izražen u milimetrima ... 30
Slika 18. Osnovne dimenzije računalne domene izražene uz pomoć dimenzija modela 30
Slika 19. Površina mosta i vozila s trokutnim elementima .. 32
Slika 20. Prikaz tetrahedralnih elemenata u presjeku z osi ... 32
Slika 21. Gustoća mreže oko mosta, vozila i vjetrobrana ... 33
Slika 22. Rubni uvjeti računalne simulacije .. 34
Slika 23. Koeficijenti tlaka C_p u svim konfiguracijama.. 37
Slika 24. Vrtnošnosti $\text{rot}(v)$ u svim konfiguracijama ... 41
Slika 25. v/v_∞ za konfiguraciju bez vjetrobrana ... 45
Slika 26. Položaj pravca u milimetrima u području između vozila i vjetrobrana 46
Slika 27. Ovisnost odnosa bezdimenijske brzine strujanja zraka o udaljenosti od središta mosta za ispitivane konfiguracije .. 49
Slika 28. Pozitivni smjerovi aerodinamičkih sila i momenta... 50
POPIS TABLICA

Tablica 1: Koeficijenti $k-\omega$ SST modela turbulencije ... 14
Tablica 2: Broj kontrolnih volumena za različite konfiguracije ... 31
Tablica 3: Kratice ispitanih konfiguracija mosta i vjetrobrana .. 35
Tablica 4: Sile i momenti na vozilo .. 50
Tablica 5: Koeficijenti sila i momenata na vozilo ... 50
POPIS OZNAKA

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{ref}</td>
<td>[m2]</td>
<td>referentna površina vozila</td>
</tr>
<tr>
<td>C_B</td>
<td>[-]</td>
<td>koeficijent bočne sile</td>
</tr>
<tr>
<td>C_D</td>
<td>[-]</td>
<td>koeficijent otpora</td>
</tr>
<tr>
<td>C_L</td>
<td>[-]</td>
<td>koeficijent uzgona</td>
</tr>
<tr>
<td>C_M</td>
<td>[-]</td>
<td>koeficijent momenta prevrtanja</td>
</tr>
<tr>
<td>C_p</td>
<td>[-]</td>
<td>koeficijent tlaka</td>
</tr>
<tr>
<td>c_v</td>
<td>[J/kg K]</td>
<td>specifični toplinski kapacitet</td>
</tr>
<tr>
<td>D_n</td>
<td>[kg/s]</td>
<td>jačina difuzije</td>
</tr>
<tr>
<td>e</td>
<td>[J/kg]</td>
<td>specifična energija</td>
</tr>
<tr>
<td>f_i</td>
<td>[m/s2]</td>
<td>vektor specifične masene sile</td>
</tr>
<tr>
<td>F_n</td>
<td>[kg/s]</td>
<td>jačina konvekcije</td>
</tr>
<tr>
<td>F_B</td>
<td>[N]</td>
<td>bočna sila</td>
</tr>
<tr>
<td>F_D</td>
<td>[N]</td>
<td>sila otpora</td>
</tr>
<tr>
<td>F_L</td>
<td>[N]</td>
<td>sila uzgona</td>
</tr>
<tr>
<td>J_j</td>
<td>[-]</td>
<td>vektor toka fizikalnog svojstva</td>
</tr>
<tr>
<td>k</td>
<td>[m2/s2]</td>
<td>kinetička energija turbulencije</td>
</tr>
<tr>
<td>l</td>
<td>[m]</td>
<td>duljina vozila</td>
</tr>
<tr>
<td>l_t</td>
<td>[m]</td>
<td>duljina puta miješanja kod turbulencije</td>
</tr>
<tr>
<td>M</td>
<td>[N m]</td>
<td>moment prevrtanja</td>
</tr>
<tr>
<td>\tilde{n}</td>
<td>[-]</td>
<td>bezdimenzionalna koordinata</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>[Pa]</td>
<td>vremenski osrednjeno polje tlaka</td>
</tr>
<tr>
<td>p'</td>
<td>[Pa]</td>
<td>pulzirajuća komponenta polja tlaka</td>
</tr>
<tr>
<td>p</td>
<td>[Pa]</td>
<td>tlak</td>
</tr>
<tr>
<td>q_i</td>
<td>[W/m3]</td>
<td>vektor površinske gustoće toplinskog toka</td>
</tr>
<tr>
<td>q_H</td>
<td>[W/m3]</td>
<td>volumenska gustoća toplinskih izvora</td>
</tr>
<tr>
<td>R</td>
<td>[N]</td>
<td>aerodinamička rezultantna sila</td>
</tr>
<tr>
<td>Re</td>
<td>[-]</td>
<td>Reynoldsov broj</td>
</tr>
<tr>
<td>Re_{kr}</td>
<td>[-]</td>
<td>kritična vrijednost Reynoldsovnog broja</td>
</tr>
<tr>
<td>S_{φ}</td>
<td>[-]</td>
<td>izvorski član</td>
</tr>
<tr>
<td>t</td>
<td>[s]</td>
<td>vrijeme</td>
</tr>
<tr>
<td>T</td>
<td>[K]</td>
<td>apsolutna temperatura</td>
</tr>
<tr>
<td>u</td>
<td>[m/s]</td>
<td>brzina</td>
</tr>
<tr>
<td>u^+</td>
<td>[-]</td>
<td>bezdimenzionalna brzina</td>
</tr>
<tr>
<td>v</td>
<td>[m/s]</td>
<td>brzina strujanja</td>
</tr>
<tr>
<td>v_j</td>
<td>[m/s]</td>
<td>komponente vektora brzine strujanja</td>
</tr>
<tr>
<td>Symbol</td>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>v_∞</td>
<td>[m/s]</td>
<td>brzina neporemećenog strujanja</td>
</tr>
<tr>
<td>\vec{v}_i</td>
<td>[m/s]</td>
<td>osrednjeni dio vektora brzine</td>
</tr>
<tr>
<td>v_i'</td>
<td>[m/s]</td>
<td>pulzirajući dio polja vektora brzine strujanja</td>
</tr>
<tr>
<td>v_t</td>
<td>[m/s]</td>
<td>karakteristična brzina turbulentnih pulzacija</td>
</tr>
<tr>
<td>V_M</td>
<td>[m3]</td>
<td>materijalni volumen</td>
</tr>
<tr>
<td>x</td>
<td>[m]</td>
<td>duljina</td>
</tr>
<tr>
<td>x_j</td>
<td>[m]</td>
<td>pravokutne koordinate</td>
</tr>
<tr>
<td>x_{kr}</td>
<td>[m]</td>
<td>kritična duljina</td>
</tr>
<tr>
<td>y</td>
<td>[m]</td>
<td>udaljenost od stijenke</td>
</tr>
<tr>
<td>y^+</td>
<td>[−]</td>
<td>bezdimenzijalna udaljenost od stijenke</td>
</tr>
<tr>
<td>α</td>
<td>[°]</td>
<td>napadni kut</td>
</tr>
<tr>
<td>Γ</td>
<td>[kg/m s]</td>
<td>koeficijent difuzije</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>[−]</td>
<td>Kroneckerov simbol</td>
</tr>
<tr>
<td>ε</td>
<td>[m2/s3]</td>
<td>disipacija kinetičke energije turbulencije</td>
</tr>
<tr>
<td>κ</td>
<td>[−]</td>
<td>von Kármánova konstanta</td>
</tr>
<tr>
<td>λ</td>
<td>[W/m K]</td>
<td>toplinska provodnost materijala</td>
</tr>
<tr>
<td>μ</td>
<td>[Pa s]</td>
<td>dinamička viskoznost</td>
</tr>
<tr>
<td>μ_t</td>
<td>[kg/m s]</td>
<td>koeficijent turbulentne viskoznosti</td>
</tr>
<tr>
<td>ν</td>
<td>[m2/s]</td>
<td>kinematička viskoznost</td>
</tr>
<tr>
<td>ν_t</td>
<td>[m2/s2]</td>
<td>brzina trenja</td>
</tr>
<tr>
<td>ρ</td>
<td>[kg/m3]</td>
<td>gustoća</td>
</tr>
<tr>
<td>σ_{ji}</td>
<td>[Pa]</td>
<td>komponente tenzora površinskog naprezanja</td>
</tr>
<tr>
<td>Σ_{ji}</td>
<td>[Pa]</td>
<td>tenzor viskoznih naprezanja</td>
</tr>
<tr>
<td>τ</td>
<td>[Pa]</td>
<td>tenzor naprezanja</td>
</tr>
<tr>
<td>τ</td>
<td>[Pa]</td>
<td>smično naprezanje</td>
</tr>
<tr>
<td>τ_w</td>
<td>[Pa]</td>
<td>smično naprezanje na stijenci</td>
</tr>
<tr>
<td>φ</td>
<td>[−]</td>
<td>polje fizikalne veličine</td>
</tr>
<tr>
<td>Φ</td>
<td>[−]</td>
<td>gustoća fizikalne veličine</td>
</tr>
<tr>
<td>ϕ</td>
<td>[−]</td>
<td>fizikalna varijabla</td>
</tr>
<tr>
<td>Φ'</td>
<td>[−]</td>
<td>vremenski osrednjena fizikalna varijabla</td>
</tr>
<tr>
<td>ϕ'</td>
<td>[−]</td>
<td>pulzirajuća komponenta fizikalne varijable</td>
</tr>
<tr>
<td>ω</td>
<td>[s$^{-1}$]</td>
<td>specifična brzina disipacije</td>
</tr>
</tbody>
</table>
SAŽETAK

Snažni bočni vjetri koji pušu na mostovima i vijaduktima mogu dovesti do gubitka dinamičke stabilnosti vozila koja prelaze most. Da bi se omogućio nesmetan i siguran promet čak i u slučajevima nepovoljnih vremenskih uvjeta uzrokovanih snažnim bočnim vjetrom, na mostove se postavljaju zaštitni vjetrobrani. Karakteristike strujanja zraka preko mosta su značajno promijenjene u slučaju postavljanja vjetrobrana različitih visina i poroznosti. U okviru ovog rada ispitati je utjecaj visine vjetrobrana te utjecaj poroznosti vjetrobrana na karakteristike strujanja zraka oko vozila koje se nalazi na mostu. Vjetrobran je postavljen samo na uzvodni rub mosta, a za vozilo je korišten model Ahmedovog tijela koji je u svim simulacijama postavljen na udaljenost 2 m nizvodno od vjetrobrana. Pri računalnim simulacijama korišten je model stacionarnog trodimenzijskog turbulentnog strujanja nestlačivog fluida te $k-\omega$ SST model turbulencije sa standardnim zidnim funkcijama. Dobiveni rezultati ukazuju na značajan utjecaj vjetrobrana na koeficijente tlaka na površini vozila. Manja poroznost vjetrobrana i veća visina vjetrobrana uzrokuju smanjenje koeficijenta tlaka na nastrujavanoj površini vozila. Iako su vrijednosti koeficijenta tlaka na površini vozila za male poroznosti vjetrobrana relativno male, raspodjela vrtložnosti struje zraka sugerira da može doći do povećanih vrijednosti standardnih devijacija aerodinamičkih sila koje djeluju na vozilo.

Karakteristike vjetrobrana imaju bitan utjecaj na raspodjelu brzine strujanja zraka uzvodno od vozila, odnosno u prostoru između vjetrobrana i vozila. Smanjenjem poroznosti vjetrobrana se brzine strujanja zraka u tom području značajno smanjuju. Utjecaj poroznosti vjetrobrana na raspodjelu brzine strujanja zraka u ovom području je značajniji u odnosu na utjecaj visine vjetrobrana.

Aerodinamičke sile i momenti zabilježeni na vozilu su značajno smanjeni kada je vjetrobran postavljen na most. Rezultati dobiveni u okviru ovog rada sugeriraju da je, s obzirom na aerodinamičke sile koje djeluju na vozilo, optimalna visina vjetrobrana 5 m uz njihovu poroznost u iznosu od 30%.

Ključne riječi: most, vjetrobran, bočni vjetar, računalne simulacije, aerodinamičke sile i momenti.
SUMMARY

Strong cross winds that commonly blow on bridges and viaducts may cause dynamic instabilities of vehicles crossing the bridge. To allow for safe traffic even in the periods of bad weather conditions such as strong cross winds, bridges are equipped with wind barriers. Flow characteristics around the bridge are significantly modified with respect to the wind barrier height and porosity. In the present work, the influence of wind barrier height and porosity on flow characteristics around the vehicle passing the bridge was studied. The wind barrier was placed on the windward bridge-deck edge only, while the Ahmed body was used as a vehicle. It was placed 2 m downwind of the wind barrier. In the computational simulations, the stationary 3D turbulent incompressible flow was modeled together with the $k-\omega$ SST turbulence model and standard wall functions.

The obtained results generally show a significant influence of the wind barrier on the pressure coefficients observed on the vehicle surface. Smaller porosity and larger height of the wind barrier causes smaller pressure coefficients on the windward side of the vehicle. Even though the pressure coefficients on the vehicle for the low-porous wind barrier are relatively small, the distribution of the flow vorticity suggests larger values of the standard deviation of the aerodynamic forces acting on the vehicle.

Wind-barrier characteristics proved to have a large influence on the distribution of flow velocity in the area upstream of the vehicle and downstream of the wind barrier. For smaller porosities of the wind barrier, flow velocities in this area are significantly smaller. The influence of the porosity on the distribution of flow velocities in this area is relatively larger compared to the height of the wind barrier.

The aerodynamic forces and moment are generally smaller when the wind barrier is in place. The obtained results suggest that the 5 m high and 30% porous wind barrier is optimal with respect to the aerodynamic forces and moment acting on the vehicle on the bridge.

Keywords: bridge, wind barrier, cross-wind, computational simulations, aerodynamic forces and moments.
1. UVOD

Ubrzani razvoj tehnologije graditeljstva doveo je do izgradnje dugih mostova, koji omogućuju efikasnije prometovanje diljem svijeta. Međutim, veliki broj mostova se uslijed toga nalazi na otvorenom terenu te su često izloženi snažnim atmosferskim strujanjima zraka. Snažni bočni vjetrovi koji pušu na mostovima i vijaduktima mogu dovesti do smanjenja dinamičke stabilnosti vozila koja prelaze most [1]. Zbog ovih nepovoljnih uvjeta vjetra, vozila se mogu prevrnuti ili sudariti međusobno, a i s konstrukcijom mosta. Udari karakterističnih vjetrova, poput bure, mogu doseći brzinu struje zraka do 69 m/s te mogu uzrokovati prevrnutu vozila, što predstavlja izrazitu opasnost na mostovima i vijaduktima. Slika 1 prikazuje prevrnutu vozilo uslijed bure na Dubrovačkom mostu u Hrvatskoj.

![Slika 1. Snažan udar bure prevrnuo vozilo na Dubrovačkom mostu [2]](image)

Da bi se smanjila opasnost od ovakvih incidenata, mostovi su često zatvoreni za promet tijekom perioda snažnih bočnih vjetrova. Zatvaranje mostova uzrokuje brojne probleme u transportu putnika, u industrijskom transportu robe i stvara značajne društvene probleme i ekonomske gubitke.

Stoga, da bi se omogućio nesmetan i siguran promet čak i u slučajevima nepovoljnih vremenskih uvjeta u obliku snažnog bočnog vjetra, na mostove se postavljaju zaštitni vjetrobrani, npr. [3] i [4].

Tijekom godina mnogo znanja je stečeno na temu utjecaja bočnog vjetra na vozilo koje prometuje mostom. Raspodjela tlaka na vozilu izloženom udarima bure eksperimentalno je mjerena u [5] gdje je frekvencijska analiza pokazala značajan utjecaj perioda udara bure na
dinamičku stabilnost vozila. U [6] je ispitan utjecaj bočnog vjetra na vozila koja se nalaze u različitim prometnim trakama na mostu opremljenom vjetrobranima. Pokazano je da je, uz postojanje vjetrobrana, vozilo dinamički stabilno i pri brzinama bočnog vjetra od oko 35 m/s, dok se na mostovima bez vjetrobrana dinamička stabilnost vozila značajno smanjuje pri brzinama vjetra od 15 m/s. U [7] je ispitan utjecaj bočnog vjetra na vozila na mostu uz postojanje vjetrobrana pomoću eksperimenta u zračnom tunelu i računalne metode LES (Large Eddy Simulation) te je zaključeno da porozni vjetrobrani značajno smanjuju bočnu silu na vozilo te da postavljanje vjetrobrana visine 2 m na betonski graničnik na mostu visine 0,8 m može zaštititi vozila do visine od 3,6 m.

Utjecaj kuta nastrujavanja vjetra na karakteristike polja strujanja uslijed postojanja vjetrobrana također je bitan [9]. Polja srednjih brzina strujanja i polja vrtiljnosti određena su koristeći PIV (Particle Image Velocimetry) tehnologiju. Rezultati ukazuju na postojanje nestabilnosti uzrokovane vjetrom za visoka vozila pri većim kutovima nastrujavanja vjetra, pogotovo u prometnimtrakama koje se nalaze blizu nizvodnog (stražnjeg) ruba mosta.

Mogućnost postavljanja prilagodljivih vjetrobrana s otvorima istraživana je u [10] s ciljem povećanja sigurnosti vlakova na mostovima. U usporedbi s aerodinamičkim karakteristikama kod uobičajeno korištenih rešetkastih vjetrobrana, prilagodljivi vjetrobrani omogućuju smanjenje koeficijenta momenta prevrtanja za vlak i most.

Ovdje navedena istraživanja općenito potvrđuju da su karakteristike strujanja zraka preko mosta značajno promijenjene u slučaju postavljanja vjetrobrana. Iako se mnoga istraživanja bave dinamičkom stabilnosti vozila na mostu, rijetko se proučava utjecaj karakteristika vjetrobrana na aerodinamičke sile koje djeluju na vozilo. Stoga je u okviru ovog rada ispitan utjecaj visina vjetrobrana od 3, 5 i 7 m te utjecaj poroznosti vjetrobrana od 0%, 30% i 50% na karakteristike strujanja zraka oko vozila koje se nalazi na mostu.

Nadalje, ispitane su karakteristike strujanja zraka u blizini vozila (koeficijent tlaka, brzina strujanja zraka, vrtložnost struje zraka) te promjene u integralnim veličinama aerodinamičkih sila koje djeluju na vozilo koje prelazi preko mosta u slučaju postavljanja zaštitnih vjetrobrana određenih svojstava.
2. OSNOVNE JEDNADŽBE DINAMIKE FLUIDA

Mehanika fluida se općenito bavi proučavanjem fluida i sila koje pritom djeluju. Djeli se na statiku fluida koja proučava fluide u mirovanju, kinematiku fluida koja karakteristike strujanja fluida te dinamiku fluida koja proučava karakteristike strujanja fluida i sile koje pritom djeluju.

Većina problema mehanike fluida vezana uz strujanje fluida opisana je nelinearnim parcijalnim diferencijalnim jednadžbama za koje ne postoje analitička rješenja pa se prije razvitka računala, a time i računalne dinamike fluida većina problema rješavala pomoću eksperimenata.

Danas se računalna dinamika fluida (engl. „Computational Fluid Dynamics“, skraćeno CFD) ubrzano razvija te ujedno potiče razvoj snažnijih računala kako bi se zadovoljili zahtjevi tržišta. Kod računalne dinamike fluida, matematički modeli strujanja fluida rješavaju se pomoću računalnih simulacija.

Dinamika fluida opisana je Navier–Stokesovim jednadžbama u koje su uključene jednadžba očuvanja količine gibanja, jednadžba kontinuiteta (zakon očuvanja mase) te jednadžba očuvanja energije. Ove jednadžbe se mogu analitički riješiti samo za jednostavna strujanja u obliku jednodimenzionalnih i nekih dvodimenzionalnih problema uz zanemarivanje pojedinih članova u jednadžbama, pa su se iz tih razloga razvijale računalne metode rješavanja ovih jednadžbi.

U računalnoj dinamici fluida postoje dva načina opisivanja strujanja fluida. Prvi način naziva se Eulerov opis strujanja i temelji se na promatranju fluida u određenim točkama prostora. Drugi način je Lagrangeov opis strujanja i kod njega se koordinatni sustav giba zajedno s česticom fluida. Metode prilagođene rješavanju velikom broju problema temelje se na Eulerovom pristupu pa tako postoji metoda konačnih volumena i metoda konačnih razlika [14].

Računalne simulacije temelje se na matematičkom modelu koji je matematički zapis fizikalnog modela, dok fizikalni model nizom pretpostavki aproksimira stvarnost. Najčešća pretpostavka je da je fluid kontinuum što znači da zadržava svojstva pri infinitesimalno malom volumenu. Još neke od pretpostavki koje se koriste su homogenost, što znači da su fizikalna svojstva jednaka u svim točkama fluida, te izotropnost koja podrazumijeva ista fizikalna svojstva u svim smjerovima. Pri definiranju računalnog modela bitno je da se što
točnije opiše problem uz što jednostavniji matematički model. Matematički model problema dinamike fluida se najčešće opisuje sustavom parcijalnih diferencijalnih jednadžbi. Računalno rješavanje ovih jednadžbi se sastoji od tri koraka. U prvom koraku se provodi diskretizacija, odnosno podjela ukupne računalne domene na manje volumene u čijim središtima se izračunavaju fizičke veličine. Rezultat diskretizacije prostora naziva se geometrijska mreža. Nakon diskretizacije volumena, potrebno je diskretizirati i parcijalne diferencijalne jednadžbe matematičkog modela uz određene rubne uvjete, a to se radi pomoću metode konačnih volumena ili druge slične metode. Metoda konačnih volumena vodi do sustava algebarskih jednadžbi koje se rješavaju jednostavno ili iteracijom, ovisno o tome jesu li linearni ili nelinearni [15].

Računalna simulacija provodi se kroz tri sustava:

- predprocesor,
- procesor i
- postprocesor.

Predprocesor služi za geometrijsku diskretizaciju (mrežu) računalne domene. Pri generiranju mreže potrebno je uzeti u obzir rubne uvjete problema, odnosno napraviti gušću geometrijsku diskretizaciju računalne domene u području gdje se očekivaju veći gradijenti vrijednosti fizičkih veličina u malom prostoru. Generiranje mreže u složenim trodimenzijskim problemima zahtijeva puno vremena, pogotovo ukoliko se radi o generiranju strukturiranih mreža.

Procesor računalno rješava matematički model uz zadane početne i rubne uvjete.

Postprocesor služi za vizualizaciju rezultata proračuna i kod programa ANSYS Fluent je integriran s procesorom.

U ovom radu je za predprocesor korišten program ANSYS ICEM CFD.

2.1. Opći oblik zakona očuvanja fizičkog svojstva

Zakon očuvanja fizičkog svojstva glasi: Brzina promjene sadržaja fizičkog svojstva unutar materijalnog volumena jednaka je izvoru ili ponoru tog fizičkog svojstva ili njihovoj razlici.

Izvor može biti raspodijeljen po prostoru ili površini materijalnog volumena. Površinski dio izvorskog člana često je povezan s difuzijskim procesima koji su posljedica postojanja gradijenta fizičkog svojstva.
Opća konveksijsko difuzijska jednadžba izražena pomoću fizikalnog svojstva φ glasi:

$$\frac{\partial(\rho \varphi)}{\partial t} + \frac{\partial(\rho v_j \varphi)}{\partial x_j} - \Gamma \left(\frac{\partial^2 \varphi}{\partial x_j x_j} \right) = S_{\varphi} \tag{1}$$

2.2. Osnovne jednadžbe dinamike fluida

Dinamika fluida temelji se na pet osnovnih zakona fizike:

- zakon očuvanja mase,
- zakon očuvanja količine gibanja,
- zakon očuvanja momenta količine gibanja,
- zakon očuvanja energije i
- drugi zakon termodinamike.

Ovi zakoni su primijenjeni na materijalni volumen koji s vremenom mijenja svoj položaj, oblik i veličinu, ali se uvijek sastoji od istih čestica fluida. Materijalni volumen preuzima ulogu sustava materijalnih točaka iz mehanike te zatvorenog termodinamičkog sustava iz termodinamike.

Zakon očuvanja mase, za materijalni volumen glasi: Brzina promjene mase materijalnog volumena jednaka je nuli.

$$\frac{\partial \rho}{\partial t} + \frac{\partial(\rho v_j)}{\partial x_j} = 0 \tag{2}$$

Zakon očuvanja količine gibanja, za materijalni volumen glasi: Brzina promjene količine gibanja materijalnog volumena jednaka je sumi vanjskih masenih i površinskih sila koje djeluju na materijalni volumen.

$$\frac{\partial(\rho v_i)}{\partial t} + \frac{\partial(\rho v_i v_j)}{\partial x_j} = \rho f_i + \frac{\partial \sigma_{ji}}{\partial x_j} \tag{3}$$

Zakon očuvanja momenta količine gibanja za materijalni volumen glasi: Brzina promjene momenta količine gibanja materijalnog volumena, u odnosu na odabrani pol, jednaka je sumi momenata vanjskih masenih i površinskih sila koje djeluju na materijalni volumen, u odnosu na taj isti odabrani pol. Uz pretpostavku da u fluidu nema momenata raspodijeljenih po površini materijalnog volumena ili unutar njega, zakon očuvanja momenta količine gibanja se svodi na činjenicu simetričnosti tenzora naprezanja σ_{ji}. Jednadžba momenta količine gibanja već je zadovoljena ako se unaprijed pretpostavi simetričnost tenzora naprezanja pa se tu jednadžbu više ne treba uključivati u skup osnovnih jednadžbi dinamike fluida.
Zakon očuvanja energije za materijalni volumen glasi: Brzina promjene zbroja kinetičke i unutarnje energije materijalnog volumena jednaka je snazi vanjskih masenih i površinskih sila koje djeluju na materijalni volumen te brzini izmjene topline materijalnog volumena s okolinom.

\[
\frac{\partial (\rho v_e)}{\partial t} + \frac{\partial (\rho v_j v_i)}{\partial x_j} = \rho f_i v_i + \frac{\partial (\sigma_{ji} v_i)}{\partial x_j} - \frac{\partial q_i}{\partial x_i} \quad (4)
\]

Drugi zakon termodinamike ukazuje na jednosmjernost odvijanja realnih termodinamičkih procesa. Entropija izoliranog sustava mora rasti ili u idealnom slučaju ostati ista, odnosno njena produkcija u otvorenom termodinamičkom sustavu mora biti pozitivna ili jednaka nuli. Glavna primjena ovog zakona u dinamici fluida je za ocjenu valjanosti dobivenih rješenja strujanja fluida, odnosno ako postoji više rješenja nekog problema strujanja, uzima se ono koje je u skladu s drugim glavnim stavkom termodinamike. S obzirom na to da se entropija pojavljuje samo u Gibbsovoj jednadžbi, a ne pojavljuje u ostalim osnovnim zakonima dinamike fluida, Gibbsova jednadžba može se rješavati neovisno o ostalim jednadžbama pa se ne mora uključivati u osnovni skup jednadžbi dinamike fluida [16].

Nakon uzimanja u obzir kaloričke jednadžbe stanja, Fourierovog zakona toplinske vodljivosti i Newtonovog zakona viskoznosti, prethodno navedene jednadžbe se mogu pisati u obliku:

\[
\frac{\partial \rho}{\partial t} = - \frac{\partial (\rho v_j v_i)}{\partial x_j} \quad (5)
\]
\[
\frac{\partial (\rho v_i)}{\partial t} = - \frac{\partial (\rho v_j v_i)}{\partial x_j} + \rho f_i - \frac{\partial p}{\partial x_i} + \frac{\partial \Sigma_{ji}}{\partial x_j} \quad (6)
\]
\[
\frac{\partial (\rho c_v T)}{\partial t} + \frac{\partial (\rho c_v v_j T)}{\partial x_j} = -p \frac{\partial v_j}{\partial x_j} + \Sigma_{ji} \frac{\partial v_i}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\lambda \frac{\partial T}{\partial x_j} \right) + q_H \quad (7)
\]

U jednadžbi (7) \(q_H \) je volumenska gustoća toplinskih izvora.

Članovi u jednadžbi (6) su redom:

- nestacionarni član koji opisuje promjenu brzine,
- konvekcijski član koji opisuje utjecaj povezan s promjenom brzine u prostoru,
- član masene sile,
- član gradijenta tlaka i
difuzijski član koji je rezultat pretpostavke Newtonovskog fluida.
U gornjim jednadžbama nepoznanice su gustoća ρ, brzina v_i, tlak p i temperatura T. Ako se radi o nestlačivom strujanju gustoća je konstantna, $\rho = konst$.

Za praktično rješavanje problema strujanja fluida osnovni zakoni se uglavnom koriste za kontrolni volumen. Zakoni za materijalni volumen se transformiraju u oblike za kontrolni volumen primjenom Reynoldsova transportnog teorema koji glasi:

$$
\frac{D}{Dt} \int_{V_m} \Phi dV = \frac{d}{dt} \int_{V_{Kv}} \Phi dV + \int_{S_{Kv}} \Phi v_i n_i dS
$$

(8)

i koristi se za mirujući kontrolni volumen kojem je relativna brzina $u_j = 0$.

Za promjenjivi kontrolni volumen koji se giba relativnom brzinom, primjenjuje se oblik Reynoldsova teorema:

$$
\frac{D}{Dt} \int_{V_m} \Phi dV = \frac{d}{dt} \int_{V_{(t)}} \Phi dV + \int_{S_{(t)}} \Phi (v_i - u_j n_i) dS.
$$

(9)

U gornjim jednadžbama, Φ se odnosi na gustoću fizičke veličine [17].

2.3. Turbulentno strujanje

Turbulentno strujanje fluida najčešći je oblik strujanja fluida u prirodi, a pojavljuje se pri visokim vrijednostima Reynoldsova broja. Reynoldsov broj je bezdimenzijski broj koji prikazuje omjer inercijskih i viskoznih sila u strujanju fluida:

$$
Re = \frac{vx}{v}
$$

(10)

gdje v predstavlja brzinu strujanja, x karakterističnu duljinu i v kinematičku viskoznost fluida.

Što je Reynoldsov broj veći, to je turbulentno strujanje izraženije. Kod turbulentnog strujanja su inercijske sile dominantnije od viskoznih, a karakteristika turbulentnog strujanja su slučajne pulsacije tlaka i brzine te kaotično gibanje čestica fluida.

Pri niskim vrijednostima Reynoldsova broja, javlja se laminarno strujanje kod kojeg su viskozne sile dominantnije od inercijskih. Za razliku od turbulentnog strujanja, laminarno strujanje karakterizira uredno gibanje čestica fluida.

Laminarno nestlačivo strujanje fluida uz $v = konst$. se opisuje sustavom Navier-Stokesovih jednadžbi. Dodavanjem male vremensko prostorne perturbacije polja tlaka i polja brzine na već dobiveno stacionarno rješenje provodi se matematičko ispitivanje stabilnosti rješenja.
Navier-Stokesovih jednadžbi. Ukoliko perturbacije tijekom vremena slabe, strujanje se može okarakterizirati kao stabilno te ostaje stacionarno i laminarno. Pojavom prve perturbacije koja ne slabiti vremenu počinje tranzicija iz laminarnog u turbulentno strujanje i u tome se očituje kritična vrijednost Reynoldsova broja. Kritična vrijednost Reynoldsova broja nije univerzalna vrijednost nego ona ovisi o uvjetima strujanja, geometriji opstrujavanog tijela, itd. Donja vrijednost kritičnog Reynoldsova broja je vrijednost ispod koje se ne pojavljuje turbulentno strujanje, a gornja vrijednost kritičnog Reynoldsova broja je vrijednost iznad koje se ne može održati laminarno strujanje.

Pri opstrujavanju ravne ploče (Slika 2) na početku ploče je strujanje laminarno, pri čemu je Reynoldsov broj manji od donje kritične vrijednosti. Nestabilnosti strujanja javljaju se u presjeku \(x = x_{kr} \) gdje Reynoldsov broj poprima kritičnu vrijednost \(Re_{kr} = \frac{v_\infty x_{kr}}{\nu} \). Udaljavanjem od tog presjeka u smjeru strujanja, pulsacije postaju sve izraženije te strujanje postaje turbulentno.

U neposrednoj blizini stijenke, i u laminarnom i u turbulentnom strujanju, prisutan je sloj u kojem se brzina fluida mijenja od nule do brzine neporemećenog strujanja. Brzina uz stijenku jednaka je nuli zbog fluida koji se lijepi za stijenku. Područje tog sloja naziva se graničnim slojem [16].

Slika 2. Tranzicija iz laminarnog u turbulentno strujanje pri opstrujavanju ravne ploče [16]

Strujanje fluida se karakterizira kao turbulentno ako je nepravilno, rotirajuće, isprekidano, jako poremećeno, difuzno i disipativno. To je izrazito nestacionarno strujanje, karakterizirano intenzivnim miješanjem fluida na razini većih i manjih čestica. Čak i ako su zadani stacionarni rubni uvjeti, turbulentno strujanje ima izrazito nestacionaran karakter sa slučajnim...
pulzacijama fizikalnih veličina. Turbulentne pulzacije uvijek imaju trodimenzijski prostorni karakter.

Pri računalnom rješavanju Navier–Stokesovih jednadžbi za slučaj razvijenog turbulentnog strujanja, diskretizacija područja proračuna bi trebala biti vrlo sitna da se obuhvate i najviše frekvencije turbulentnih pulsacija. Rezultat takvog rješavanja je skup vrijednosti polja fizikalnih veličina u velikom broju prostornih točaka za veliki broj vremenskih trenutaka, pri čemu je kod većine problema dovoljno poznavati osrednjene vrijednosti i eventualno amplitude odstupanja od osrednjene vrijednosti. Prije rješavanja Navier–Stokesovih jednadžbi, sve veličine u jednadžbama se sukladno osrednjavaju čime se pojednostavljuje računalno rješavanje tih jednadžbi. Ovaj se postupak naziva Reynoldsovo osrednjavanje [16].

2.4. Vremenski osrednjene Navier–Stokes (RANS) jednadžbe

U postupku Reynoldsovog osrednjavanja, trenutna vrijednost bilo koje varijable prikazuje kao zbroj vremenski osrednjene komponente i fluktuirajuće (pulzirajuće) komponente:

$$\Phi = \Phi + \Phi'. \quad (11)$$

Vremenski osrednjena veličina definirana je kao:

$$\Phi = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \Phi \, dt. \quad (12)$$

Reynoldsovo osrednjavanje ima sljedeće svojstvo:

$$\overline{\Phi} = \overline{\Phi}$$

$$\overline{\Phi'} = 0 \quad (13)$$

Jednadžbe (11) i (12) se uvrste u osnovne diferencijalne jednadžbe koje se zatim osrednjavaju po vremenu kako bi se dobile diferencijalne jednadžbe za vremenski osrednjene veličine.

U slučaju stlačivog turbulentnog strujanja, osrednjavanje diferencijalnih jednadžbi izvodi se primjenom Favreovog osrednjavanja.

$$\overline{\Phi} = \frac{\int_{t}^{t+\Delta t} \rho \Phi \, dt}{\int_{t}^{t+\Delta t} \rho \, dt}. \quad (14)$$

Primjeni li se Reynoldsovo osrednjavanje na opći oblik zakona očuvanja za nestlačivo strujanje:
\[\frac{\partial (\rho \varphi)}{\partial t} + \frac{\partial (\rho v_j \varphi)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \varphi}{\partial x_j} \right) + S_\varphi \] (15)

djele je \(\varphi \) polje fizikalne veličine, \(\Gamma \) koefficijent difuzije i \(S_\varphi \) izvorski član, slijedi:

\[\frac{\partial (\rho \bar{\varphi})}{\partial t} + \frac{\partial (\rho \bar{v}_j \bar{\varphi})}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \bar{\varphi}}{\partial x_j} - \rho \bar{v}_j' \rho' \right) + \bar{S}_\varphi \] (16)

iz čega se vidi da nestaju derivacije pulsirajućih dijelova fizikalnih veličina po vremenu, ali ostaje prisutan peti član od pulsirajućeg strujanja. Šesti član je nova nepoznanica i predstavlja turbulentnu difuziju te bi se za taj član mogla uvesti nova jednadžba. Uvođenjem nove jednadžbe stvaraju se nove nepoznanice za koje bi se također trebale uvoditi nove jednadžbe što dodatno komplicira proračun. Iz toga razloga, taj član potrebno je modelirati [15].

2.5. Vremenski osrednje jednadžbe za slučaj nestlačivog strujanja

Nestlačivo turbulentno strujanje, u kojem se zanemari utjecaj masenih sila može se se opisati jednadžbom kontinuiteta i jednadžbom količine gibanja u kojima su nepoznanice polja brzine i polje tlaka. Te veličine prikazuju se zbrojem osrednjene i pulsirajuće komponente.

\[v_i = \bar{v}_i + v_i' \]
\[p = \bar{p} + p' \] (17)

Uvrštavanjem ovih relacija u jednadžbu kontinuiteta i jednadžbu očuvanja količine gibanja za slučaj nestlačivog strujanja dobije se skup vremenski osrednjenih jednadžbi kontinuiteta i količine gibanja koji se naziva Reynoldsovim jednadžbama:

\[\frac{\partial \bar{v}_j}{\partial x_j} = 0; \]
\[\frac{\partial (\rho \bar{v}_j)}{\partial t} + \frac{\partial (\rho \bar{v}_i \bar{v}_j)}{\partial x_i} = - \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) - \rho \bar{v}_i' \bar{v}_j' \right]. \] (18)

Zadnji član u gornjoj jednadžbi, kao što je prethodno napisano, označava turbulentnu difuziju količine gibanja, a s obzirom na činjenicu da molekularna difuzija odgovara visokim naprezanjima, taj član se naziva i turbulentnim, odnosno Reynoldsovim naprezanjem. Reynoldsov tenzor naprezanja je simetričan tenzor koji sadrži šest nepoznanica.

2.6. Model turbulencije

Zadatak modela turbulencije je usklađivanje broja jednadžbi i broja nepoznanica iz Navier-Stokesovih jednadžbi modeliranjem člana pulsirajućeg dijela strujanja pomoću poznatih
članova sustava. Opći zahtjevi koji se postavljaju pred model turbulencije su univerzalnost, točnost, mogućnost ekonomičnog rješavanja i jednostavnost.

Modeli turbulencije dijele se s obzirom na red korelacije brzina za koju se rješava transportna jednadžba na modele prvog, drugog i trećeg reda. Viši red modela turbulencije ne znači nužno da je taj model bolji u odnosu na niže modele, a s obzirom na to da ima veći broj članova koje treba modelirati, često nije ni točniji.

U modelima prvog reda, koji su najjednostavniji, modelira se tenzor Reynoldsovih naprezanja i to uglavnom prema hipotezi Boussinesqa u obliku:

\[-\rho v_i' v_j' = \mu_t \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) - \frac{2}{3} \rho \bar{k} \delta_{ij} \]

gdje je \(\mu_t \) koeficijent turbulentne viskoznosti koji nije fizikalno svojstvo fluida nego je funkcija uvjeta strujanja, a u laminarnom strujanju jednak je nuli. \(\bar{k} = \frac{v_i' v_j'}{2} \) naziva se kinetička energija turbulencije. Modeli koji se temelje na gornjoj pretpostavci nazivaju se Newtonovskim modelima turbulencije, budući da su analogni s Newtonovim zakonom viskoznosti.

Kada se hipoteza Boussinesqa uvrsti u Reynoldsove jednadžbe, one prelaze u oblik:

\[\frac{\partial \bar{v}_i}{\partial t} = 0; \]

\[\frac{\partial (\rho \bar{v}_i)}{\partial t} + \frac{\partial (\rho \bar{v}_i \bar{v}_j)}{\partial x_j} = - \frac{\partial}{\partial x_i} \left(\bar{p} + \frac{2}{3} \rho \bar{k} \right) + \frac{\partial}{\partial x_j} \left[(\mu + \mu_t) \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) \right]. \]

Na ovaj način se u jednadžbama pojavljuju samo vremenski osrednjene veličine, ali je potrebno još modelirati koeficijent turbulentne viskoznosti.

Postoji više načina modeliranja koeficijenata turbulentne viskoznosti, a u osnovi se koristi analogija s kinetičkom teorijom plinova. Boussinesqova ideja je da se turbulentna naprezanja modeliraju slično viskoznim naprezanjima pa se analogno tome turbulentna viskoznost definira u obliku:

\[\mu_t = \rho l_t v_t. \]
Prema tome turbulentna viskoznost je definirana s dvije karakteristične veličine u turbulentnom strujanju, a jednadžba (21) čini osnovu za veći broj modela turbulencije, koji se razlikuju po definiciji te dvije karakteristične veličine u turbulenciji.

Modeli prvog reda mogu se podijeliti na algebarske modele turbulencije gdje se l_t i v_t propisuju algebarski, zatim na diferencijalne modele s jednom jednadžbom i na diferencijalne modele s dvije jednadžbe od kojih su neki od najpoznatijih $k-\varepsilon$ i $k-\omega$ modeli [15].

2.7. $k-\omega$ SST model turbulencije

$k-\omega$ Shear Stress Transport ili kraće $k-\omega$ SST model turbulencije je opisan s dvije diferencijalne transportne jednadžbe te dodatnim algebarskim jednadžbama. SST pristup obuhvaća prednosti korištenja $k-\omega$ i $k-\varepsilon$ modela. Korištenje $k-\omega$ modela u blizini stijenke, u unutarnjim dijelovima graničnog sloja čini model direktno primjenjivim u viskoznom podslouju te se može koristiti i za modele s malom vrijednosti Reynoldsovog broja bez potrebe za dodatnim prigušnim funkcijama. U području slobodne struje, podalje od stijenke, $k-\omega$ SST model radi kao $k-\varepsilon$ model turbulencije te se time izbjegava uobičajeni problem osjetljivosti $k-\omega$ modela na ulazna svojstva turbulencije u slobodnoj struji [18].

$k-\omega$ SST model turbulencije je opisan s dvije diferencijalne jednadžbe, jedne koja opisuje transport kinetičke energije turbulencije k:

$$
\frac{\partial k}{\partial t} + u_j \frac{\partial k}{\partial x_j} = P_k - \beta^* k \omega + \frac{\partial}{\partial x_j} \left[(v + \sigma_k v_t) \frac{\partial k}{\partial x_j} \right],
$$

i druge koja opisuje specifičnu disipaciju kinetičke energije turbulencije ω:

$$
\frac{\partial \omega}{\partial t} + u_j \frac{\partial \omega}{\partial x_j} = \alpha S^2 - \beta \omega^2 + \frac{\partial}{\partial x_j} \left[(v + \sigma_\omega v_t) \frac{\partial \omega}{\partial x_j} \right]
+ 2(1 - F_1)\sigma_\omega \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_i}.
$$

Turbulentna viskoznost je dana izrazom:

$$
v_t = \frac{a_1 k}{\max(a_1 \omega, SF_2)}.
$$

Dodatne jednadžbe koje opisuju $k-\omega$ SST model turbulencije su dane izrazima:

$$
F_2 = \tanh \left[\max \left(\frac{2\sqrt{k}}{\beta^* \omega y}, \frac{500v}{y^2 \omega} \right) \right]\left(\frac{\partial u_i}{\partial x_j}, 10 \beta^* k \omega \right)
$$

$$
P_k = \min \left(\frac{\tau_{ij}}{\partial x_j}, 10 \beta^* k \omega \right)
$$
Fakultet strojarstva i brodogradnje

Tamara Petranović

Diplomski rad

\[
F_1 = \tanh \left\{ \min \left[\max \left(\frac{\sqrt{k}}{\beta^* \omega \gamma} \frac{500\nu}{y^2 \omega} \right), \frac{4\sigma_{\omega 2} k}{CD_{k\omega} y^2} \right] \right\}^{4}
\]
(27)

\[
CD_{k\omega} = \max \left(2\rho\sigma_{\omega 2} \frac{1}{\omega} \frac{\partial \omega}{\partial x_i} \frac{\partial x_i}{\partial x_i}, 10^{-10} \right)
\]
(28)

\[
\phi = \phi_1 F_1 + \phi_2 (1 - F_1)
\]
(29)

Koeficijenti korišteni u gornjim jednadžbama su dani u tablici 1.

<table>
<thead>
<tr>
<th>Koeficijent</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\sigma_{k1})</th>
<th>(\sigma_{k2})</th>
<th>(\sigma_{\omega 1})</th>
<th>(\sigma_{\omega 2})</th>
<th>(\beta^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vrijednost</td>
<td>5/9</td>
<td>0,44</td>
<td>3/40</td>
<td>0,0828</td>
<td>0,85</td>
<td>1</td>
<td>0,5</td>
<td>0,856</td>
<td>9/19</td>
</tr>
</tbody>
</table>

2.8. Strujanje u blizini zida

Model turbulencije je primjenjiv u područjima strujanja gdje je koeficijent turbulentne viskoznosti velik, odnosno gdje je zanemariva molekularna viskoznost. S obzirom na to da su u blizini zida onemogućene turbulentne pulzacije, a na samoj stijenci su brzine jednake nuli, u tom području prevladava molekularna viskoznost dok je koeficijent turbulentne viskoznosti mali ili jednak nuli što znači da model turbulencije ne vrijedi za to područje.

Postoje dvije mogućnosti za rješenje ovog problema. Prva mogućnost je primjena modela turbulencije koji vrijedi za niske vrijednosti \(Re_t\) u neposrednoj blizini stijenke, a druga mogućnost je korištenje zidnih funkcija.

Prvi način se rijetko primjenjuje zbog poteškoća definiranja univerzalnog modela turbulencije i zbog neekonomičnosti proračuna. Danas se najčešće koriste teorijska rješenja primjenjiva na područje uz zid, takozvane zidne funkcije. U neposrednoj blizini stijenke, strujanje je paralelno sa stijenkom i zanemaruje se turbulentna viskoznost. Ako se komponenta brzine glavnog strujanja paralelno sa stijenkom označi sa \(\bar{u}\), a koordinata okomito na stijenku s \(y\), onda zanemarivanjem malih članova u jednadžbi količine gibanja (za smjer strujanja) slijedi da je ukupno tangencijalno naprezanje konstantno:

\[
\frac{\partial}{\partial y} \left[(\mu + \mu_t) \frac{\partial \bar{u}}{\partial y} \right] = \frac{\partial \tau}{\partial y} = 0.
\]
(30)

U neposrednoj blizini stijenke turbulentna viskoznost se može zanemariti iz čega proizlazi da je profil brzine linearan.

U području podalje od stijenke u kojem se zanemaruje molekularna viskoznost izraz za ukupno tangencijalno naprezanje glasi:
\[\tau = (\mu + \mu_t) \frac{\partial \vec{u}}{\partial y} = \mu_t \frac{\partial \vec{u}}{\partial y} = \text{konst.} \] (31)

u kojem se \(\mu_t \) određuje pomoću Prandtlove hipoteze puta miješanja.

Iz gornjeg izraza slijedi logaritamski profil brzine u kojem se von Kármánova konstanta i konstanta C određuju mjerenjem:

\[\bar{u} = \frac{1}{\kappa} \sqrt{\frac{\tau_w}{\rho}} \ln y + C. \] (32)

U gornjem izrazu, \(\sqrt{\tau_w/\rho} = v_t \) ima dimenziju brzine i naziva se brzina trenja. S pomoću nje se definiraju bezdimenzija brzina \(u^+ = \bar{u}/v_t \) i bezdimenzija udaljenost od stijenke \(y^+ = yv_t/\nu \).

Na temelju bezdimenzija udaljenosti od stijenke, turbulentno strujanje u blizini stijenke se može podijeliti u tri osnovna područja:

- linearni podsloj: \(0 < y^+ \leq 5 \),
- prijelazni sloj: \(5 < y^+ \leq 40 \),
- inercijalni podsloj: \(30 < y^+ \leq \text{nekoliko tisuća} \) [14, 15, 16].

Slika 3. Shematski prikaz dijagrama bezdimenzija brzine u funkciji bezdimenzija udaljenosti od stijenke [16]
3. METODA KONAČNIH VOLUMENA

Metoda konačnih volumena je integralna metoda koja se temelji na integriranju konzervativnog oblika transportnih jednadžbi po konačnim volumenima na koje je podijeljeno područje proračuna. Kontrolni volumen, odnosno domena, dijeli se na veliki broj konačnih volumena u kojima se izračunavaju vrijednosti polja fizikalnih veličina. Konačni volumeni u potpunosti ispunjavaju kontrolni volumen i ne smiju se preklapati te za svaki konačni volumen ostaju zadovoljeni zakoni očuvanja.

Opća jednadžba zakona očuvanja fizikalnog svojstva:

\[
\frac{\partial \rho \varphi}{\partial t} + \sum_j \left(\rho v_j \varphi - \Gamma \frac{\partial \varphi}{\partial x_j} \right) = \Gamma \frac{\partial \varphi}{\partial x_j} = S_\varphi. \tag{33}
\]

gdje prvi član predstavlja lokalnu promjenu, drugi je konvektivni član, a treći difuzijski član. Zbroj konvektivnog i difuzijskog člana predstavlja fluksu, odnosno vektor ukupnog protoka fizikalnog svojstva.

Integral jednadžbe po konačnom volumenu prema slici 4:

\[
\frac{d}{dt} \int_{\Delta V} \rho \varphi dV = - \int_{\Delta S} \left(\rho v_j \varphi - \Gamma \frac{\partial \varphi}{\partial x_j} \right) n_j dS + \int_{\Delta V} S_\varphi dV. \tag{34}
\]

Slika 4. Dio diskretiziranog područja proračuna [15]
Iz jednadžbe 34 proizlazi da je brzina promjene sadržaja fizikalnog svojstva unutar konačnog volumena proporcionalna brzini protoka fizikalnog svojstva kroz granice konačnog volumena i brzini nastajanja, izvoru ili nestajanja, ponoru fizikalnog svojstva unutar konačnog volumena. Kada se protok konačnog volumena odvija prema okolini, definiran je kao pozitivan pa minus ispred integrala predstavlja slučaj u kojem će se sadržaj fizikalnog svojstva unutar konačnog volumena smanjivati.

Uz \(\varphi = \text{konst.} \) i \(\Delta V_C = \Delta V \) slijedi:

\[
\int_{\Delta V} \varphi dV = \bar{\varphi} \Delta V
\]

gdje \(\bar{\varphi} \) predstavlja srednju vrijednost fizikalne veličine \(\varphi \) unutar konačnog volumena.

Pretpostavkom da je konačni volumen dovoljno mali, promjena veličine \(\varphi \) unutar konačnog volumena može se aproksimirati linearnom raspodjelom, odnosno prvom potencijom razvoja u Taylorov red oko vrijednosti u čvoru C, pa nakon uvrštavanja i uređivanja slijedi:

\[
\bar{\varphi} \Delta V = \left[\varphi_C + \frac{\partial \varphi}{\partial x_j} (x_j^T - x_j^C) \right] \Delta V
\]

gdje je \(x_j^T \) vektor položaja težišta kontrolnog volumena, a \(x_j^C \) vektor položaja centralnog čvora C. Ukoliko se težište volumena \(\Delta V \) nalazi u točki C, proizlazi da za slučaj linearne raspodjele \(\varphi \) unutar volumena \(\Delta V \) vrijedi \(\bar{\varphi} = \varphi_C \).

Za integral izvorskog člana vrijedi:

\[
\int_{\Delta V} S_\varphi dV = S_C \Delta V
\]

gdje \(S_C \) predstavlja srednju vrijednost izvorskog člana unutar volumena \(\Delta V \).

Vektor konvekcijskog toka je definiran izrazom \(\rho v_j \varphi \), a vektor difuzijskog toka je \(-\Gamma \frac{\partial \varphi}{\partial x_j} \) i njihov zbroj čini ukupni vektor toka \(f_j \).

Protoku fizikalnog svojstva doprinosi samo normalna komponenta vektora toka \(f_j \eta_j \).

\[
\Delta f_n = \int_{\Delta S} \left(\rho v_j \varphi - \Gamma \frac{\partial \varphi}{\partial x_j} \right) n_j dS = \int_{\Delta S} \left(\rho \nu_n \varphi - \Gamma \frac{\partial \varphi}{\partial n} \right) dS = \left[\rho (\bar{\nu}_n \varphi) n - \Gamma \frac{\partial \varphi}{\partial n} n \right] \Delta S
\]
gdje je \((\bar{v}_n\bar{\varphi})_n\) srednja vrijednost umnoška na površini \(\Delta S\), a \(\bar{\varphi}
abla n\) srednja vrijednost normalne derivacije polja \(\varphi\) na površini \(\Delta S\).

Uvođenjem bezdimenijske koordinate \(\bar{n} = n/\Delta{n}\), gdje je \(\Delta{n}\) udaljenost čvorova C i N i aproksimacijom srednje vrijednosti umnoška \((\bar{v}_n\bar{\varphi})_n\):

\[
\Delta J_n = (\rho \bar{v}_n \Delta S) \bar{\varphi}_n - \frac{\Gamma \Delta S \nabla \bar{\varphi}}{\nabla n} \bigg|_n = F_n \bar{\varphi}_n - D_n \frac{\nabla \bar{\varphi}}{\nabla n} \bigg|_n. \quad (39)
\]

\(F_n\) predstavlja jačinu konvekcije, odnosno maseni protok kroz površinu \(\Delta S\), a \(D_n\) jačinu difuzije.

Jedina nepoznanica u jednadžbi (33) je polje \(\varphi\) što znači da se jačine konvekcije i difuzije u jednadžbi 34 mogu izračunati. U izrazu (39) nepoznate su srednja vrijednost \(\bar{\varphi}_n\) i normalna derivacija \(\nabla \bar{\varphi}/\nabla n\) na površini \(\Delta S\). U računalnom postupku se u glavnim čvorovima računaju čvorne vrijednosti polja \(\varphi\) pa je potrebno definirati tražene vrijednosti na stranicama konačnih volumena pomoću vrijednosti u glavnim čvorovima. Taj postupak naziva se shemom diferencije ili numeričkom shemom. Ukoliko se te vrijednosti definiraju u težištu površine \(\Delta S\), aproksimacija je najtočnija.

Uvrštavanjem izraza (35), (37) i (39) u izraz (34), dobiva se jednadžba:

\[
\rho \Delta V_C \frac{d\varphi_C}{dt} = - \sum_{n=1}^{N_{nb}} \left(F_n \bar{\varphi}_n - D_n \frac{\nabla \bar{\varphi}}{\nabla n} \right)_{n,n} + S_C \Delta V_C \quad (40)
\]

gdje \(N_{nb}\) predstavlja broj stranica konačnog volumena.

Primjenom neke od shema diferencije koje koriste samo čvorne vrijednosti, ukupni protok fizikalnog svojstva \(\varphi\) kroz površinu \(\Delta S\):

\[
\Delta J_n = F_n \varphi_C + a_n (\varphi_C - \varphi_N) \quad (41)
\]

gdje koeficijent \(a_n\) ovisi o primijenjenoj shemi diferencije.

Uvrsti li se izraz (41) u izraz (40), nakon uređivanja:

\[
a_C \varphi_C = \sum_{n=1}^{N_{nb}} [a_N \varphi_N]_{n,n} + a + \frac{\rho \Delta V_C}{\Delta t} \varphi_C^{old} \quad (42)
\]

gdje je \(a_C\) centralni koeficijent.
Jednadžba (42) je linearna algebarska jednadžba dobivena diskretizacijom integrala po konačnom volumenu s centralnim čvorom C. Ponavljanjem postupka za sve konačne volumene unutar domene dobiva se sustav linearnih algebarskih jednadžbi u kojem su nepoznanice vrijednosti u čvorovima polja φ. Sustav se može zapisati u matričnom obliku:

\[
[A_{ji}][φ_i] = [b_j]
\]

pri čemu je:

- \([A_{ji}]\) – matrica sustava kojoj su retci koeficijenti \(a_c\) i \(a_{nb}^n\),
- \([φ_i]\) – vektor nepoznanica (čvorne vrijednosti polja \(φ\)),
- \([b_j]\) – vektor u kojeg ulaze sve poznate veličine.

Polje \(φ\) mora zadovoljavati rubne uvjete koji se ugrađuju kroz desnu stranu sustava jednadžbi prije rješavanja [15].

3.1. **Uzvodna shema prvog reda**

Pri modeliranju protoka kroz granicu, koji je definiran zbrojem konvekcije i difuzije, treba voditi računa o međudjelovanju ta dva transporta, no to se ne čini u svim shemama nego se svaki transport modelira kao da nema onog drugog.

Uzvodna shema prvog reda (engl. First Order Upwind Scheme) najjednostavnija je numerička shema u kojoj se pretpostavlja da je vrijednost fizikalne veličine na stranici jednaka vrijednosti u čvoru konačnog volumena uzvodno kao što je prikazano na slici 5.

Slika 5. Numerička shema prvog reda točnosti [19]

Zbog simetričnosti difuzijskog transporta, za njegovu se diskretizaciju uobičajeno koristi shema centralnih razlika:
\[-D \frac{d\varphi}{dn} = -D(\varphi_N - \varphi_C).\]

(44)

Sheme se razlikuju po načinu modeliranja konvekcijskog transporta. Vrijednost fizikalne veličine \(\varphi \) na stranici definira se kao rješenje eksponentijalne sheme za vrijednost difuzije \(D = 0 \). Vrijednost fizikalne veličine \(\varphi \) na stranici je jednakja vrijednosti u uzvodnom čvoru \(\varphi_C \) ako se prijenos fizikalnog svojstva putem konvekcije odvija od čvora \(\text{C} \) prema čvoru \(\text{N} \). Ukoliko se prijenos odvija u suprotnom smjeru, vrijednost fizikalne veličine na stranici je jednaka vrijednosti u nizvodnom čvoru \(\varphi_N \).

Osnovna prednost ove sheme su jednostavno računanje koeficijenata te se, zbog toga što su koeficijenti uvijek pozitivni, ne javljaju nefizikalna oscilatorna rješenja. Nedostatak ove sheme je što unosi lažnu difuziju u rješenje [15,19].

3.2. Linearno uzvodna shema

Prava potpuno uzvodna shema, koja je drugog reda točnosti, je linearno uzvodna shema.

Slika 6. Uzvodna shema drugog reda točnosti [19]

Vrijednost fizikalne veličine na stranici \((\varphi_n) \) se određuje linearnom ekstrapolacijom vrijednosti iz dvaju čvorova uzvodno. Difuzijski transport se definira shemom centralnih razlika, a izraz za konvekcijski transport glasi:

\[
\varphi_n \begin{cases}
\varphi_C + \frac{1}{2} \left(\frac{\partial \varphi}{\partial n} \right)_{C} = \varphi_C + \frac{1}{2} (\varphi_C - \varphi_W) \\
\varphi_N + \frac{1}{2} \left(\frac{\partial \varphi}{\partial n} \right)_{N} = \varphi_E + \frac{1}{2} (\varphi_N - \varphi_D)
\end{cases} \]

gdje se prvi način odnosi na situaciju kada se transport odvija od čvora \(\text{C} \) prema \(n \), a drugi način kada se transport odvija od čvora \(\text{N} \) prema \(n \).
Ova shema daje oscilatorno rješenje u blizini diskontinuiteta. Za sve sheme koje daju nefizikalno oscilatorno rješenje problema (generiraju nove maksimume i minimume pri nultom izvorskom članu), kaže se da su neomjeđene (engl. Unbounded). Sheme drugog reda u područjima sa značajnim gradijentima fizikalnih veličina mogu davati rezultate koji su izvan graničnih vrijednosti u čvorovima, stoga je potrebno definirati granične vrijednosti fizikalnih veličina na stranicama. Linearno uzvodna shema drugog reda točnosti se često koristi zbog zadovoljavajućeg odnosa točnosti i stabilnosti [15, 19].
4. AERODINAMIČKE SILE I MOMENTI

Aerodinamičke sile i momenti na tijelo oko kojega opstruja fluid su rezultat raspodjele tlaka po površini tijela i raspodjele smičnog naprezanja po površini tijela.

Tlak p predstavlja naprezanje na površinu u smjeru normale, a smično naprezanje τ djeluje tangencijalno na površinu. Smično naprezanje je posljedica viskoznosti fluida, odnosno viskoznog trenja između fluida i površine tijela.

Rezultantna sila i moment na tijelo su integrali tlaka p i smičnog naprezanja τ po površini tijela. Rezultantna sila se može podijeliti na tri komponente, uzgon F_L koji je komponenta sile R okomita na smjer brzine neporemećene struje zraka v_∞, otpor F_D koji je komponenta sile R paralelna s neporemećenom brzinom v_∞, te bočna sila F_B koja djeluje okomito na smjer strujanja (prema čitatelju).

![Slika 7. Rezultantna sila s komponentama](image)

Mekanika fluida, a ujedno i aerodinamika, je teorijsko-eksperimentalna znanost, unutar koje se dugi niz godina do rezultata dolazilo eksperimentima. Eksperiment se može provoditi u originalnoj pojavi (prototipu) ili u modelskoj pojavi (modelu). Dimenzijska analiza i teorija sličnosti predstavljaju temelj eksperimentalnom istraživanju složenih fizikalnih pojava u raznim područjima fizike, a njihovom primjenom smanjuje se potrebn broj mjerenja neke pojav, olakšava se prikaz, tumačenje i usporedba rezultata mjerenja te omogućuje primjenu analogije. U svrhu lakšeg prikaza i usporedbi rezultata računalnih simulacija definiraju se bezdimenzijski koeficijenti aerodinamičkih sila i momenata. Za njihovo definiranje potrebno je poznavati dinamički tlak $\frac{1}{2} \rho v_\infty^2$, referentnu površinu A_{ref} i referentnu duljinu l.
Bezdimenzijski koeficijenti aerodinamičkih sila i momenta korišteni u ovom radu definiraju se sljedećim izrazima:

- izraz za bezdimenzijski koeficijent sile uzgona:

\[C_L = \frac{2F_L}{\rho v^2 \alpha A_{ref}} \] \hspace{1cm} (46)

- izraz za bezdimenzijski koeficijent sile otpora:

\[C_D = \frac{2F_D}{\rho v^2 \alpha A_{ref}} \] \hspace{1cm} (47)

- izraz za bezdimenzijski koeficijent bočne sile:

\[C_B = \frac{2F_B}{\rho v^2 \alpha A_{ref}} \] \hspace{1cm} (48)

- izraz za bezdimenzijski koeficijent momenta prevrtanja:

\[C_M = \frac{2M}{\rho v^2 \alpha A_{ref} l} \] \hspace{1cm} (49)

Za izračun aerodinamičkih koeficijenata sila i momenta vozila u ovom radu za referentnu površinu \(A_{ref} \) uzeta je prednja površina vozila koja iznosi 13,15 m\(^2\), dok je za referentnu duljinu \(l \) uzeta duljina vozila od 10,44 m. Moment prevrtanja je izračunat s obzirom na točku čiji položaj odgovara duljinskom središtu vozila gledano iz tlocrta vozila, a položaju nizvodnog kotača vozila (s obzirom na glavni smjer puhanja vjetra) gledano iz nacrta vozila.

Bezdimenzijski koeficijent tlaka se često koristi u analizi karakteristika strujanja zraka oko krutih tijela:

\[C_p = \frac{p - \frac{1}{2} \rho v^2}{\frac{1}{2} \rho v^2} = 1 - \left(\frac{v}{v_\infty} \right)^2 . \] \hspace{1cm} (50)

Bernoullijeva jednadžba duž strujnice:

\[p_\infty + \frac{1}{2} \rho v^2 = p + \frac{1}{2} \rho v^2 \] \hspace{1cm} (51)

gdje lijeva strana označava zbroj statičkog i dinamičkog tlaka u neporemećenoj struji, a desna strana jednadžbe označava zbroj statičkog i dinamičkog tlaka u promatranoj točki. Izraz za bezdimenzijski koeficijent tlaka izražen preko brzina strujanja slijedi iz kombinacije izraza za bezdimenzijski koeficijent tlaka zapisan uz korištenje tlaka te jednadžbe (50).
Koeficijent tlaka jednak je jedinici u točki zastoja što je teoretski maksimalna vrijednost iznosa bezdimenzijskog koeficijenta tlaka pri nestlačivom strujanju. Na nekoj udaljenosti od tijela gdje strujanje više nije poremećeno, lokalna brzina strujanja v poprima istu vrijednost kao neporemećena brzina strujanja v_∞ pa je u toj točki koeficijent tlaka jednak nuli. Na mjestima gdje je lokalna brzina strujanja veća od neporemećene, koeficijent tlaka je manji od nule [20].
5. POSTAVKE RAČUNALNE SIMULACIJE

5.1. Računalni modeli

U ovom radu je modelirano nastrujavanje vjetra na vozilo koje se nalazi na mostu s cestovnim vjetrobranima. Geometrija se sastoji od tri dijela: mosta, vozila i vjetrobrana, (Slika 8). Model je izrađen u računalnom paketu Solidworks.

![Geometrija mosta, vozila i vjetrobrana](image)

Slika 8. Geometrija mosta, vozila i vjetrobrana

Za geometriju poprečnog presjeka sekcije mosta odabrana je geometrija temeljena na presjeku mosta Great Belt u Danskoj [21]. Ovaj most ima minimalno izraženo odvajanje struje zraka na uzvodnim i nizvodnim rubovima te stoga spada u kategoriju mostova s aerodinamički profiliranim (engl. streamlined) poprečnim presjekom. Duljina mosta, a ujedno i duljina računalne domene, iznosi 50 m zbog ograničenosti računalnih resursa. S obzirom da je duljina sekcije mosta veća od širine mosta B, pretpostavlja se da je utjecaj duljine sekcije na dobivene rezultate zanemarivo malen. Geometrijski detalji modelirane sekcije mosta prikazani su na Slici 9.
Slika 9. Dimenzije poprečnog presjeka mosta u decimetrima [21]
Porozni vjetrobrani su dizajnirani na temelju prethodnih istraživanja [9] i [13]. Sastoje se od trokutastih profila koji su horizontalno postavljeni između vertikalnih nosača vjetrobrana. Geometrija vjetrobrana po konfiguracijama izgleda kao na slici 10 i preuzeta je iz [21].

a) prednji pogled b) vjetrobran visine 3 m i poroznosti 30 %
c) vjetrobran visine 5 m i poroznosti 30 %
\[\text{trokutni profil}\]

\[\text{Slika 10. Geometrija vjetrobrana u decimetrima [21]; strujanje slijeva nadesno.}\]

Poroznost vjetrobrana je izračunata kao omjer površine praznina vjetrobrana kroz koju struji zrak te ukupne napadne površine vjetrobrana. Visina i poroznost vjetrobrana su dvije karakteristike koje u velikoj mjeri određuju zaštitna svojstva vjetrobrana, te je njihov odabir najčešće kompromis između dva kontradiktorna zahtjeva:

a) uvjeti vjetra na mostu moraju zadovoljavati zahtjeve s obzirom na sigurnost vozila,
b) aerodinamičke sile koje djeluju na most ne smiju biti značajno povećane te aeroelastična stabilnost mostova ne smije biti ugrožena.
S obzirom da se ispituje utjecaj visine i poroznosti vjetrobrana na karakteristike strujanja zraka u okolini vozila, napravljeni su različiti modeli vjetrobrana:

- visina 3 metra i poroznost 30%,
- visina 5 metara i poroznost 0%,
- visina 5 metara i poroznost 30%,
- visina 5 metara i poroznost 50%,
- visina 7 metara i poroznost 30%.

Geometrijski detalji su prikazani na slikama 11-15.
U svim računalnim simulacijama vjetrobran je postavljen samo na uzvodni rub mosta jer snažni vjetrovi koji pušu na mostovima najčešće imaju dominantan samo jedan smjer puhanja. U slučaju da ne postoji dominantan smjer puhanja vjetrova na poziciji mosta, vjetrobrani se postavljaju na oba ruba (uzvodni i nizvodni). Ovakav način postavljanja vjetrobrana može uzrokovati vršenje struje zraka na poziciji vozila, a događa se uslijed odvajanja struje zraka od gornjeg ruba uzvodnog vjetrobrana te je odvojena struja zraka zaustavljena od strane nizvodnog vjetrobrana i ostaje prisutna između dva vjetrobrana u obliku vrtloga, npr. [22].

Za vozilo je korišten model Ahmedovog tijela uz prednji kut nagiba $\varphi = 25^\circ$ [23]. Ahmedovo tijelo se često koristi kod analize aerodinamičkih karakteristika vozila, npr. [24], jer dizajn ovog tipa vozila obuhvaća najvažnije karakteristične oblike koji su zajednički svim vozilima, a stoga i općenite karakteristike strujanja zraka oko njih. Dimenzije Ahmedovog tijela korištene u ovom radu su dane na Slici 16.

Ahmedovo tijelo je u svim simulacijama postavljeno na udaljenost 2 m nizvodno od vjetrobrana, odnosno 3 m od ruba mosta. Ovaj položaj odgovara poziciji vozila koje se nalazi u prometnoj traci najbliže uz uzvodni vjetrobran, a ta pozicija je okarakterizirana kao najosjetljivija na udare vjetra, (Slika 17) [9].
Slika 17. Položaj vozila na mostu izražen u milimetrima

Računalna domena definirana je prema [25] (Slika 17). Domena je izrađena u programu Ansys DesignModeler.

Slika 18. Osnovne dimenzije računalne domene izražene uz pomoć dimenzija modela
U konfiguraciji most, vjetrobran i vozilo, visina H je ukupna visina modela. Za most visine 4 m, vozilo visine 3,38 m i vjetrobran visine 3 m, H iznosi 7,38 m. Za konfiguraciju s vjetrobranom visine 5 m, H iznosi 9 m, a za konfiguraciju s vjetrobranom visine 7 m, H iznosi 11 m. Dimenzije računalne domene su odabrane na način da rubovi domene ne utječu na dobivene rezultate.

5.2. Geometrijska diskretizacija računalne domene

Računalna domena je diskretizirana u kontrolne volumene čiji broj predstavlja veličinu matrice koju je potrebno riješiti. Što je veći broj kontrolnih volumena, to je rezutat točniji, no zbog ograničenosti računalnih resursa i ekonomičnosti potrebno je taj broj optimizirati da se postigne kompromis između točnosti i ekonomičnosti. Uz stijenku su veći gradijenti fizikalnih veličina pa je stoga u tom području potrebna veća gustoća elemenata.

Generirane su geometrijske nestrukturirane mreže s tetrahedralnim elementima po volumenu te trokutnim elementima po površinama. Geometrijska mreža je najgušća u području oko vozila i vjetrobrana, nešto manje gusta u području oko cijelog mosta s vjetrobranom te se gustoća dalje smanjuje udaljavanjem od modela. Ukupan broj volumena u geometrijskoj mreži različit je za svaku konfiguraciju i prikazan je u tablici 2.

<table>
<thead>
<tr>
<th>Tablica 2: Broj kontrolnih volumena za različite konfiguracije</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez vjetrobrana</td>
</tr>
<tr>
<td>Broj tetrahedralnih volumena</td>
</tr>
</tbody>
</table>
Na slikama 19-21 je kao primjer prikazana geometrijska diskretizacija računalne domene konfiguracije vozila na mostu s vjetrobranom visine 7 m i poroznosti 30%.

Slika 19. Površina mosta i vozila s trokutnim elementima

Slika 20. Prikaz tetrahedralnih elemenata u presjeku z osi
Brzina neporemećene struje zraka na ulazu u računalnu domenu (Velocity inlet) je okomita na ulaznu površinu, jednolika po ulaznoj površini te iznosi 20 m/s. Reynoldsov broj strujanja oko mosta je sukladno približno jednak $Re = 44676470$. Za izračun Re broja kao referentna duljina korištena je širina mosta B. Ova vrijednost Re broja je veća od kritične vrijednosti za geometrijski sličan most $Re_{krit} = 2 \cdot 10^5$ te se stoga smatra da su dobiveni rezultati neovisni o brzini neporemećene struje zraka. Nadalje, zadani intenzitet turbulencije na ulazu u računalnu domenu je 2%, dok je integralna duljinska skala turbulencije 0,2 m. To su uvjeti koji odgovaraju relativno mirnoj struji zraka. Rubni uvjeti nepomičnih zidova bez stvaranja graničnog sloja (Symmetry wall) postavljeni su na boćne te gornju i donju površinu računalne domene. Na izlazu iz računalne domene postavljen je rubni uvjet izlaza na atmosferskom tlaku zraka (Pressure outlet). Rubni uvjet napomičnog zida uz stvaranje graničnog sloja (No-slip wall) je zadan računalnom modelu koji se analizira. Rubni uvjeti su grafički prikazani na Slici 22.
5.3. Postavke računalne simulacije

Računalne simulacije su provedene uz pretpostavku stacionarnog viskoznog strujanja fluida. RANS jednadžbe su rješavane za nekompresibilno turbulentno strujanje uz korištenje $k - \omega $ SST modela turbulentacije s korekcijom malih Reynoldsovih brojeva.

Korišten je solver SIMPLE (Semi-Implicit Method for Pressure Linked Equations) koji se često koristi za rješavanje Navier-Stokesovih jednadžbi. Algoritam solvera koristi rubne uvjete za izračun gradijenata brzine i tlaka zraka, te rješava diskretiziranu jednadžbu količine gibanja da bi se postiglo polje brzine unutar domene. Nakon toga se izračunaju maseni protoci na površinama kontrolnih volumena te se rješava jednadžba tlaka za dobivanje vrijednosti tlaka zraka na rubovima kontrolnih volumena. U novoj iteraciji se vrijednosti tlaka i brzine dobivaju uz pomoć starih i novih vrijednosti uz upotrebu podrelaksacijskih faktora.

Podrelaksacijski faktori u ovom radu su 0,3 za tlak i brzinu zraka te 0,6 za kinetičku energiju turbulentacije i disipaciju kinetičke energije turbulentacije. Vrijednosti fizikalnih veličina na površinama kontrolnih volumena su dobivene uz pomoć vrijednosti u središtima kontrolnih volumena te numeričke uzvodne sheme prvog stupnja točnosti.
6. REZULTATI RAČUNALNIH SIMULACIJA

Za ispitane konfiguracije se koriste kratice prikazane u tablici 3.

Tablica 3: Kratice ispitanih konfiguracija mosta i vjetrobrana

<table>
<thead>
<tr>
<th>Konfiguracija</th>
<th>Kratica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez vjetrobrana</td>
<td>KBV</td>
</tr>
<tr>
<td>S vjetrobranom visine 3 m i 30% poroznosti</td>
<td>KV_3_30</td>
</tr>
<tr>
<td>S vjetrobranom visine 5 m i 0% poroznosti</td>
<td>KV_5_0</td>
</tr>
<tr>
<td>S vjetrobranom visine 5 m i 30% poroznosti</td>
<td>KV_5_30</td>
</tr>
<tr>
<td>S vjetrobranom visine 5 m i 50% poroznosti</td>
<td>KV_5_50</td>
</tr>
<tr>
<td>S vjetrobranom visine 7 m i 30% poroznosti</td>
<td>KV_7_30</td>
</tr>
</tbody>
</table>

Raspodjela koeficijenta tlaka C_p na vozilu s obje strane vozila je prikazana na Slici 23. Površina vozila na koju nastruja vjetar je nastrujavana površina, dok je nizvodna površina vozila zavjetrinska strana.
1) Nastrujavana površina vozila

2) Zavjetrinska površina vozila

a) Bez vjetrobrana

b) Vjetrobran visine 3 m i poroznosti 30 %

c) Vjetrobran visine 5 m i poroznosti 30 %
d) Vjetrobran visine 7 m i poroznosti 30%

![Image of a vetrobran with a height of 7 meters and porosity of 30%]

e) Vjetrobran visine 5 m i poroznosti 0%

![Image of a vetrobran with a height of 5 meters and porosity of 0%]

f) Vjetrobran visine 5 m i poroznosti 50%

![Image of a vetrobran with a height of 5 meters and porosity of 50%]

Slika 23. Koeficijenti tlaka C_p u svim konfiguracijama
Koeficijenti tlaka C_p su općenito veći na nastrujavanoj površini vozila u usporedbi sa zavjetrinском stranom. Vozilo bez vjetrobrana je karakterizirano relativno velikim pozitivnim vrijednostima koeficijenta tlaka na nastrujavanoj strani, što sugeriša snažne bočne sile i momente prevrtanja koji djeluju na vozilo i narušavaju njegovu dinamičku stabilnost. U slučaju postavljanja vjetrobrana na most, koeficijenti tlaka na zavjetrinjskoj strani su bitno manji.

KBV te KV_5_50 imaju najveći koeficijent tlaka od svih konfiguracija na površini vozila na koju nastrujava vjetar i približan je $C_p \approx 1$. Vrijednosti zavjetrinskih koeficijenata tlaka na konfiguraciji bez vjetrobrana odgovaraju eksperimentalnim podacima iz [7] i iznose $C_p \approx -0,5$. Maksimalni koeficijent tlaka na nastrujavanoj površini na KV_5_30 iznosi približno 0,8 što je veća vrijednost nego što je dobivena eksperimentalnim pristupom [7] za poroznost 23,3 % gdje iznosi oko 0,5. Ravnomjerno raspoređen koeficijent tlaka i relativno niže vrijednosti po cijeloj površini ima vozilo u konfiguraciji s vjetrobranom visine 5 m i poroznosti 0% što ovo vozilo čini najstabilnijim s obzirom na prevrtanje.

Na vozilu u konfiguraciji s vjetrobranom visine 7 m i poroznosti 30% kao i na onom u konfiguraciji s vjistrobranom visine 3 m i poroznosti 30% na zavjetrinjskoj površini prevlada negativni koeficijent tlaka. Dobiveni rezultati općenito sugeriraju da je utjecaj vjetrobrana na koeficijente tlaka na površini vozila značajan za nastrujavano i zavjetrinjsku stranu. Manja poroznost vjetrobrana i veća visina vjetrobrana uzrokuju smanjenje koeficijenta tlaka na nastrujavanoj površini vozila.

Vrtložnost rotν je prikazana u ravnini xy za svih šest konfiguracija, Slika 24. Ravnina xy odgovara ravnini poprečnog presjeka mosta i vozila.
a) Bez vjetrobrana

b) Vjetrobran visine 3 m i poroznosti 30%
c) Vjetrobran visine 5 m i poroznosti 30%

d) Vjetrobran visine 7 m i poroznosti 30%
e) Vjetrobran visine 5 m i poroznosti 0%

f) Vjetrobran visine 5 m i poroznosti 50%

Slika 24. Vrtožnosti rot\(\mathbf{v}\) u svim konfiguracijama

Raspodjela vrijednosti vektora vrtožnosti struje zraka pokazuje najveće apsolutne vrijednosti vrtožnosti brzine na području uz vjetrobran te na rubovima vozila. To sugerira da se unutar tih područja pojavljuje najintenzivnije odvajanje struje zraka. Kod manjih visina vjetrobrana,
može doći do spajanja područja povišenih vrijednosti vrtložnosti gornjeg uzvodnog ruba vozila te vrha vjetrobrana. Ovo ukazuje na činjenicu da kod ove konfiguracije može nastati snažniji vrtlog struje zraka iznad vozila. Smanjenje poroznosti vjetrobrana uzrokuje povećanje vrtložnosti struje zraka u blizini vozila. To sugerira da, iako su vrijednosti koeficijenta tlaka na površini vozila za male poroznosti vjetrobrana relativno male, može doći do povećanih vrijednosti standardnih devijacija aerodinamičkih sila koje djeluju na vozilo, što bi se trebalo daljnje ispitati uz upotrebu nestacionarnih simulacija.

Raspodjela odnosa lokalne brzine strujanja i neporemećene struje zraka u ravnini poprečnog presjeka automobila i mosta prikazana je na Slici 25.

\[
\frac{v}{v_\infty} -
\]

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
0.00 & 0.17 & 0.34 & 0.51 & 0.68 & 0.85 & 1.02 & 1.19 & 1.36 & 1.53 & 1.70 \\
\hline
\end{tabular}
\end{center}

\textit{a) Bez vjetrobrana}
b) Vjetrobran visine 3 m i poroznosti 30%

c) Vjetrobran visine 5 m i poroznosti 30%
d) Vjetrobran visine 7 m i poroznosti 30%

![Diagram d) Vjetrobran visine 7 m i poroznosti 30%](image)

e) Vjetrobran visine 5 m i poroznosti 0%

![Diagram e) Vjetrobran visine 5 m i poroznosti 0%](image)
f) Vjetrobran visine 5 m i poroznosti 50%

Slika 25. v/v_{∞} za konfiguraciju bez vjetrobrana

Smanjene brzine strujanja zraka nizvodno od vozila su prisutne za sve ispitane konfiguracije. Nadalje, karakteristike vjetrobrana imaju značajan utjecaj na raspodjelu brzine strujanja zraka uzvodno od vozila, odnosno u prostoru između vjetrobrana i vozila. Visina vjetrobrana ne utječe značajno na raspadjelu brzine strujanja u navedenom području, ali utječe na karakteristike odvojenog strujanja u smičnom sloju. Smanjenjem poroznosti vjetrobrana se brzine strujanja zraka u području između vjetrobrana i vozila smanjuju. Ovo također ukazuje na zaštitna svojstva vjetrobrana te na izraženiji utjecaj poroznosti vjetrobrana na raspadjelu brzine strujanja zraka u odnosu na utjecaj visine vjetrobrana.

Zbog važnosti karakteristika strujanja u području između vozila i vjetrobrana na aerodinamičke karakteristike vozila koje se nalazi na mostu, u nastavku su analizirani profili bezdimenijske brzine na pravcu koji se nalazi unutar tog područja. Položaj pravca po z-koordinati je kolinearan sa središtem vozila, a položaj pravca po x-koordinati je prikazan na Slici 26. U dijagramima na Slici 27 je prikazana ovisnost lokalne brzine i neporemećene brzine v/v_{∞} o udaljenosti od središta mosta. Visina od 2 m na dijagramima odgovara gornjoj plohi mosta.
Slika 26. Položaj pravca u milimetrima u području između vozila i vjetrobrana

a) Bez vjetrobrana
b) Vjetrobran visine 3 m i poroznosti 30%

c) Vjetrobran visine 5 m i poroznosti 30%
d) Vjetrobran visine 7 m i poroznosti 30%

![Diagram dla d)](image)

e) Vjetrobran visine 5 m i poroznosti 0%

![Diagram dla e)](image)
f) Vjetrobran visine 5 m i poroznosti 50%

Slika 27. Ovisnost odnosa bezdimenzionske brzine strujanja zraka o udaljenosti od središta mosta za ispitivane konfiguracije

Na dijagramima bezdimenzejske brzine strujanja se jasno uočava utjecaj vjetrobrana na raspodjelu brzine strujanja zraka iza vjetrobrana. Kod konfiguracije bez vjetrobrana, brzina strujanja zraka na visini 4 m od mosta je veća od 80% vrijednosti neporemećene struje zraka. Postavljanjem vjetrobrana se brzina strujanja zraka u području neposredno uz gornju plohu mosta značajno smanjuje. Najmanje brzine strujanja u najznačajnijem području od gornje plohe mosta do visine 4 m od gornje plohe mosta daje vjetrobran visine 5 m i poroznosti 0%, gdje brzine strujanja ne prelaze 15% vrijednosti neporemećene struje zraka. Povećavanjem poroznosti se ove vrijednosti relativno povećavaju, ali ostaju manje od 50% vrijednosti neporemećene struje zraka. Vrijednosti bočnih sila, sila uzgona, sila otpora te momenata prevrtanja na vozilo dane su u Tablici 4, dok su koeficijenti navedenih sila i momenata dani u Tablici 5. Pozitivni smjerovi aerodinamičkih sila i momenta te položaj osi oko koje je računat moment su dani na Slici 28.
Slika 28. Pozitivni smjerovi aerodinamičkih sila i momenta

Moment prevrtanja računat je oko osi koja prolazi vanjskim rubom kotača na zavjetrinskoj površini vozila uz cestu.

Tablica 4: Sile i momenti na vozilo

<table>
<thead>
<tr>
<th></th>
<th>(F_B) [N]</th>
<th>(F_L) [N]</th>
<th>(F_D) [N]</th>
<th>(M) [N m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez vjetrobrana</td>
<td>8213</td>
<td>-1175</td>
<td>-484</td>
<td>9474</td>
</tr>
<tr>
<td>3 m, 30%</td>
<td>1508</td>
<td>97</td>
<td>160</td>
<td>2298</td>
</tr>
<tr>
<td>5 m, 30%</td>
<td>1339</td>
<td>-239</td>
<td>-80</td>
<td>1247</td>
</tr>
<tr>
<td>7 m, 30%</td>
<td>1915</td>
<td>-407</td>
<td>-19</td>
<td>1860</td>
</tr>
<tr>
<td>5 m, 0%</td>
<td>228</td>
<td>39</td>
<td>-14</td>
<td>543</td>
</tr>
<tr>
<td>5 m, 50%</td>
<td>4937</td>
<td>-1016</td>
<td>-324</td>
<td>5118</td>
</tr>
</tbody>
</table>

Tablica 5: Koeficijenti sila i momenata na vozilo

<table>
<thead>
<tr>
<th></th>
<th>(C_B)</th>
<th>(C_L)</th>
<th>(C_D)</th>
<th>(C_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez vjetrobrana</td>
<td>2,54</td>
<td>-0,36</td>
<td>-0,15</td>
<td>0,28</td>
</tr>
<tr>
<td>3 m, 30%</td>
<td>0,46</td>
<td>0,03</td>
<td>0,05</td>
<td>0,068</td>
</tr>
<tr>
<td>5 m, 30%</td>
<td>0,36</td>
<td>-0,065</td>
<td>-0,022</td>
<td>0,067</td>
</tr>
<tr>
<td>7 m, 30%</td>
<td>0,59</td>
<td>-0,12</td>
<td>-0,0061</td>
<td>0,053</td>
</tr>
<tr>
<td>5 m, 0%</td>
<td>0,07</td>
<td>0,012</td>
<td>-0,0044</td>
<td>0,016</td>
</tr>
<tr>
<td>5 m, 50%</td>
<td>1,53</td>
<td>-0,31</td>
<td>-0,10</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Konfiguracija mosta bez vjetrobrana uzrokuje da je vozilo potpuno izloženo nadolazećoj struci zraka, pa su za ovu konfiguraciju dobivene relativne najveće aerodinamičke sile i moment.
prevrtaњa. Sukladno tome, i koeficijenti aerodinamičkih sila i momenta prevrtaњa su veći nego kod ostalih konfiguracija. Vjetrobran visine 5 m i poroznosti 50% smanjuje utjecaj boћne sile na vozilo za približno 40%, a moment prevrtaњa skoro devet puta. Vjetrobran visine 5 m i poroznosti 0% naizgled daje najbolju sigurnost dinamičkoj stabilnosti vozila, barem što se tiče utjecaja boћne sile i momenta prevrtaњa, ali uzgonska sila prelazi u pozitivnu vrijednost pa pri veћim brzinama vožnje može doći do odvajanja vozila od tla. Vjetrobran visine 3 m ne osigurava dovoljno zaštite vozilu višem od vjetrobrana, odnosno moment prevrtaњa je skoro dvostruko veći nego kod vozila na mostu s vjetrobranom visine 5 m i 30% poroznosti. Utjecaj aerodinamičkih sila na vozilo kod vjetrobrana visine 7 m i poroznosti 30% je veći nego kod vozila na mostu s vjetrobranom od 5 m i 30% poroznosti, iako je riječ o višem vjetrobranu iste poroznosti. Rezultati dobiveni u okviru ovog rada sugeriraju da je optimalna visina vjetrobrana 5 m uz poroznost od 30% sukladno eksperimentalnim podacima u [12].
ZAKLJUČAK

U okviru ovog rada je ispitana utjecaj visine vjetrobrana te utjecaj poroznosti vjetrobrana na karakteristike strujanja zraka oko vozila koje se nalaze na mostu. Vjetrobran je postavljen samo na uzvodni rub mosta, a za vozilo je koristen model Ahmedovog tijela. Pri računalnim simulacijama je koristen model stacionarnog trodimenzijskog turbulentnog strujanja nestlačivog fluida te k-ω SST model turbulencije sa standardnim zidnim funkcijama.

Dobiveni rezultati ukazuju na značajan utjecaj vjetrobrana na koeficijente tlaka na površini vozila. Manja poroznost vjetrobrana i veća visina vjetrobrana uzrokuju smanjenje koeficijenta tlaka na nastrujavanoj strani vozila. Iako su vrijednosti koeficijenta tlaka na površini vozila za male poroznosti vjetrobrana relativno malene, raspodjela vrtložnosti struje zraka sugerira da može doći do povećanih vrijednosti standardnih devijacija aerodinamičkih sila koje djeluju na vozilo.

Karakteristike vjetrobrana imaju bitan utjecaj na raspodjelu brzine strujanja zraka uzvodno od vozila, odnosno u prostoru između vjetrobrana i vozila. Smanjenjem poroznosti vjetrobrana se brzine strujanja zraka u tom području značajno smanjuju. Utjecaj poroznosti vjetrobrana na raspodjelu brzine strujanja zraka u ovom području je značajniji u odnosu na utjecaj visine vjetrobrana.

Kod konfiguracije bez vjetrobrana, brzina strujanja zraka na visini 4 m od mosta je veća od 80% vrijednosti neporemećene struje zraka. Postavljanjem vjetrobrana se brzine strujanja zraka u području neposredno uz gornju plohu mosta značajno smanjuju. Najmanje brzine strujanja u najznačajnijem području od gornje plohe do visine 4 m od gornje plohe mosta daje vjetrobran visine 5 m i poroznosti 0%, gdje brzine strujanja ne prelaze 15% vrijednosti neporemećene struje zraka. Povećavanjem poroznosti se ove vrijednosti relativno povećavaju, ali ostaju manje od 50% vrijednosti neporemećene struje zraka.

Aerodinamičke sile i momenti koji djeluju na vozilo su značajno smanjeni kada je vjetrobran postavljen na most. Već i najviše porozan ispitani vjetrobran visine 5 m i poroznosti 50% smanjuje bočnu silu na vozilo za približno 40%, a moment prevrtanja skoro devet puta u odnosu na vozilo na mostu bez vjetrobrana. Rezultati dobiveni u okviru ovog rada sugeriraju da je, s obzirom na aerodinamičke sile koje djeluju na vozilo, optimalna visina vjetrobrana 5 m uz poroznost 30%.
LITERATURA

