SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA
U OSIJEKU
GRAĐEVINSKI FAKULTET OSIJEK

DIPLOMSKI RAD

Osijek, 10. rujna 2015. Josip Živković
DIPLOMSKI RAD

TEMA: Izbor i dimenzioniranje potrebnog unutrašnjeg transporta na gradilištu visokogradnje

Osijek, 10. rujna 2015. Josip Živković
Dati pregled sredstava i strojeva za unutrašnji transport u građevinarstvu. Za pojedine važnije strojeve i uređaje opisati način izračuna kapaciteta i izbora takvih sredstava.

Rad treba izraditi u 3 primjerka (original + 2 kopije), tvrdo ukoričena u A4 formatu koji sadrži i cjelovitu elektroničku datoteku u pdf. formatu na CD-u u prilogu.

Osijek, 10. rujna 2015. godine

Mentor: prof.dr.sc. Petar Brana

Predsjednica Odbora za završne i diplomske ispite: izv.prof.dr.sc.Mirjana Bošnjak-Klečina
Sadržaj:
1. Sažetak ... 3
2. Uvod .. 5
3. Odabir uređaja kao proizvodnog sredstva .. 6
 3.1 Opći odabir sredstava .. 6
 3.1.1 Uvjeti .. 6
 3.1.2 Preduvjeti ... 6
 3.1.3 Odabiranje ... 7
 3.2 Vlastita sredstva .. 8
 3.2.1 Mehanizirana ili ručna proizvodnja .. 8
 3.2.2 Načela mehanizacije .. 9
 3.2.3 Granična vrijednost koštanja ... 13
 3.2.4 Radne skupine i njihovo opremanje ... 14
 3.2.5 Radni imenik .. 15
 3.3 Pozajmljena sredstva ... 16
 3.3.1 Kupovina materijala .. 16
 3.3.2 Usluge podizvođača ... 17
4. Planiranje i raspored resursa ... 17
 4.1 Elementi na gradilištu ... 18
5. Transportiranje ... 23
 5.1 Tijek dostave materijala .. 23
 5.2 Osnove planiranja transporta .. 24
 5.3 Sredstva za podizanje .. 26
 5.4 Skladištenje materijala .. 28
 5.5 Plan instalacije .. 31
 5.5.1 Primjer zgrada .. 32
6. Dizalice i transportna sredstva ... 35
 6.1 Jednostavne dizalice .. 35
 6.2 Kranovi .. 36
 6.3 Dizala ... 40
6.4 Motorna vozila ... 41
6.5 Gume .. 42
7. Zaključak .. 43
8. Literatura .. 45
1. SAŽETAK

Sustav odabira uređaja kao proizvodenog sredstva prikazan kroz prednosti i nedostatke ručnog i mehaniziranog sredstva pojedinačno, te jednog u odnosu na drugo. Opisivanje čimbenika koji utječu na sredstvo te uvjete i preduvjete za odabir svakoga sredstva. Definiranje vlastitih sredstava, to jest sredstava koja utječu na odabir mehanizirane ili ručne proizvodnje. Usporedba koštanja ručne i mehanizirane proizvodnje, te načela mehanizacije i karakteristike radnih skupina i njihove opreme. Definiranje pozajmljenih sredstava u obliku kupovine materijala i uzimanja usluga podizvođača.

Planiranje i raspoređen resursa koji će se koristiti za vrijeme gradnje, te koji utječu na sam izbor i dimenzioniran je unutrašnjeg trasporta na gradilištu. Savjeti za sigurnost na gradilištu i principi postavljanja elemenata na gradilištu kako bi bilo što manje zastoja u izgradnji.

Načela transportiranja unutar gradilišta, tok materijala od dolaska na gradilište, preko skladištenja do konačnog mjesta ugradnje. Dimenzioniranje i odabir potrebnih sredstava za podizanje i skladištenje materijala.

Opis najčešće korištenih transportnih sredstava za unutarnji transport na gradilištu visokogradnje te njihova primjena.
ABSTRACT

The system selection device as a means of production shows the advantages and disadvantages of manual and mechanized means alone, and one in relation to another. Describing the factors that affect the means and the terms and conditions for the selection of each asset. Definition of own funds, that is funds that affect the selection of mechanized or manual production. Comparing the cost of manual and mechanized production, and the principle of mechanization and characteristics of the working groups and their equipment. Defining the borrowed funds in the form of purchases of materials and services taking subcontractors.

The planning and allocation of resources that will be used during construction, and that influence a choice and sizing of internal transport enterprises on site. Safety tips on the site and principles of setting elements on the building site to be as little delay in construction.

Principles of transportation within the site, the flow of materials from reaching the construction site, through storage to the final place of installation. Sizing and selection of the necessary funds for raising and storing materials.

Description of the most used transport means for internal transport on the construction site and their application.
2. UVOD

Problemi odabira i dimenzioniranja unutrašnjeg transporta na gradilištu visokogradnje javljaju se u samom početku razvijanja pripremnih radova. Na samom početku treba jako dobro izabrati uređaje koji će se koristiti i koje će biti potrebni na gradilištu. Za opći odabir sredstava ima niz uvjeta i preduvjeta koji trebaju biti zadovoljeni da bi se odabir napravio. A taj odabir sredstava je samo uvod u jedan još veći i još opširniji problem odabira i dimenzioniranja unutrašnjeg transporta. Definiranje ručne ili mehanizirane proizvodnje utječe na dimenzioniranje tako da se što bolje opiše i definira raspored kretanja unutar gradilišta, da bi bilo što manje zastoja i što manje čekanja strojeva na gradilištu. Svaki zastoj ili čekanje je uzaludno izgubljeno vrijeme, koje znači uzaludno izgubljeni novac, a sve se to može izbjeći dobrim odabirom odnosno dimenzioniranjem unutrašnjeg trasnorta. Također se treba znati koja sredstva u izgradnji su vlastita, a koja dolaze kao posuđena. Posuđena sredstva nisu cijelo vrijeme na gradilištu, nego u trenutcima kada su potrebna. Ti trenutci se trebaju jako dobro definirat kako nebi nastalo nesporazuma na gradilištu i dodatnih zastoja.

Planiranje i raspored resursa na gradilištu omogućava jasan pregled koji resurs i u koje vrijeme se nalazi na određenom mjestu unutar gradilišta. Raspored elemenata na gradilištu je jako bitan i treba ga se pridržavati, a svi potrebni elementi sa svojim postojanjem na gradilištu utječu na ograničenja prilikom izabira i dimenzioniranja unutrašnjeg transporta.

Tijek materijala, tj. put materijala od njegovog dolaska na gradilište, pa preko skladištenja do konačnog ugrađivanja je jedan od ključnih faktora izbora i dimenzioniranja gradilišta visokogradnje. On utječe i na odabir sredstava kojim se materijal transportira, a isto tako utječe i plan postavljanja svih instalacija koje se nalaze na gradilištu.

Na samom kraju i opisi najčešće korištenih sredstava za podizanje i transport materijala unutar samog gradilišta. Tu je izbor jako velik pa se treba paziti da se izabere najbolja kombinacija između jednostavnih dizalica, velikih dizalica u obliku kranova, te raznih građevinskih dizala „liftova“ i raznih uređaja za transport koji su u obliku motornih vozila.
3. ODABIR UREĐAJA KAO PROIZVODNOG SREDSTVA

Odabir uređaja kao proizvodnog sredstva spada u kategoriju pripremnih radova, i tu odlučujemo u konačnici sa kojim ćemo alatima raditi koje ćemo strojeve koristiti, i koji ćemo materijal ugrađivati. O tome odabiru će biti u ovom poglavlju malo više objašnjeno.

3.1 OPĆI ODABIR SREDSTAVA

3.1.1 Uvjeti

Odabir sredstava za proizvodnju se vrši pomoću faktora proizvodnje, faktora za proizvodnju proizvoda, te poslovnih faktora. Ovi faktori moraju biti svi usuklađeni kako bi proizvodnja bila što efikasnija. U našem slučaju proizvodnje zgrade ovi faktori se odnose na faktore rada radnika, faktore strojeva, te se još odnosi na novac koji se mora izdovijiti za materijal ili za troškove podizvođača. Stoga se sredstva za proizvodnju grupiraju na sljedeći način:

1. Vlastita sredstva (osoblje i zalihe)
2. Pozajmljena sredstva (materijal i usluge)

U pojedinim slučajevima ima iznimki ove podjele, ima kada se npr. odabere osoblje od neke treće osobe, a materijal da pripada vlastitim sredstvima.

3.1.2 Preduvjeti

Da bi se moglo odabrati sredstva za proizvodnju potrebno je definirati neke preduvijete. Potrebno je prvo formulirati jasne ciljeve, formulirati jasnu pripremu rada.

Najvažniji zahtjevi koji se očekuju da su urađeni su:

1. Kvalitetni ciljevi
2. Troškovnik
3. Detaljan plan rada
4. Kontrola količina

1. Kvalitetni ciljevi

Kvalitetni ciljevi se očitaju između dvije stvari, jedna se odnosi na kakvoću materijala, tj. moraju se odabrati samo oni materijali koji zadovoljavaju propisane uvjete, a druga se odnosi na kvalitetu radne snage i strojeva.
2. Troškovnik

U troškovniku trebaju biti prikazani:

- opis radova koji se izvode
- jedinica mjere i količina za svaku stavku
- jedinična i ukupna cijena svake stavke pojedino

3. Detaljan plan rada

Da bi se sastavio detaljan plan rada potrebno je poznavati:

- Iznos isporuke
- Ciljanu isporuku po radnom danu
- Potražnju za rad (broj, razdoblje)
- Potražnju za opremu (vrsta, broj, vrijeme korištenja)
- Potražnju za osnovnim građevinskim materijalima

Plan rada se najčešće prikazuje gantogramom i raznim histogramima (radne snage, strojeva, troškova, itd.)

4. Kontrola količina

Na većim gradilištima sa jako velikim intenzitetom kretanja materijala i radne snage i strojeva, nisu uvijek radovi ključni problem za izgradnju objekta nego to može biti i kretanje po gradilištu. Ovdje se treba posebna pažnja posvetiti premještanju materijala, npr. količini zemlje koju treba premjestiti, količini materijala kojeg treba reciklirati, itd.

3.1.3 Odabiranje

Treba proučiti različita rješanja koja su potrebna za rješenje, i onda od mogućih treba izabrati najbolje, ovdje se misli na rješenja u obabiru radnih grupa ili uređaja ili materijala. Pri procesu odabira se kreće prema onome što se sa sigurnošću zna, ono što se može opskrbiti na vrijeme i u dovoljnoj količini. Da bi se izvijšio uspješan odabir treba znati odgovore na neka bitna pitanja, koje radne grupe i uređaji su sposobni za ispunjavanje zadanih problema, koji građevinski materijal ispunjava zadanu kvalitetu i dali ga se može dovoljno i na vrijeme nabaviti. Sljedeći korak pri odabiru je usporedba troškova mogućih rješenja. Također se treba provjeriti i mogućnosti podizvođača koji će sudjelovati u projektu.
Nakon što je odabir optimalnog rješenja završen treba svim sudionicima na vrijeme javiti kako bi se mogli osigurati svi potrebni resursi. Treba imati sve narudžbe i ugovore cijelo vrijeme i nadležni šef gradilišta treba u svakom trenutku imati kopije tih dokumenata.

3.2 VLASTITA SREDSTVA

3.2.1 Mehanizirana ili ručna proizvodnja

Bira se za svaki slučaj posebno i u svakom slučaju ovisi o pojedinim radnicima, o radnim skupinama, o uređajima. U mnogim slučajevima je ručna proizvodnja dosta duža, pa se mehanizirana češće odabire, pa se ručna proizvodnja izvodi samo kada mehanizirana nije moguća.

Glavni kriterij za odabir proizvodnje je ekonomski kriterij. Ovo se najlakše može objasniti pomoću primjera iskopa sa slike 1.

Slika 1. Usporedba troškova ručne i mehanizirane proizvodnje

Za ručnu proizvodnju se vidi da troškovi pojedinici vremena ostaju konstantni za bilo koje količine iskopa, dok ukupni troškovi rastu linearno kako raste i količina.

Kod mehanizirane proizvodnje troškovi po jedinici vremena se smanjuju kako raste količina iskopa, dok kod ukupni troškova imamo fiksne, koji su konstantni, i varijabilne, koji ovise o različitim čimbenicima. Fiksna varijabla ovisi o tipu odabranog stroja, svaki ima svoju fiksnu cijenu, dok na varijabilnu utječu: troškovi opreme, troškovi najma, gorivo, i njihov udio je konstantan po jedinici vremena, a u ukupnim troškovima raste linearno sa količinom.
U različitim slučajevima vrijede različiti kriteriji, a kada imamo specifičnu proizvodnju cijene ove dvije mogućnosti obično budu podjednake.

Postoje i kriteriji za odabira načina proizvodnje, a ne mogu se izravno izraziti uz pomoć brojki. Prilozi koji idu u pomoć ručnoj proizvodnji su:

- smanjen rizik od šteta na linijama za mehanizirane radove
- potrebi uređaji se koriste na nekom drugom mjestu
- smanjena osjetljivost na neuspjeh zbog popravka

A s druge strane postoje kriteriji koji će učiniti da mehanizirana proizvodnja bude još učinkovitija:

- zahtjevi za kvalitetu izvedba zahtjevaju strojeve (npr. zbijanje betona)
- nema nesreća radnika prilikom ručnog rada.

3.2.2 Načela mehanizacije

U pravilu se mehanizacija pokušava koristiti u najvećoj mogućoj mjeru pri izgradnji građevinskih procesa, pogotovo pri izgradnji glavnih dijela, jer je ručni rad i dutotrajan, a i skup. Kod odabira uređaja i grupa uređaja potrebno je poštivati sljedeća načela.

1. Cjelokupne tehničke eksploatacije

Svaka grupa uređaja je vrlo specifično dizajnirana i ima određenu efikasnost, a zadatak odabirača je da izabere najkorisniju grupu koja odgovara njegovim potrebama. Očekuje se da usluga bude pružena kvalitetno i treba odgovoriti na pitanje koji će uređaj određeni posao obaviti najbolje i biti ekonomski najisplativiji.

Slika 2. Karakteristike bagera sa utovarivačem

2. Optimalna radna snaga

Svaki motor imam optimalan moment pri kojemu daje najveću snagu. Isto tako za odabrani uređaj moramo znati njegove optimalne performanse za rad. Ovaj odnos između trajanja vremena izvedbe i troška po jedinici možemo vidjeti na slici 3.

Slika 3. Prikaz kretanja troškova u vremenu

Na lijevoj strani slike vidimo tijek transportnih troškova u funkciji prevezenog kapaciteta u vremenu, pretpostavljeno je da se koriste damperi sa zapreminom od 6m³ sa mogućnosti 3 istovara po satu. Cijena po m³ će biti minimalna za maksimalni kapacitet uređaja u jednom satu (u ovom slučaju je to 18m³/h). Prekoračenje ove vrijednosti dovodi do
oštrog povećanja troška u jedinici vremena, te se mora dovesti i dodatni uređaj. Takvi porasti troškova postaju manji sa porastom broja vozila, npr. porast sa jednog vozila na dva će imati porast troškova od 100%, dok će porast sa 5 vozila na 6 imati porast vrijednosti za 20%.

Na desnoj strani slike su prikazane troškovi iskopa bagera sa različitim zapreminama lopate. Uspoređeni su bageri za zapreminom lopata od 1500 l i 1000 l. Najnižu vrijednost po m3 iskopa je dostigao veći bager (vrijednost od 1,50€/m3 na 80m3/h). Međutim veći je bager samo u malom prostoru (između 60-80 m3/h) jeftiniji od manjeg bagera. Za sva ostala područja je bolje rješenje sa manjim bagerom.

3. Koordiniranje opreme

U većini slučajeva imamo više uređaja i radnika na gradilištu koji zajedničku sudjeluju u procesu izgradnje, i oni nadopunjavaju jedni druge u svojoj izvedbi kako bi se ostvarila što niža cijena. Međutim poteškoća leži u tome da razni uređaji imaju različite optimalne učinkovitosti. Na predhodnoj slici je prikazano kretanje troškova za iste uređaje. Stoga ako želimo pronaći optimalnu kombinaciju uređaja moramo sagledati širu sliku, a ne se ograničiti na svaki uređaj pojedinačno. Postupak će biti prikazan pomoću jednostavnog primjera, koji je jako čest u građevinskom sektoru. To je postupak iskopa i odvođenje zemlje na odlagalište. Kao prijevozno sredstvo izabrani su damperi sa zapreminom od 6m3, a za iskop će se koristiti ili bager 1000 l (60m3/h) ili bager 1500 l (80m3/h). Pretpostavka je da se zbog prostora koristi samo jedan uređaj za iskop i kao daljnji uvjet je propisano da bi se trebalo uraditi najmanje 50 m3/h. Postavlja se pitanje kako najbolje spojiti ta dva uređaja a da dobijemo najniži troškove iskopa i prijevoza.

Za prvo rješenje je uzet bager 1000 l. Njegova optimalna iskoristovost je kada se radi količina od 60m3/h. Vozilima je potrebno za vožnju od iskopa do odlagališta i nazada te istovar 16 min, 6 min čeka utovar, što nam daje 22 minute za jednu operaciju. Prostom računomic 60/22*6=16,2 m3 što je mogućnost prevoza jednog dampera u satu. Sa 4 dampera bi mogli prevesti 65 m3, ali to je više od kapaciteta bagera, a sa 3 dampera se može prevesti 48 m3 po satu što opet ne zadovoljava dodatni uvjet. Optimalno rješenje se vidi na slici 4 i dobiva se kompromisom. Dok na slici 5 se vidi da pri ovom rješenju bager je u potpunosti iskoristiv i stalno radi, dok damperi po operaciji imaju zastoj od 2 minute.

Za drugo rješenje se koristi bager od 1500 l. Njegova optimalna iskoristivost je kada se radi količina od 80 m3/h. Vozilima je ponovno za vožnju do odlagališta i nazad te
iskrcavanje potrebno 16 min, ali sada na utovaru čekaju 4 min, zbog veće snage bagera. Znači za jednu operaciju ima treba 20 min, pa tako 60/20*6=18 m³. Na slici 4 su prikaza troškovi od 50-80 m³/h, a analogno slici 3 vidimo da bi najjeftinije rješenje rezultiralo kapacitetom od 72 m³/h. Na slici 5 se vidi da su vozila, za razliku od rješenja 1, stalno iskorištena, dok bager nakon što napuni sva 4 dampera, mora čekati 4 minute.

Usporedbom ova dva rješenja se vidi sa slike 4 da oba bagera imaju svoja optimalna rješenja. Prvo rješenje ima kapacitet 60 m³/h, dok trugo ima 72 m³/h. Usporedbom ove dvije alternative se dobije da je rješenje 2 jeftinije sa svojih 5,65 €/m³, za razliku od rješenja 1 čija je cijena 6,55 €/m³. Rješenje dva ispada gotovo 15% jeftinije a to se može objasniti na sljedeći način:

- niži troškovi zbog većeg iskopa
- niži troškovi zbog kraćeg vremena punjenja
- bolje koordiniran iskop i prijevoz (vrijeme čekanja bagera je manje od vremena čekanja dampera)

Slika 4. Optimalna rješenja
Slika 5. Prikaz iskoristivosti strojeva
4. Organiziranje nadzora i brige

Najbolji strojevi i najbolja koordinacija strojeva su bezkorisni ako svaka osoba koja
obslužuje troj nije stručnjak i ima pravi osjećaj za taj troj. Drugi, isto bitan zahtjev, je dobar
raspored komunalnih i različitih postrojenja koji omogućuju ugradnju opreme na mjesta
ugradnje mogućima. Da bi strojevi što bolje i što duže fukncionirali oni zahtjevaju
odgovarajuću brigu, i ona se mora provoditi sa velikom pažnjom. Neki od zahtjeva su:

- nabava goriva i maziva
- usluge servisa vozila (punjenje, podmazivanje, održavanje)
- usluge popravaka (mobilne i/ili stacionarne radionice, oprema, osoblje)
- komunikacija sa proizvođačem

5. Oprema uređaja

Rezultat faze planiranja u pripremi rada omogućuje izbor uređaja u pravo vrijeme i za
prave potrebe. Redoslijed uređaja mora sadržavati:

- koji strojevi (vrsta, veličina, broj, itd.)
- jesu li dodatni uređaji ili oprema potrebni (npr. hvataljka opreme na bageru)
- jesu li izvanredni umetci predviđeni (npr. suženje stijena s dozerom)
- normalan ili specifičan rad smjene
- željene kvalifikacije radnika za strojem
- početak i vrijeme upotrebe (neprekidno ili s prekidima)
- je li potrebna jedinica za upravljanje strojem u pogledu točenja goriva, podmazivanja
- je li potrebna jedinica za servis vozila
- tko je odgovoran za transport uređaja na gradilište i osposobljavanje
- način plaćanja (mjesečni najama, najam po satu)

3.2.3 Granična vrijednost koštanja

Pri uspoređivanju potencijalni kombinacija uređaja, obično se kao idealno rješenje
javlja ono koje je najjeftinije. Međutim što raditi ako željeni uređaji nisu dostupni? Tada ima
nekoliko rješenja:

- odgoda
- odabiranje drugih uređaja
- odabiranje uređaja sa manom
- kupovina novog uređaja

Za odabir alternativnog rješenja se treba raditi usporedba troškova, no to je vrlo dugotrajno posao, a također treba imati u vidu i šire slike. Nekad skuplje rješenje na papiru može imati i dugoročne interese za društvo, pa ono postaje jeftinija opcija.

Kada je željeno sredstvo u mogućnosti da se iznajme, ali datum ne odgovara, treba prvo razjasniti da li bi odgoda pomogla. Možda bi se sredstva mogla premjestiti na neke druge poslove dok taj uređaj nije dostupan.

Ako odabir željenog uređaja nije moguće od određene tvrtke, gleda se mogućnost poslovanja sa nekom drugom tvrtkom.

Tek kada se niti jedna druga opcija ne može izabrati ide se u kupovinu novog uređaja. Kupovina novih uređaja može doći u pitanje tek nakon temeljite procjene svih drugih opcija.

3.2.4 Radne skupine i njihovo opremanje

Sustav radnih skupina dijeli se prema količini usluge koju oni mogu obaviti, te se množi sa njihovim učinkom \((h/m^3)\) i tako se dolazi da proračuna radnih sati. Njihov raspored na gradilištu se zadaje i kontrolira iz pomoć histograma radne snage. On prikazuje točno gdje i kada koja radna skupina treba biti na gradilištu. Na njemu se još vidi i vrsta i broj radnih skupina, broj radnika u radnoj skupini. Radne grupe mogu biti:

1. kompleksne
2. specijalizirane
3. radne grupe za mehanizaciju

1. Kompleksne radne skupine

Obavljaju sve aktivnosti kroz koje objekt prolazi. To su većinom timovi koji jako dugo rade zajedno, pa se njihova učinkovitost može i povećati, jer su navikli raditi zajedno. Međutim takve grupe mogu biti loše za određene objekte, ako ga ranije nisu uzvodili vjerojatno je da ga neće ni znati izvesti, pa onda takve grupe treba modificirati, a svako modificiranje donosi dodatne troškove. One se u većini slučajeva sastoje od 10-12 ljudi.
2. Specijalizirane radne skupine

Skupine koje se uglavnom bave ručnim radom (armatura, betoniranje, stavljanje flastera, stavljanje oplate). One se obično sastoje od 4-8 ljudi i na njihovom čelu je nadzornik ili voditelj grupe, koji obično i sam radi. Planiranje resursa i koordiniranje ovih radnih grupa je izrazito važno, jer su često poslovi na kojim oni rade najkompleksiniji.

3. Radna grupa za mehanizaciju

Većinom grupe u kojoj svatko djeluje kao šef operacije (strojar, vozači), ili su kvalificirani radnici (mehaničari, bravari). Njihova učinkovitost ovisi u velikoj mjeri o vještini strojara, te odabiru strojeva.

Sve radne skupine moraju imati zadovoljavajuću opremu. Oprema osoblja sa alatima, malim alatima i pomoćnom materijalima zahtijeva znatna financijska ulaganja, pa je to jedan razlog da se o tome krene razmišljati u jako ranoj pripremnoj fazi.

Alati se mogu nabavljati na dva načina. Prvi način je da se svi alati naruče zajedno u obliku narudžbe, a drugi način je praktičniji za manje i srednje velike građevinske tvrtke, a to je da se naruči kompletna oprema za pojedini posao, koja onda dolazi upakirana na gradilište u obliku kontejnera.

Mali alati se moraju na gradilištu navesti kao normalna oprema. To su npr. alati za manji transport (minidamper, japa⇒ner, kolica), valjci (vibratorske ploče, udarni čekić, itd.). Ovi alati se obično stavljaju u mjesečni najam na gradilištu i njima upravlja odgovorna osoba.

U pomoćne materijale se ubrajuju svi materijali koji su dio gradilišta u fazi izgradnje, a koji se neće zadržati kada izgradnja bude gotova. To su na primjer: oplata, skele, pokrovi, zaštiti uređaji (osigurači od odrona, ograde), zaštite ograde, znakovi, itd.

3.2.5 Radni imenik

Radni imenik postoji na gradilištu da bi se pratio napredak rada, i učinkovitost radnika na gradilištu. U njemu se na kraju svakog radnog dana upisuje količina odrađenog rada, vrijeme rada, upotrebljeni resursi koji se nalaze, i svakodnevno očekivanje.
3.3 POZAJMLJENA SREDSTVA

3.3.1 Kupovina materijala

Jedan od glavnih zadataka za uspješnost izgradnje građevine je kupovina kvalitetnih materijala. Prilikom kupovine materijala postavljaju se dva pitanja: kako postupiti prilikom kupovine i tko se brine za kupovinu?

Prilikom kupovine materijala trebaju se znati uvjeti, nametnuta ograničenja i onda se gleda popis dobavljača od kojih se traži ponuda. Kada se dobiju ponude, one se ispitaju i usporede, i prema objektivnom kriteriju se izabere najjeftiniji izbor. Ovo se ne treba podejenjivati, jer je donošenje izbora je jako precizan i sveobuhvatan rad.

Pri zahtjevanju materijala se mora točno znati što se želi, trebaju se imati u računati troškovi za skladištenje. Neki od zahtjeva prilikom odabira dobavljača:

- izbor, karakteristike i kvalitete materijala
- količina
- dnevna količina prodaje
- dostava materijala.

Ovi zahtjevi se dostavljaju svim potencijalnim dobavljačima, tako da bi se ponuda temeljila na jednakim uvjetima.

Prilikom popisa potencijalnih dobavljača treba se promatrandi njihova ograničenja. U pojedinim slučajevima je ograničen izbor dobavljača (na primjer lokalna zajednica propiše da se zahtjevaju lokalni dobavljači).

Prilikom obrade ponude prvo se gleda da li ponuđeni materijali zahtijevaju tražene karakteristike kvalitete u svim djelovima i da li dolaze u dovoljnoj količini. U ovoj fazi se također dogovara o cijeni i načinu plaćanja. Što je kupac vješti i proči povoljnije nego što je to navedeno u izvornoj ponudi. Rezultat ovog procesa je kompilacija ponuda koje zadovoljavaju sve uvjete koji su bili navedeni od strane naručitelja.

Prilikom filtriranja i korigiranja cijena mora se biti u kontaktu sa svim ponuditeljima. Treba izabrati najbolju ponudu, a ne onu najjeftiniju. Kada se uspoređuju različite ponude treba uzeti u obzir i koje dodatne usluge se mogu ispuniti.
Prilikom odabira dobavljača potrebno je uzeti ispitni uzorak i pustiti ga u upotrebu, ako dobiveni rezultati nisu zadovoljavajući, prisiljeni smo odabrati druge materijale ili drugog dobavljača. Graditelj ima pravo naplatiti dodatne troškove, ako zbog nekih razloga osim kvalitete, mora ići u skupu kupovinu, a investitor je već svoje želje naveo u natječajnoj dokumentaciji.

3.3.2 Usluge podizvođača

Neće uvijek izvođač sve radnje obavljati sam, razlog u tome leži i činjenica da njihova vlastita sposobnost nebi stigla neke poslove uraditi na vrijeme ili nije u mogućnosti nikako obaviti te poslove. U ovakvim slučajevima se poseže za pomoć podizvođača.

Što se tiče pravnih odnosa, ako su radovi prenijeti na podizvođača, glavni izvođač ne odgovara za njih, a njihova provedba se omogućuje podugovorima. Po tim ugovorima glavni izvođač je kupac usluga od podizvođača.

4. PLANIRANJE I RASPORED RESURSA

Temeljno planiranje gradilišta daje rezultate:

- organizacije gradilišta
- redoslijed gradnje
- planiranje resursa
- studiju o ugovornim dokumentima
- osiguranje gradilišta
- osiguranje opreme na gradilištu.

Neke napomene za proučavanje ugovornih dokumenata:

- uvjeti
- cjenovnici
- plaćanje
- rokovi izvedbe
- jamstvena razdoblja
- premije
- kazne
- posebni uvjeti
Savjeti za sigurnost na građevinskih područjima:

- uvjeti na površini (stanje terena i nagib, zeleni pojas, postojeće zgrade, ograde i imovine, priključci za struju i telefon)
- uvjeti ispod površine (vrste tla s obzirom na nosivost, rezultati istraživanja o tlu)
- vodeni uvjeti (vodostaji, vodotoci, brzine, visoke i niske vode, temperatura vode, plime i oseke, agresivnost, štetnočine, podzemne vode)
- klimatski i zdravstveni uvjeti (nadmorska visina, mrazevi, temperatura, vlaga, padaline, infekcije)
- radni uvjeti (lokalne mogućnosti nabave rada, zaštita zaposlenika, tarifa, pretplate, naknade, sporazum o radnom vremenu, osobni prijevoz)
- ugostiteljski i smještajni zahtjevi (saloni, kuhinje, kantine, sanitarije)
- zahtjevi kod izgradnje (dobavljači, željezničke stanice, spremišta, benzinske stanice, električna energija)
- zahtjevi podizvođača (lokalni poduzetnici, ponude, reference)
- zahtjevi prijevoza (stanje na cestama, pristup gradilištu, uvjeti montaže, uvjeti na gradilišnim cestama, visine i širine cesta, istovarne postaje, blokade ceste i ograničenja brzine)

4.1 ELEMENTI NA GRADILIŠTU

Pri postavljanju elemenata na gradilište potrebno je držati se nekih načela:

- Građevinske ceste: nesmiju se krišati sa kolosjecima od dizalica, mogu biti jedno ili dvosmjerne.
- Dizalice: svaka dizalica mora ubuhvatiti područje predviđeno za spravljanje ili istovar betona, područje za obradu željeza, područje za stolarije.
- Betonara: mora imati mogućnost prihvata cementa sa vozila koja ga dovoze.
- Prostorije za obradu željeza: u dohvatu dizalice.
• Stolarije: moraju imati mogućnost opsrebe drvetom
• Kontenjeri: trebaju biti odvojeni za alat, veziva, opremu, radnike.
• Prihvatilišta: moraju biti u mogućnosti prihvatit dovožen materijal i biti u rasponu dizalice.

Kod dimenzioniranja elemenata na gradilištu treba znati:

-Za potrošnju energije (snage): -moć potrošača (kW)
 -učinkovitost motora (µ)
 -faktor snage (cos Φ) (omjer stvarne i nazivne izlazne snage)
 -faktor slučajnosti (a): -za velika gradilišta 0,4-0,5
 -za ostala gradilišta 0,6-0,75
 -uređaji sa više motora 0,75-0,85

Primjer: Ukupna kW prosječnog gradilišta je 187 kW (tu spada kompresor, toranske dizalice, betonare, prostori za savijanje, stolarije, uređaji za zbijanje betona, nekoliko radionica)

Srednja učinkovitost motora je 0,85, faktor snage=0,6, faktor slučajnosti=0,6

Potrošnja energije=\(\frac{\sum kW}{\mu} \times \cos \Phi \times a = \left(\frac{185}{0.85} \div 0.6\right) \times 0.6 = 230 \, kVA\)

Kranovi treba dimenzionirati preko ÖNORM B 4004 i B4604 certifikata

Na sljedećim slikama su prikazani razni načini dovođenja betona na gradilište, pa se na slici 6 vidi način ugradnje gotovog i dovezenog betona na gradilište i način ugradnje betona koji se i sprema na gradilištu. Na slici 7 se vidi ugrađivanje betona sa obzirom na doveženu količinu.
Slika 6. Betoniranje
Slika 7. Neka rješenja betoniranja s obzirom na količinu
Stolarija: ako se na gradilište dovodi neobrađena oplata, onda je potrebno postaviti prostoriju u kojoj će se moći oplata obraditi, a ona treba sadržavati: stolni cirkular, obodnu pilu, opremu za ručno bušenje, mljevenje, brušenje i piljenje, stol za doradu i izoštravanje, bušilicu i glodalicu, radne stolove, nadstrešnicu)

Prostorija za obradu željeza: treba biti na gradilištu ako se dovodi ne obrađeno željezo i treba sadržavati: strojeve za rezanje, strojeve za savijanje, pohranu, ploču za savijanje, planer, spremište za zakrivljeni i rezani čelik, nadstrešnicu.

Primjer jedne loše organizacije gradilišta u smislu postavljanja elemenata na gradilištu.

Slika 8. Shema organizacije gradilišta

Rezultati ispitivanja:

- Prometnice su loše postavljene, jer nema alternative za vozila koja čekaju na isporuku, mali radijus zaokretanja, mogu se okretat samo vozila bez prikolice.
- Betonara nije centralizirana i time produžuje rad dizalice.
- Mješalica maltera je loše postavljena jer ju kranist teško vidi.
- Kranska staza je preduga.
- Prostorije za pohranu željeza su van radnog prostora dizalice, istovaraju se pez pomoći dizalice i kasnije se prevoze unutar radnog prostora.
Prostorije za izradu oplate ne mora ležati u prostoru rada dizalice.

Kontenjeri ne moraju biti smješteni u radni prostor dizalice, a i potrebne su dodatne pješačke staze jer cesta ne prolazi kraj njih.

5. TRANSPORTIRANJE

5.1 TIJEK DOSTAVE MATERIJALA

Izgradnja se sastoji od nekoliko osnovnih operacija:

- Kretanje smjese
- Preoblikovanje (mješanje, ugrađivanje)
- Premještanje (montiranje, zidanje)

Transport, podizanje i napredak su uvijek u prvom planu – svaki korak u izgradnji zahtjeva kretanje. Kod kreiranja instalacija kao i kod biranja materijala za proizvodnju za provjereni objekt moramo razraditi strukturu kretanja te iz toga saznati s kojim transportnim sredstvima trebamo raspolažiti kako bi postigli optimalan dovoz materijala. Svaki materijal za izgradnju previđen put od početne točke njegove proizvodnje do posljedne točke gdje se upotrebljava. Ukoliko taj put smisleno isplaniramo, izbjeći ćemo mnoge nepotrebne zatase i postići ćemo da materijal elegantno i bez prepreka stignu do odredišta.

Primjeri tijeka dostave materijala:

1. Betoniranje

U tijeku proizvodnje betona mješanje vode, minerala i cementa, je najmanji dio posla te same aktivnosti. Ono što zahtjeva mnogo više posla jeste transport tih materijala do mješalice. Tučanak i pijesak se dovoze kamionom iz kamenoloma i podiže se pomoću bagera kako bi se omogućilo punjenje dizala. Pomoću njegovog spremnika materijal se po drugi put podiže gore i skladišti u silosima te se dio po dio dodaje u mješalicu. Dodavanje cementa je u današnje vrijeme također potpuno mehanizirano, samo se na malim gradilištima još koristi cement u vrećama. Cement se u većini slučajeva dovozi iz kolima silosa, pod tlakom se ubacuje u silose te se s tog mjesta prebacuje na vagu za cement pomoću svrđla. Voda za mješanje pristiže kroz cijevi u posudu za doziranje. Dakle, samo do mješalice su materijeli prošli kroz sedam transportnih sredstava i mora ih se nekoliko puta pretvariti.
Ali nismo ni blizu kraja. U slučaju stacinarnog gradilišta je transport gotovog betona prilično jednostavan; pojedine količine se prenose u transportnim posudama pomoću krana direktno na mjesto ugradnje. Taj tijek postaje složeniji kod linearnog gradilišta. Tu se gotovi beton mora dovesti blizu mjesta ugradnje pomoću odgovarajućeg prijevoznog sredstva, zatim pomoću kontejnera za beton pretovariti i onda sa odgovarajućim sredstvima za podizanje, čiji odabir ovisi o situaciji, dovesti do mjesta upotrebe.

2. Izgradnja kanala

Idealan način mehanizacije prerade materijala i njihovog tovarenja nije uvijek moguć. Posebno tamo gdje se radi o tome da se male količine smjese moraju dovesti ili pojedinačni dijelovi na izolirana mjesta moraju transportirati, ne može se u potpunosti izbjeći ručni rad.

U takvim slučajevima, gdje se ne može izvući "normalno rješenje" iz rukava, veliku ulogu igraju mašta i dar za improvizaciju.

Primjer: Slučaj sa odvodnim cijevima, koje je trebalo postaviti na liniji pada jedne brane te je bilo dostupno samo preko jednog uskog puta. Kako teške cjevi od cementa s druge ceste do izlazne točke transportirati i kako ih s te točke donijeti gore do brane do njihove točke ugradnje?

Odabrano riješene je bilo prilično nekonvencionalno, ali se u praksi pokazalo apsolutno svrshodno. Dovoz cijevi je obavio mjesni poljoprivrednik sa svojim malim traktorom, osim nekoliko sitnih proširenja puta, nije se moralo ništa raditi. Duž tog voda je postavljen konopac na kojem se montiralo vitlo za dizanje. S vitlom su se mogle cijevi podizati te se kompletno vitlo zajedno s cijevi vuklo preko gradilišta i cijev bi se spustila na mjesto odredišta.

5.2 OSNOVE PLANIRANJA TRANSPORTA

Od činjenice da je rješenje transporta unutar gradilišta veoma značajno i da se sve transportne radnje sastoje od mnogih pojedinačnih radnji proizlaze različiti problemi, koji se moraju detaljno proučiti. (Iznimka je kretanje materijala unutar gotovih naprava i mašina. Tu su drugi te probleme već riješili.)
1. Koje transportno sredstvo

Prvo pitanje se odnosi na transportna sredstva koja sredstava za podizanje najbolje odgovaraju ovisi između ostalog od sljedećih faktora:

- vrsta robe
- količina
- duljina puta
- glani pravac kretanja (dužni transporta, podizanje, spuštanje)
- vrsta gradilišta
- topografija gradilišta
- karakteristike tla
- postojeće prometnice

2. Usklađivanje transportnog učinka

Transportnim učinkom označavamo količinu prema vremenskom učinku (primjer: m³/h). Ukoliko se dijelovi puta razlikuju, te etape se moraju uskladiti. Tu postoji razliki između koninuiranog i nekontinuiranog tijeka transporta materijala.

Pod kontinuiranim transportom podrezumijavamo ne prekinuti proces transporta nekog materijala, na primjer prijevoz agregata na traci. Transportni učinak u ovom slučaju je funkcija brzine trake i prosjeka materijala. U pravilu se kod kretanja sredstava za gradnju najčešće radi o nekontinuiranom transportnom procesu, što znači da se materijal koji se transportira dijeli u porcije koje se pojedinačno prevoze. Na primjer, prevozi se miješana roba u prijevoznim sredstvima; transportni učinak onda ovisi o količini, o broju vozila i od vremena utrošenog puta do točke odredišta i natrag. Ili transport betona kranom; transportni učinak ovisi o nosivosti posude i vremena koje se utroši.

Koordinacija svih tih puteva nije uvijek jednostavna. Problemi uglavnom nastaju kod prijelaza sa kontinuiranih na nekontinuirane tijekove materijala i obrnuto. Posebne mjere treba poduzeti ako se transportna sredstva koje slijede jedan drugog ne poklapaju po kapacitetu.
3. Mehanizacija pretovara

Ako želimo spojiti dva transportna prozesa bez greške, moramo planirati uređenje za pretovar. Ovisno o pretpostavakama nude se različita rješenja.

- Kod pretovara sa velikog na manje prijevozno sredstvo potrebno je materijal slagati jedan na drugi te prenositi u porcijama. Isiti princip treba slijediti kod prijelaza sa nekontinuiranog na kontinuirani prijevoz. Mehanizirana sredstva za taj slučaj su na primjer: hidraulički bager, silos u kombinaciji sa punjačem
- U obrnutom slučaju se nađe prostor za skladištanje gdje se čeka da se nakupi porcija materijala, kako bi se izbjeglo čekanje prijevoznih sredstava.

4. Stvaranje čekaonica

Stvaranjem takvih čekaonica ili prostora za skladištenje ne stvara se samo sredstvo za spajanje transportnih procesa nego i osiguranje u slučaju smetnji. U shemi za proizvodnju miješanog materijala je naprimjer: u proizvodnji tucanika predviđen međuslijed, koji na prvi pogled nije potreban, ali u slučaju potrošnje mješanog materijala i dalje se može proizvoditi tucanik iako trenutno nema sredstva za mješanje i obrnutu.

5.3 SREDSTVA ZA PODIZANJE

Naviknuto je transportne probleme površnih gradilišta riješavati kranom a linearnih gradilišta pneumatskim sredstvima. Pokazalo se da je moguće koristi i druga rješenja.

Treba razlikovati dvije vrste gradilišta pri tome stacionarna i mobilna.

Stacionarno gradilište:

Nude se sljedeća sredstva:

- toranjska dizalica
- kabel kran
- uspinjača
- stroj za razvrstavanje materijala
- gradilišno dizalo
- pokretne trake sa kantama

- vozivi mali kran
- mobilni kran
- auto kran
- lančana ili grabiva dizalica
- prenosiva traka
- mobilna pumpa za beton

Posljednja, ali i nesvakidašnja mogućnost jeste helikopter. Inače skupo, ali u nekim slučajevima, kada je objekt smješten na vrhu brda ili toranj kojem treba zamjeniti tek par dijelova, ova mogućnost možda nudi i najpovoljniju cijenu.

Mobilno gradilište:

Za njih postoje mnoga različita sredstva:

- gusjenica sa kašikom
- dozer
- pneumatska kašika
- skreper
- kamion
- traktori
- damperi
Cestovna vozila

- kamion
- šleper

Sredstava na tračnicama

- Diesel- ili elektrolokomotiva
- Pruga sa jednim kolosjekom

Sredstva na tračnicama su također uobičajena i u nekim slučajevima su ona najpovoljnija, kao naprimjer kod kanalizacije. Tako se nekonvencionalna sredstva često nadu u upotrebi kada se radi o neprohodnim mjestima ili kada treba prevaziti različite visine.

5.4 SKLADIŠTENJE MATERIJALA

Transport, slaganje i skladištenje materijala na gradilištu iznose 60-70% ukupnog troška osoblja i inventara, tako da je to ozbiljna tema. Uštedjeti se može na slijedeći način:

- međuskladištenje dovesti na minimum
- minimalizirati transportnu distancu
- predvidjeti metode skladištenja
- mehanizirati utovar i istovar

Računanje količine skladišnih materijala:

Pojedini materijali (gotovi beton, bitumen) moraju se odmah iskoristiti i mogu se samo kratko međuskladišti. Ali u pravilu moramo stvoriti prostor za skladištenje, posebno kako bi mogli stvoriti razliku između sredstava koja se troše i koja tek pristižu na gradilište. Budući da skladištenje donosi troškove, pokušavamo materijale odmah dostaviti na mjesto upotrebe, a skladištenje se radi samo ukoliko je prijeko potrebno. Naručene količine ovise o slijedećim faktorima:

- potrošnja materijala i agregata
- maksimalna moguća dnevna količina isporuke
redovitost isporuke

Minimalna količina isporuke materijala se određuje prema iskustvu, a na nju utječe još i potrošnja materijala, a ona mora biti toliko velika da daljnja isporuka ne dolazi u opasnost. Kada se oslanja na radnika sa velikim iskustvom za dobavljanje materijala, tada sigurnosna rezerva materijala može biti relativno mala, a u obrnutom slučaju će nam trebati veći raspon u isporuci materijala, a samim tim i veća rezerva.

Skладиште i metoda gomilanja:

Skладиште mora biti izvana lako dostupno i mora biti spojeno na prometni sustav unutar gradilišta. Materijali i dijelovi, koji su zbog svoje veličine ili zbog svoje važnosti veliki, moraju biti smješteni što bliže mjestu ugradnje. Troškovi skладишtenja sastoje se od sljedećeg:

- skladištenje otpada i/ili
- instaliranje prostora za otpad (npr. troškovi za montažu i iznajmljivanje silosa za otpad)
- troškovi iskrčavanja dolaznog materijala
- slaganje materijala
- ponovo punjenje i prijevoz do mjesta ugradnje.

Očito je sa ekonomskih strana da se tijekom mehanizacije za pretovar i slaganje mogu načiniti znatne uštede. U pojedinim slučajevima se može iskoristiti nagib na građevini. Prijevoz materijala se mora uskladiti po predviđenoj metodi pohranе te ugradnje materijalа. Racionalno skladištenje i gomilanje materijala je prikazano na tablici 1.
<table>
<thead>
<tr>
<th>Materijal/Metoda</th>
<th>jedinica</th>
<th>Isporuka materijala</th>
<th>Istočar materijala</th>
<th>Gomilanje materijala</th>
<th>Vrsta skladištenja</th>
<th>Visina (m)</th>
<th>Površina (m²)</th>
<th>Daljnji transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agregati za beton i smjesu za bitumen</td>
<td>m³</td>
<td>Kamion sa ili bez kiperice</td>
<td>Kipanje</td>
<td>Srdlo + dizalo za silos</td>
<td>Sirovi žeri</td>
<td>3-6</td>
<td>0.3</td>
<td>Lopatanje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sirovi žeri</td>
<td>3-6</td>
<td>0.3</td>
<td>Lopatanje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pokretna traka</td>
<td>3-6</td>
<td>0.3</td>
<td>Lopatanje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lopatanje</td>
<td>3-6</td>
<td>0.3</td>
<td>Lopatanje</td>
</tr>
<tr>
<td>Cement</td>
<td>t</td>
<td>Cisterna</td>
<td>Raspršivanje zrakom</td>
<td>Silos za cement</td>
<td>Srdlo</td>
<td>1.5</td>
<td>0.8</td>
<td>Ručno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>0.8</td>
<td>Ručno</td>
</tr>
<tr>
<td>Bitumen</td>
<td>t</td>
<td>Tankeri</td>
<td>Ispumpavanje</td>
<td>Spremnik</td>
<td>Pumpanje</td>
<td>1.5</td>
<td>0.8</td>
<td>Ručno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>0.8</td>
<td>Ručno</td>
</tr>
<tr>
<td>Armatura</td>
<td>t</td>
<td>U paketu</td>
<td>Dizalica</td>
<td>0.8</td>
<td>Dizalica</td>
<td>0.8</td>
<td>0.25</td>
<td>Dizalica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.25</td>
<td>Dizalica</td>
</tr>
<tr>
<td>Drvena građa</td>
<td>m³</td>
<td>U paketu</td>
<td>Dizalica</td>
<td>2-3</td>
<td>Dizalica</td>
<td>2-3</td>
<td>0.7</td>
<td>Dizalica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-3</td>
<td>0.7</td>
<td>Dizalica</td>
</tr>
<tr>
<td>Cigle (komadi)</td>
<td>1000</td>
<td>Palette</td>
<td>Dizalica</td>
<td>1.0</td>
<td>Dizalica</td>
<td>1.0</td>
<td>3.5</td>
<td>Dizalica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>3.5</td>
<td>Dizalica</td>
</tr>
<tr>
<td>Cementne cjevi</td>
<td>m</td>
<td>Kamion sa istovonom, kad je moguće kamion sa istovarom i slaganjem</td>
<td></td>
<td></td>
<td></td>
<td>3-6</td>
<td>0.3</td>
<td>Lopatanje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-6</td>
<td>0.3</td>
<td>Lopatanje</td>
</tr>
</tbody>
</table>

Tablica 1. Transport i skladištenje materijala
5.5 PLAN INSTALACIJE

Plan instalacije podrazumijeva distribuiranje svih prođučenih objekata i opreme tako da njihov raspored omogući da oni u svakom trenutku budu dostupni te da se suma troškova transporta svede na najmanju moguću. Prostorna povezanost mora biti takva da se spriječi poremećaj protoka materijala od mjesta skladištenja pa do mjesta ugradnje. Na gradilištima sa ograničenim prostorom, ili gradilištima sa teškim vremenskim uvjetima, ovdje se misli na primjer gradilišta na planini, rješenja nisu jednostavna i problem postavljanja gradilišta je sofisticiran i izrazito važan zadatak.

Sadržaj plana instalacije:

Prostorni raspored svakog pojedinog dijela raspoređa na gradilištu će biti zabilježen i opisan u planu instalacije. Da bi procjenili da li ili ne neke uvjete možemo zanemariti svaki plan instalacije, da bi bio cjelovit, mora zadržavati:

- proizvodni pogon sa svim potrebnim pratećim komponentama
- kontejnere (ostava alata, radionice, ured, prostorije za radnike, WC, kuhinja)
- radna mjesta (stolare, radionica za armaturu)
- stojeće i pokretne dizalice (kranovi, dizala) sa svojim područjem
- skladište za otpad
- građevinski kolovoz
- parkiralište
- opsrba za vodu, struju, telefon
- odvodnja odpadnih voda
- skladište goriva
- građevinska ograda i uređaji za zaštitu
- podzemni i nadzemni vodovi
- odlagališta za zemlju i iskopani materijal

Generalni plan instalacije nije uvijek dovoljan prikaz uređenja gradilišta i njegovog prostornog raspoređa. Ovisno o različitim zahtjevima imamo neke dodatke kao na primjer:

- planove za postupno instaliranje
- usjeci i zasjeci kada na gradilištu imamo velike visinske razlike
- detaljni planovi pojedinih institucija i postrojenja
- konstrukcije za privremene mostove itd.

5.5.1 Primjer zgrada

Na slici 9 vidimo primjer sa jedne građevine za zgradu sa dvije toranjske dizalice. Relativno zgasnut plan ima sve potrebno da bi se odvijala izgradnja na obje zgrade istovremeno. Ovaj problem na gradilištu je riješen tako što se što se gradilište podijelilo na dva manja samostalna gradilišta, brvnara i kafeterija su bili ubuhvaćeni u gradilištu 1, a obadvije učionice su bile gradilište 2. Zajedničko za oba gradilišta su bile stolarija, ured, kantina, i kontenjeri za spavanje.

Slika 9. Shema uređenja gradilišta
Minimalan broj dizalica

Optimalna dizalica

Opće karakteristike jednog krana su:

- maksimalna visina (m)
- maksimalni dohvat (m)
- nosivost na maksimalnom dohvatu (kg)
- moment opterećenja = duljina zahvata * nosivost

Kada je dizalica stacionarna njezin domet se prikazuje u kružnom rasponu, za razliku od mobilnih dizalica koje se kreću po tračnicama te se njihov domet povećava i ima oblik elipse. Odabir dizalice se svodi na visinu i nosivost objekata koje treba ugraditi u građevinu i odabire se najjeftinije rješenje. Trenutno vrlo čest slučaj je nemogućnosti izbora uređaja pa se koristi onaj koji je trenutno slobodan i na raspolaganju. Prije nego što se odluči sa kojom dizalicom će se raditi, a ne može se raditi sa optimalnom za gradilište, treba računati dodatne troškove koji će biti na samom gradilištu ako se izabere pojedina dizalica.

Optimalan raspored dizalica

Bitno je dizalicu postaviti u položaj koji omogućuje što brže podizanje odnosno spuštanje tereta koji se sa njom prevozi (armatura, oplata, beton, malter itd.). Vrijeme koje je potrebno za pojedinu operaciju ovisi o visini podizanja, kut zakretanja dizalice i udaljenosti na koju treba objekt spustiti. Kod dizalica koje se kreću po tračnicama vrijeme operacije se još više produžuje ukoliko se mora pomicati dizalicu. I dohvat ima ulogu u transportnom kapacitetu krana, što je manji dohvat krana moći će prenijeti veće opterećenje. Visina je poželjna kada se mora u jednom dana prevesti velike količine materijala (npr. prilikom betoniranja). Dakle položaj dizalice se odradi tako da transport betona iz mješalice do mjesta ugradnje bude:

- sa što manjom udaljenosti dohvata
- da se udaljenost dohvata ne mijenja i
- da se ne trebaju savladati velike rotacije.
Materijali koji se isporučuju i skladište na gradilištu moraju biti u okviru težina koje se podudaraju sa nosivosti dizalice na odgovarajućem dohvatu. Svi materijali koji su bitni zbog svojih velikih količina ili velike težine moraju biti pohranjeni u rasponu radijusa dizalice.

Dodatna oprema

Ima i slučajeva kada nije moguće sve izvesti sa stacionarnom dizalicom. To je slučaj kada se treba izbetonirati velike količine, ili kada neki beznačajni dio leži van dohvata dizalice. U ovim uvjetima je potrebna dizalica visokih performansi koja će biti kratko vrijeme, i koja bi se tijekom preostalog vremena slabo iskorištavala u gradnji. Kao rješenje ovog problema obično se uzimaju jeftinije mobilne dizalice (autodizalice, mikseri i beton pumpe).

Racionaliziranje promjena

U većim, zemljopisno opsežnim gradilištima ne može se uvijek izbjeći prevođenje građevinske opreme u tijeku izgradnje, osim ako plan zahtijeva od početka odvojene instalacije za različite dijelove izgradnje objekta. Da bi se uštedjelo vrijeme i novac potrebno je takve promjene svesti na minimalno i racionalizirati ih koliko god je to moguće. Betonom se može rukovati lako i jeftino i to uvijek treba primjenjivati i uvijek imati na umu kada je vrijeme za dizalicu ograničeno. Komplicirano je rastavljanje i sastavljanje betonare. Ovdje se može kao transportno sredstvo birati između miksera i posebne dizalice za beton.

Sigurnosne mjere

Treba spriječiti pod svaku cijenu da planirani sadržaji na gradilištu nemaju izvore opasnosti u sebi. Zato neke obavijesti:

- Kranist treba biti podignut što je više moguće tako da ima vizualni kontakt prilikom utovara i istovara.
- Treba nastojati osigurati da nitko ne stoji ispod opterećenja koja se prevoze. Fiksne radionice (stolarija, prostorija za oblikovanje armature) treba stavlжiti izvan područja rada krana. Tračnice za dizalice moraju biti projektirane i postavljene sa velikom pažnjom.
- Zemlju i materijal koji se iskopa, koji će se ponovno koristiti, treba zbrinuti izvan radnog prostora dizalice.
6. DIZALICE I TRANSPORTNA SREDSTVA

6.1 JEDNOSTAVNE DIZALICE

Za građevinske operacije se koriste:

-Proste dizalice

- „Flaschenzug“
 - sa užetom
 - sa lancem

- „Seilzug“ (do 3t)

-dizalice (do 6t, visine podizanja do 1,5m)

-električne dizalice

 - s sajlomom (u izgradnji do 16t, inače do 80t)
 - s lancem, obično povezane s kolicima (u izgradnji do 2t, inače do 10t)

-Vitla

-bubanjska vitla

 -vitlo sa ručnim načinom rada (do 6t)

 -vitlo s motornim pogonom
 - malo vitlo (do 0,5t)
 - vitlo-dizalo (do 1t)
 - montažno vitlo (do 15t)

-Preše

 -hidrauličke preše (do 100 t, visina podizanja do 1200mm)

 -hidrauličke dizalice (visina podizanja do 12m)
Kranovi su sredstva koja služe za podizanje i pomjeranje teških predmeta na velike visine. On može podizati, spuštati, i može se micati u jednom ili više smjerova. Oni mogu biti stacionarni, montirani na tračnicama ili slobodno pokretljivi odnosno plutajući. Razlikujemo:

- mostni kran
- lučki, brodski i portalni kranovi
- montažni kran
- pokretni kran
- plovn kran
- kabel kran

Lučki, brodski i portalni kranovi služe za podiznje kontenjera i kreću se po tračnicama. Upravljanje se vrši kroz upravljačku kabinu, ili preko daljinskog upravljača. Upotrebljava se u proizvodnim i skladišnim postrojenjima i vrši utovar, prijenos i istovar uzduž šina kojim se koriste. Njegova širina kolosjeka je 5-30 m, a nosivost 2-30 t.

Slika 11. Mostni i portalni kran
Montažni kran: kod njega razlikujemo: „derik“ kran, toranski kran.

„Derik“ kran se sastoji od vertikalnog jarbola, katarka i pogona na tri gusjenice. Može se i montirati na kolosjek pa se njegova funkcionalnost višestruko povećava. Njegov okretni raspon je 170°, nosivost do 200t, visina podizanja do 100 m, dužina ruke do 60 m.

Toranski kranovi su najčešće korišćeni za transport i prijenos materijala na gradilištu. Nezamjenjivi su u visokogradnji. Upravlja se preko upravljačkog tornja i može biti montiran ili se može kretati po Šinama. U toranske kranove spadaju: kosi kranovi, kranovi sa mačkama, teleskopski kran, mali kran i zglobni kran.

Kosi kran ima dvije varijante s obzirom na položaj kabine. Kabina može biti smještena ispod ili iznad ruke krana. Kod njega se ruka može dizati ili spuštati. Kuka mu se nalazi na kraju ruke. Za stabilizaciju koristi protuuteg, koji se nalazi pri dnu dizalice. Moment nosivosti mu se kreće od 8-208 tm, nosivost mu je od 0,5-407 t, dužina ruke 16-44 m.

Kran sa mačkom, kod njega je ruka u fiksnom horizontalnom položaju, a po ruci se kreće „mačka“ na koju je ovješeno vitlo sa kukom. Okretni prsten, koji služi za rotaciju krana, se nalazi ispod ruke. Također ima protuuge koji služi za stabilizaciju, i on se nalazi ili u podnožju ili gore na drugoj strani ruke. Upravlja se pomoću upravljačke kabine, koja je smještena ili pri vrhu ili u podnožju krana. Moment nosivosti mu se kreće od 30-350 tm, nosivost od 1,07-7,15 t, dužina ruke 28-49 m.

Teleskopski ili brzomontažni kran ima mogućnost da sam sebe sastavlja. Okretnica se nalazi u podnožju, gdje se nalazi i protuuteg. Njegov moment nosivosti ide od 20-100 tm, nosivost 0,83-2,60 t, dužina ruke 24-38 m.

Mini kranovi su slični kao i teleskopski, međutim oni nemaju vozačku kabinu i nemaju podvozje. Moment nosivosti 3-10 tm, dužina ruke 10-16 m, nosivost 0,30-0,60 t.

Zglobni kran ima moment nosivost 50-140 tm, nosivost 1,55-3,40 t i dužinu ruke 32-41 m.

Pokretni kranovi ili autodizalice, to su kranovi koji su montirani na neko vozilo. Razlikuju različite vrste autodizalice.

Zemljana dizalica- dizalica koja se montira na kamion, nije njegov sastavni dio. Radi na hidraulički pogon, a stabilizira se preko nogu pomoću kojih se oslanja na tlo. Može biti
opremljen sa kukom ili hvataljkom. Moment nosivosti je 3,20-19 tm, nosivost 0,60-8,60 t, dužina ruke 4,3-8,3 m.

Mobilna dizalica- dizalica sa gumениm podvozjem. Podvozje i dizalica čine jednu cjelinu, a i dizalica i vozilo ide na isti motor koji radi na gorivo. Kada radi dizalica mora se osigurati pomoću potpornih nogu. Postoje mobilne dizalice sa rešetkastom rukom (nosivost 10-90 t, duljina ruke 9-12 m, maksimalna brzina 20km/h) i teleskopskom rukom (nosivost 15-70 t, duljina ruke 15-40m, maksimalna brzina 40-70 km/h)

Autodizalica- dizalica sa gumениm podvozjem. Podvozje i nadgradnja čine posebne cjeline, također i dizalica i podvozje rade na posebne motore. Kada radi dizalica može se podići na potporne noge, ali ne mora. Postoje također verziju sa rešetkastom rukom (nosivost 50-190 t, duljina ruke 9m) i teleskopskom rukom (nosivost 18-120 t, duljina ruke 21-41 m, maksIMALNA BRZINA 40-70 KM/H)

Dizalica na gusjenicama- ove dizalice se mogu podići i bez podrške, a mogu i raditi pri uzdužnim i bočnim nagibima terena do 11°.

Kabel kran su kranovi smješteni između dva tornja. Koriste se za izuzetno velike tereta na velikim rastojanjima. Imaju veliku i horizontalnu i vertikalnu pokretljivost i vrlo brzo se kreću. Sastoje se od dva noseća tornja, nosećeg užeta na kome se nalazi mačka, vučnog užeta i užeta sa jahačima. Tornjevi mogu biti fiksni i mobilni.
6.3 DIZALA

U građevinskoj izgradnji se koriste:

Građevinski liftovi:

To su građevinske dizalice koje imaju visinu penjanja veću od dva metra i kut nagiba maksimalno 45° po vertikali. Njihovo podvozje je jako brzo, a rade na električni pogon i u samostojecem položaju mogu biti visoke do 9 m. Njihova nosivost je 0,4-1,0 t, a brzina podizanja je 21-35 m/min. Služe za podizanja materijala i radnika.
Dizala i ljestve za materijal:

Rade na električni pogon i služe za podizanje paleta, kontenera sa materijalom ili kanti sa betonom. Nosivost im je 0,2 t, a visina podizanja 8-30 m.

Liftovi:

Sastoje se od korpe koja radi na električni pogon i služi za prijenos laki materijala i radnika. Nosivost 0,75-2,50 t, brzina podizanja 30-40 m/min.

6.4 MOTORNÁ VOZILA

U građevini se koriste:

- Vozila za prijevoz osoba
 - osobna vozila (kombi sa dizelskim ili benzinskim pogonom)
 - minibusevi sa dizelskim ili benzinskim pogonom
 - terenska vozila sa dizelskim ili benzinskim pogonom
 - autobus

- Mali kamioni

- Kamioni
 - dvoosovinski ili troosovinski kamion sa ili bez kiperice. Dimenzije prikolice (dužina*širina): 3,00*2,10-6,20*2,40 m, nosivost 2,2-19,5 t, snaga motora 55-265 kW.
 - dvoosovinski ili troosovinski šleperi sa poluprikolicom. Mogućnost vučenja tereta od 9,5-21 t, snaga motora 150-338 kW.
 - terenski kamioni
 - cisterne
 - traktori
 - prikolice sa ili bez kipanja dimenzija (d*s): 2,50*1,25-8,30*2,40 m, nosivosti 1,6-16,5 t.
 - labudice dimenzija (d*s): 7,70*1,25-10,60*2,50 m, i nosivosti 12,0-38,3 t.

- transporteri za zemlju i stijene, imaju mogućnost prijevoza većih količina (6-17 m³)

- mali damper koji prevoze 0,6-1,9 m³
-transporteri na gusjenicama: ovi uređaji su prilagođeni vožnji napred-nazad i imaju mogućnost tereta 0,4-8,0 t

6.5 GUME

Veličine i oznake guma su međunarodno definirane i imaju jedinstvene testove za svaku marku. Njihovi podatci se daju u inčima ili milimetrima. Podatci o gumama sadrže širinu gume, promjer naplatka i vrstu.

Primjer gume 13,00-24: -širina gume=13 inča (cca 33cm)
- promjer naplatka=24 inča (cca 61 cm)
- dvije decimalne točke u prvom podatku=normalne gume

Primjer gume 17,5-25: -širina gume=17,50 inča
- promjer naplatka=25 inča
- jedna decimalna točka u prvom podatku=široke gume

Primjer gume 20-24: -širina gume=20 inča
- promjer naplatka=24 inča
- nema decimalne točke u prvom podatku=široka guma

Primjer gume 185 R 14: -širina gume=185 mm
- promjer naplatka=14 inča
- nema decimalne točke u prvom podatku=široka guma
- R označava radijalnu gradnju

Nosivost gume ovisi o tlaku zraka u gumu i brzine kretanja. Karakteristike nosivosti guma se daju preko PR-broja. Na primjer:

PR=24: Nosivost=7300 kg, na 50 km/h i 4,25 bara

PR=28: Nosivost=8000 kg, na 50 km/h i 5,00 bara

PR=32: Nosivost=8750 kg, na 50 km/h i 5,25 bara
7. ZAKLJUČAK

Odabir i dimenzioniranje unutrašnjeg transporta je jako složen i kompleksan posao, koji zahtjeva jako puno vremena, i zahtjeva veliku količinu posla koji će biti obavljen prije njega. Upravo zbog ovih karakteristika iskustvo je jedna od najpoželjnijih karakteristika pri donošenju odluka pri odabiru i dimenzioniranju (na kraju krajeva kao i u ostalim područjima građevinskih preseca). Pri odabiru i dimenzioniranju unutrašnjeg transporta jako puno utječe odabir načina proizvodnje, to jest hoće li se raditi ručno ili će se raditi uz pomoć strojeva. Kako se u ovom radu ipak radi o gradilištu visokogradnje jedino logično rješenje se nameće izbor mehanizirane proizvodnje. Ali kako strojevi ne mogu raditi bez ljudi odabir ručne proizvodnje u vidu odabira radnih skupina te njihovog opremanja i dalje je jednako važno kao i odabir samih strojeva koji će sudjelovati u izgradnji. Svaki stroj koji se nalazi na gradilištu, svaka grupa radnika, svaki podizvođač koji će u određenom trenutku biti na gradilištu, svaki materijal koji će proći kroz gradilište, imaju neke svoje zahtjeve koji će ograničiti izbor i dimenzioniranje unutrašnjeg transporta, pa se može vidjeti koliko je to zapravo složen i kompliciran posao.

Ali da stvar bude još složenija utječe i elementi koji će se nalaziti na gradilištu. Tu se nalazi, osim građevine koja će tu ostati i nakon izgradnje, jako puno postrojenja koji služe da bi se gradnja mogla odvijati normalnim tokom. Sva ta postrojenja se uklanjaju nakon završetka radova za koje su predviđena, ali se u određenom trenutku nalaze na gradilištu i tako utječu na izbor i dimenzioniranje unutrašnjeg transporta. Elementi koji se nalaze na gradilištu i služe za izgradnju, a nakon izgradnje se uklanjaju su: građevinske ceste, dizalice, betonara, prostorije za obradu željeza, stolarije, razni kontenjeri, prihvatilišta za doveženi materijal. Svaki od ovih elemenata ima neke svoje posebne zahtjeve koji opet ograničavaju unutrašnji transport.

Tijek materijala na gradilištu, tj. tijek od dolaska materijala na gradilište preko njegovog skladištenja na gradilištu pa do njegove ugradnje, isto bitno ograničava unutrašnji transport. Tijek materijala mora biti prohodan i nesmetan kako bi bilo što manje zastoja. Tekočer materijal koji se ugrađuje utječe i na sam odabir strojeva koji će se koristiti na gradilištu.

Kod odabira unutarnjeg tranzporta jako puno utječe i odabir strojeva koji će se koristiti pri prijevozu unutar gradilišta. Taj izbor strojeva je jako opširan. Izbor se sastoji od jednostavnih dizalica, kranova, građevskih dizala, i dizala koja se nalaze na motornim
vozilima. U slučaju gradilišta visokogradnje ne zamislivo je raditi bez toranjskih dizalica. To je zato što gradilišta dosežu velike visine, a za transport na velike visine nema boljeg uređaja od toranjskih dizalica.

Na kraju krajeva dolazi se do zaključka da je odabir i dimenzioniranje unutrašnjeg transporta zbog svih svojih zahtjeva jedan vrlo, vrlo težak posao koji bi bilo rađe izbjечи i prepustiti nekome drugom. Ali ne treba sve gledati tako crno na bijelo, jer upravo zbog svih svojih ograničenja, zbog svoje kompleksnosti i zbog potrebe poznavanja preduvjeta, ovaj posao može biti jako zanimljiv, uz to što je i jako bitan za gradilište, pa onda kada se dobor napravi može se biti jako ponosan na sebe.
8. LITERATURA

1) Mathias Blumer, (1976) Bauführung, Baufachverlag, Zürich
2) Rudolf Habison, (1999):“Bau Betriebslehre 2“, MANZ Verlag, Wien

4) https://www.grad.unizg.hr/_download/repository/09-4-toranjskedizalice.pdf (8.9.2015)
5) http://www.gradjevinarstvo.rs/tekstovi/399/820/toranjske-dizalice (8.9.2015)
6) https://www.grad.unizg.hr/_download/repository/11_TGV_dizalice.pdf (8.9.2015)