Analiza mehanizama otkazivanja zidova izvan ravnine na višekatnoj zgradi

Škreblin, Ena

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Rijeka, Faculty of Civil Engineering / Sveučilište u Rijeci, Građevinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:157:659950

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-01-10

mage not found or type unknown Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Civil Engineering - FCERI Repository

SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET

Ena Škreblin

Analiza mehanizama otkazivanja zidova izvan ravnine na višekatnoj zgradi

Diplomski rad

Rijeka, 2023.

SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET

Sveučilišni diplomski studij Smjer Konstrukcije Betonske i zidane konstrukcije 1

Ena Škreblin JMBAG: 0114032400

Analiza mehanizama otkazivanja zidova izvan ravnine na višekatnoj zgradi

Diplomski rad

Rijeka, studeni 2023.

IZJAVA

Diplomski rad izradila sam samostalno, u suradnji s mentorom i uz poštivanje pozitivnih građevinskih propisa i znanstvenih dostignuća iz područja građevinarstva. Građevinski fakultet u Rijeci je nositelj prava intelektualnog vlasništva u odnosu na ovaj rad.

Ena Škreblin

U Rijeci, 3. studenoga 2023.

ZAHVALA:

Veliku zahvalnost dugujem svojim roditeljima koji su uvijek moja velika podrška. Hvala obitelji, dečku i prijateljima na podršci, razumijevanju i strpljenju tijekom proteklih godina mog studiranja.

Zahvaljujem se mentoru doc. dr. sc. Paulu Šćulcu na uloženom trudu, volji i prenesenom znanju tijekom izrade ovog rada.

SAŽETAK:

U diplomskom radu prikazan je teorijski pregled mehanizama otkazivanja zidova izvan ravnine uslijed potresnog djelovanja te je provedena analiza postojeće zidane zgrade u Rijeci gdje je ocijenjeno stanje lokalnih mehanizama. Detaljnije su teorijski obrađeni sljedeći mehanizmi: prevrtanje zida pročelja, prevrtanje zida pročelja s bočnim zidom i formiranje horizontalnog luka u zidu. Provedena je parametarska analiza te su izrađeni dijagrami faktora aktivacije mehanizma i spektralnog ubrzanja ovisno o geometriji i opterećenju zida. Prikazani su postupci ojačanja koji se mogu primijeniti kako bi se spriječilo otkazivanje zidova izvan ravnine u postojećim zgradama. Za provedbu lokalnih mehanizama otkazivanja korišten je programski paket 3 Muri u kojem su modelirani različiti tipovi mehanizama ovisno o rubnim uvjetima i geometriji blokova. Analitičkim proračunom pomoću metode virtualnog rada i uvjeta ravnoteže momenata utvrđeni su faktori aktivacije pojedinog mehanizma te je provedena provjera odgovarajućeg zahtjeva za granična stanja. Na temelju rezultata proračuna, donesen je zaključak o utjecaju lokalnih mehanizama na konstrukciju.

Ključne riječi: mehanizmi otkazivanja zidova izvan ravnine, 3 Muri, zidana zgrada, potresno djelovanje, linearna kinematička analiza

ABSTRACT:

This final year thesis presents a theoretical overview of the out-of-plane failure mechanisms under seismic actions and a numerical analysis of an existing stone masonry building in Rijeka, where the condition of the local mechanisms was evaluated. The following mechanisms are theoretically observed: overturning of the facade, overturning of the facade wall including the side wall and the formation of a horizontal arch in the wall. A parametric analysis was carried out and diagrams of the activation factor and spectral acceleration of the mechanism were created depending on the geometry and load of the wall. Strengthening procedures that can be applied to prevent out-of-plane wall failure in existing buildings are presented. To implement local failure mechanisms, the 3 Muri program package was used, in which different types of mechanisms were modeled depending on the boundary conditions and block geometry. Analytical calculation using the method of virtual work and the conditions of balance of moments determined the activation factors of each mechanism and verified the appropriate requirements for limit states. Based on the calculation results, a conclusion was made about the influence of local mechanisms on the construction.

Key words: out-of-plane failure mechanisms, 3 Muri, masonry building, seismic actions, linear kinematic analysis

SADRŽAJ

1.	UVC	DD	1
2.	ANA	ALIZA MEHANIZAMA OTKAZIVANJA ZIDOVA IZVAN RAVNINE	3
	2.1.	Mehanizmi otkazivanja izvan ravnine	3
	2.2.	Osnovni tipovi mehanizama otkazivanja zidova izvan ravnine	4
	2.2.1.	Mehanizam tipa A	5
	2.2.2.	Mehanizam tipa B1 i B2	6
	2.2.3.	Mehanizam tipa C	7
	2.2.4.	Mehanizam tipa D	8
	2.2.5.	Mehanizam tipa E	9
	2.2.6.	Mehanizam tipa F	10
	2.2.7.	Mehanizam tipa G	11
	2.2.8.	Mehanizam tipa H	12
	2.2.9.	Mehanizam tipa I	13
	2.2.10	. Mehanizam tipa L	14
	2.2.11.	. Ostala otkazivanja	15
3.	MET	rode poboljšanja veze zid-zid i veze zid-strop	16
4.	PAR	AMETARSKA ANALIZA MEHANIZAMA OTKAZIVANJA ZIDOVA IZVAN RAVNINE	22
	41	Linearna kinematička analiza	23
	4.1.	Primiena linearne kinematičke analize	26
	4.2.1	Mehanizam otkazivania tina A – prevrtanie zida	20
	4.2.2.	Mehanizam otkazivanja tipa 81 – Prevrtanje s jednim bočnim zidom	
	4.2.3.	Mehanizam otkazivanja tipa G – Formiranje horizontalnog luka u zidu	65
5.	TEH	NIČKI OPIS POSTOJEĆE KONSTRUKCIJE	73
	51	Onis konstrukcija	72
	5.1.	Diolovania na konstrukciju	75
	5.2. 5.2.1	Stalno dielovanie	75
	5.2.1.		75
	5 2 3		70
	5.2.5.	Svoistva materijala	70
6	э.э. мо	DELIRANIE II PROGRAMSKOM PAKETI I "3 MURI"	
0.	WIC		
	6.1.	Model konstrukcije	79
	6.1.1.	Definiranje zidova i otvora	80
	6.1.2.	Definiranje stropne i krovne konstrukcije	82
	6.2.	Materijalni parametri	83
	6.2.1.	Materijalni parametri zidova	84
	6.2.2.	Materijalni parametri stropne konstrukcije	85
	6.3.	Potresno opterećenje konstrukcije u programu 3Muri	85
	6.3.3.	Proračun prema Eurokodu	85
	6.3.4.	Proračun prema NTC	87

7.1.	Mehanizam A	
7.1.1.	Primjer 1	
7.1.2.	Primjer 2	
7.1.3.	Primjer 3	
7.1.4.	Primjer 4	
7.2.	Mehanizam B1	
7.2.1.	Primjer 1	
7.2.2.	Primjer 2	
7.3.	Mehanizam B2	
7.4.	Mehanizam C	
7.4.1.	Primjer 1	
7.4.2.	Primjer 2	
7.4.3.	Primjer 3	
7.5.	Mehanizam D	
7.6.	Mehanizam E	
7.6.1.	Primjer 1	
7.6.2.	Primjer 2	
7.6.3.	Primjer 3	
7.7.	Mehanizam F	
7.7.1.	Primjer 1	
7.7.2.	Primjer 2	
7.7.3.	Primjer 3	
7.7.4.	Primjer 4	
7.7.5.	Primjer 5	
7.7.6.	Primjer 6	
7.7.7.	Primjer 7	
7.7.8.	Primjer 8	
7.7.9.	Primjer 9	
7.7.10	. Primjer 10	
7.7.11	. Primjer 11	
7.7.12	. Primjer 12	
7.8.	Mehanizam G	
7.9.	Mehanizam L	
7.9.1.	Primjer 1	
7.9.2.	Primjer 2	
7.10.	Rekapitulacija mehanizama otkazivanja	
8. ZAł	ĹIJUČAK	
ידו ם		

POPIS SLIKA

Slika 1. Osnovni mehanizmi otkazivanja zidova izvan ravnine [2]	ł
Slika 2. Prevrtanje zida pročelja: shema [2], primjeri [1]	;
Slika 3. Shema prevrtanja zida pročelja uz slom na jednom bočnom zidu (B1) i zida pročelja uz slon	۱
na oba bočna zida (B2) [2]	5
Slika 4. Prevrtanje zida pročelja s bočnim dijelom zida [1]	5
Slika 5. Slom ugla zida: shema [2], primjer [1]	1
Slika 6. Slom ugla nakon potresa u Petrinji 2020.godine [8,10]	7
Slika 7. Djelomično prevrtanje zida pročelja iz vlastite ravnine – shema [2]	3
Slika 8. Djelomično prevrtanje zida nakon potresa u Petrinji 2020. godine [5]	3
Slika 9. Djelomično prevrtanja zida nakon potresa u Italiji [15]	3
Slika 10. Prevrtanje vertikalne trake: shema [2], primjer [4])
Slika 11. Prevrtanje vertikalne trake [10])
Slika 12. Formiranje vertikalnog luka: shema [2], primjeri [1,7]10)
Slika 13. Formiranje horizontalnog luka: shema [2], primjeri [1]11	L
Slika 14. Formiranje horizontalnog luka nakon potresa u Petrinji 2020. godine [8]	L
Slika 15. Otkazivanje u ravnini – shema [2]12	<u>)</u>
Slika 16. Otkazivanje zida u ravnini [10]12	<u>)</u>
Slika 17. Prevrtanje zida nadogradnje - shema [2]13	3
Slika 18. Prevrtanje lastavice zabata: shema [2], primjer [1]14	ł
Slika 19. Prevrtanje lastavice zabata nakon potresa u Petrinji 2020.godine [9,12] 14	ł
Slika 20. Urušavanje krova: shema [2], primjer nakon potresa u Petrinji [5]	5
Slika 21. Lokalni slom ziđa: shema [2], primjer [10]15	5
Slika 22. Ponašanje zidanih zgrada tijekom potresa (a) zgrada s drvenim stropom bez zatega, (b)
zgrada s drvenim stropom i zidovima povezanim zategama i (c) zgrada s krutim stropom i veznon	ı
gredom (serklažem) [13] 16	5
Slika 23. Položaj čeličnih zatega u tlocrtu (gore), uvećani prikaz povezivanja čelične šipke s zidom	ı
(dolje) [14]	7
Slika 24. Položaj čeličnih šipki po visini konstrukcije [13]17	1
Slika 25. Pojačanja stropne konstrukcije: nova AB ploča (lijevo), zadržavanje drvene stropne	ē
konstrukcije i ugradnja zatega (desno) [13]18	3
Slika 26. Detalj povezivanja postojeće drvene stropne konstrukcije i zida pomoću čeličnih šipki [13]
	3
Slika 27. Pojačanje drvenog stropa velikog raspona sa čeličnom rešetkom [13])

8. Detalj povezivanja nove AB ploče u zid [13]	19
9. Pojačanje ugla pomoću spojnih kamenih blokova [13]	20
0. Pojačanje ugla pomoću čeličnih ploča [13]	20
1. Pojačanje zidova ugradnjom AB vertikalnih serklaža [13]	21
2. Shema virtualnih pomaka za mehanizam otkazivanja tipa A (modificirano prema [1]) 28
3. Uvećani prikaz plana vertikalnih pomaka za mehanizam otkazivanja tipa A	28
4. Geometrija zida i pretpostavljeni mehanizam tipa A	30
5. Faktor aktivacije za mehanizam otkazivanja A - slučaj 1	35
6. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 1	35
7. Faktor aktivacije za mehanizam otkazivanja A - slučaj 2	37
8. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 2	38
9. Faktor aktivacije za mehanizam otkazivanja A - slučaj 3	40
0. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 3	40
1. Faktor aktivacije za mehanizam otkazivanja A - slučaj 4	42
2. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 4	43
4. Faktor aktivacije za mehanizam otkazivanja A – slučaj 5	45
5. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 5	45
6. Shematski prikaz mehanizma otkazivanja tipa B1 [16]	
7. Shema virtualnih pomaka za mehanizam otkazivanja tipa B1 (modificirano prema	[1]) 47
8. Uvećani prikaz plana vertikalnih pomaka za mehanizam otkazivanja tipa B1	48
9. Koordinate težišta klinova	48
0. Geometrija zida i pretpostavljeni mehanizam tipa B1	50
1. Faktori aktivacije za mehanizam tipa B1 - slučaj 1	52
2. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 1	53
3. Faktori aktivacije za mehanizam B1 - slučaj 2	55
4. Spektralno ubrzanje za mehanizam B1 - slučaj 2	55
5. Faktori aktivacije za mehanizam tipa B1 - slučaj 3	57
6. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 3	57
7. Faktori aktivacije za mehanizam tipa B1 - slučaj 4	59
8. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 4	59
9. Faktori aktivacije za mehanizam tipa B1 – slučaj 5	61
0. Spektralno ubrzanje za mehanizam tipa B1- slučaj 5	61
1. Faktori aktivacije za mehanizam tipa B1 - slučaj 6	63
9. Faktori aktivacije za mehanizam tipa B1 – slučaj 4 9. Faktori aktivacije za mehanizam tipa B1 – slučaj 5 0. Spektralno ubrzanje za mehanizam tipa B1- slučaj 5	

Slika 63. Faktori aktivacije za mehanizam tipa B1 - slučaj 7	64
Slika 64. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 7	65
Slika 65. Shematski prikaz mehanizma otkazivanja tipa G [16]	66
Slika 66. Shema modela za mehanizam otkazivanja tipa G (modificirano prema [16, 1])	66
Slika 67. Shema potpornog zida (modificirano prema [1])	69
Slika 68. Geometrija zida i pretpostavljeni mehanizam tipa G (modificirano prema [16])	70
Slika 69. Prikaz pročelja stambene zgrade u Vukovarskoj ulici	73
Slika 70. Arhivski nacrti zgrade [18]	74
Slika 71. Pretpostavljeni slojevi stropne konstrukcije	75
Slika 72. Tlocrt prizemlja	79
Slika 73. Tlocrt prvog, drugog i trećeg kata	80
Slika 74. 3D vizualizacija stambene zgrade	80
Slika 75. Postavke nosivih zidova	81
Slika 76. Postavke pregradnih zidova	81
Slika 77. Podaci o stropnoj konstrukciji	82
Slika 78. Podaci o opterećenju u 3 Muri: stropna konstrukcija (lijevo); krovna konstrukcija	(desno)
	83
Slika 79. Materijalne karakteristike nosivog zida (lijevo) i pregradnog zida (desno)	84
Slika 80. Podaci o karakteristikama drveta	85
Slika 81. Prikaz podataka za seizmičko opterećenje prema Eurokodu	87
Slika 82. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 1 (lijevo)	, prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)	90
Slika 83. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 2 (lijevo)	, prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)	91
Slika 84. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 3 (lijevo)	, prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)	92
Slika 85. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 4 (lijevo)	, prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)	93
Slika 86. Geometrija pretpostavljenog bloka mehanizma otkazivanja B1 primjer 1 (gore lij	jevo i u
sredini), prikaz položaja zgloba (gore desno), položaj zida u konstrukciji (dolje)	97
Slika 87. Geometrija pretpostavljenog bloka mehanizma otkazivanja B1 primjer 2 (gore lij	jevo i u
sredini), prikaz položaja zgloba (gore desno), položaj zida u konstrukciji (dolje)	98
Slika 88. Geometrija pretpostavljenog bloka mehanizma otkazivanja B2 (gore), prikaz p	oložaja
zgloba (dolje lijevo), položaj zida u konstrukciji (dolje desno)	101

Slika 89. Geometrija pretpostavljenog bloka mehanizma otkazivanja C primjer 1 (gore lijevo i u Slika 90. Geometrija pretpostavljenog bloka mehanizma otkazivanja C primjer 2 (gore lijevo i u Slika 91. Geometrija pretpostavljenog bloka mehanizma otkazivanja C primjer 3 (gore lijevo i u Slika 92. Geometrija pretpostavljenog bloka mehanizma otkazivanja D (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)105 Slika 93. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa E primjer 1 (lijevo), prikaz Slika 94. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa E primjer 2 (lijevo), prikaz Slika 95. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa E primjer 3 (lijevo), prikaz Slika 96. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 1 (lijevo), prikaz Slika 97. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 2 (lijevo), prikaz Slika 98. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 3 (lijevo), prikaz Slika 99. Opterećenje u mehanizmu otkazivanja tipa F primjer 3..... 111 Slika 100. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 4 (lijevo), prikaz Slika 101. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 5 (lijevo), prikaz Slika 102. Opterećenje u mehanizmu otkazivanja tipa F primjer 5...... 113 Slika 103. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 6 (lijevo), prikaz Slika 104. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 7 (lijevo), prikaz Slika 105. Opterećenje u mehanizmu otkazivanja tipa F primjer 7..... Slika 106. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 8 (lijevo), prikaz

Slika 107. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 9 (lijevo), prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)
Slika 108. Zadano opterećenje na blok mehanizma otkazivanja tipa F primjer 9 117
Slika 109. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 10 (lijevo),
prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)
Slika 110. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 11 (lijevo),
prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)
Slika 111. Zadano opterećenje na blok mehanizma otkazivanja tipa F primjer 11 119
Slika 112. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 12 (lijevo),
prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)
Slika 113. Zadano opterećenje na blok mehanizma otkazivanja tipa F primjer 12 120
Slika 114. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa L primjer 1 (lijevo), prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)
Slika 115. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa L primjer 2 (lijevo), prikaz
položaja zgloba (u sredini), položaj zida u konstrukciji (desno)122

POPIS TABLICA

Tablica 1. Objašnjenje oznaka za mehanizam otkazivanja A [1]	27
Tablica 2. Vrijednosti za opterećenje stropne konstrukcije	29
Tablica 3. Mehanizam otkazivanja A - parametri	. 30
Tablica 4. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 1	31
Tablica 5. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 1	32
Tablica 6. Parametri zgrade za proračun lokalnih mehanizama	32
Tablica 7. Vrijednosti parametara za elastični spektar odziva tipa 1 za tip tla A [19]	33
Tablica 9. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 2	36
Tablica 10. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 2	37
Tablica 11. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 3	38
Tablica 12. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 3	39
Tablica 13. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 4	41
Tablica 14. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 4	42
Tablica 15. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 5	43
Tablica 16. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 5	44
Tablica 17. Objašnjenje oznaka za mehanizam otkazivanja B1 [1]	47
Tablica 18. Mehanizam otkazivanja B1 - parametri	50
Tablica 19. Ulazne vrijednosti parametara i proračun mehanizma otkazivanja tipa B1 – slučaj 1	50
Tablica 20. Vrijednosti virtualnih pomaka za mehanizam tipa B1 - slučaj 1	52
Tablica 21. Ulazne vrijednosti parametara i proračun mehanizma otkazivanja tipa B1 – slučaj 2	53
Tablica 22 Vrijednosti virtualnih pomaka za mehanizam tipa B1 - slučaj 2	54
Tablica 23. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkaziva	nja
tipa B1 – slučaj 3	56
Tablica 24. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkaziva	nja
tipa B1 – slučaj 4	58
Tablica 25. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkaziva	nja
tipa B1 – slučaj 5	60
Tablica 26. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkaziva	nja
tipa B1 – slučaj 6	62
Tablica 27. Objašnjenje oznaka za mehanizam otkazivanja G [1]	67
Tablica 28. Kinematički parametri mehanizma otkazivanja tipa G [1, 16]	. 68
Tablica 29. Ulazne vrijednosti parametara i proračun mehanizma otkazivanja tipa G	. 70
Tablica 30. Geometrija i djelovanja na zid u poprečnom smjeru	71

Tablica 31. Proračun mehanizma otkazivanja G 72
Tablica 32. Vrijednosti sile H i faktora aktivacije o sili u zatezi T72
Tablica 33. Stalno opterećenje stropne konstrukcije 76
Tablica 34. Karakteristične vrijednosti mehaničkih svojstava ziđa [N/mm2] [21]
Tablica 35. Opterećenje krovne konstrukcije
Tablica 36. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 1 90
Tablica 37. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 2 91
Tablica 38. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 3 92
Tablica 39. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 4 93
Tablica 40. Opterećenje stropne konstrukcije na blokove u mehanizmu otkazivanja A – primjer 494
Tablica 41. Opterećenje krovne konstrukcije na blokove u mehanizmu otkazivanja A – primjer 4 94
Tablica 42. Proračun faktora aktivacije mehanizma za mehanizam otkazivanja A – primjer 4 94
Tablica 43. Podaci o potresnoj otpornosti građevine95
Tablica 44. Proračunska modalna masa, faktor proračunske modalne mase i spektralno ubrzanje
mehanizma A — primjer 4
Tablica 45. Vrijednosti zahtijevanih spektralnih ubrzanja i zadovoljenje uvjeta za mehanizam A –
primjer 496
Tablica 46. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja B1 – primjer 1 97
Tablica 47. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja B1 – primjer 2 98
Tablica 48. Proračun mehanizma otkazivanja za mehanizam B1 – primjer 2
Tablica 49. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja tipa B2101
Tablica 50. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja C – primjer 1 102
Tablica 51. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja C – primjer 2 103
Tablica 52. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja C – primjer 3 104
Tablica 53. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja D
Tablica 54. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja E – primjer 1 106
Tablica 55. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja E – primjer 2 107
Tablica 56. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja E – primjer 3 108
Tablica 57. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 1 109
Tablica 58. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 2 110
Tablica 59. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 3 111
Tablica 60. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 4 112
Tablica 61. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 5 113
Tablica 62. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 6 114

1. UVOD

Veliki broj građevina sagrađen je od osnovnog građevinskog materijala – kamena. Kamene zgrade su vrlo ranjive na potres i podložne oštećenju zbog horizontalnih opterećenja koja nisu uzeta u obzir tijekom projektiranja. Ocjenu postojećeg stanja zgrade moguće je provesti s pouzdanim podacima o građevini poput podataka o mehaničkim karakteristikama materijala, postojanju kutnih blokova, povezanosti između okomitih susjednih zidova te povezanosti zidova sa stropnom konstrukcijom [3].

S obzirom da provjera na globalnom modelu ne prikazuje stvarno ponašanje konstrukcije u potresu, model konstrukcije se nastoji pojednostaviti i promatra se kao skup podsustava odnosno lokalnih mehanizama [1]. Lokalni mehanizmi otkazivanja mogu se podijeliti na mehanizme u ravnini zida, pri čemu je sila potresnog djelovanja u smjeru pružanja zida, i one izvan ravnine konstrukcije gdje sila djeluje okomito na ravninu zida. U ovom radu pozornost je usmjerena samo na mehanizme otkazivanja zidova izvan ravnine.

Proveden je teorijski pregled linearne kinematičke analize koja se temelji na talijanskoj tehničkoj normi NTC 2008 [24]. Analiza se temelji na definiranju geometrije blokova koji su uključeni u mehanizam, uvjetima ograničenja prema načinu mehanizma koji se ispituje te vrijednostima sila. Potrebno je proračunati faktor aktivacije mehanizma koji je moguće dobiti pomoću principa virtualnog rada ili pomoću uvjeta ravnoteže momenta prevrtanja i stabilizirajućeg momenta. Na temelju faktora aktivacije mehanizma dobiva se vrijednost spektralnog ubrzanja aktiviranja mehanizma koja mora zadovoljiti kriterij graničnih stanja zaštite života (tal. *SLV – Stato limite di salvaguarolia della vita*) i kriterij graničnog stanja oštećenja (tal. *SLD – Stato limite di danno*) [17, 24].

U teoretskom dijelu rada, parametarska analiza je usmjerena na određivanje faktora aktivacije mehanizma, odnosno multiplikatora horizontalnih opterećenja koja djeluju na konstrukcijske elemente što aktivira pretpostavljenu kinematiku. Promatran je utjecaj parametara geometrije i odnosa sila na vrijednost faktora aktivacije i spektralnog ubrzanja. U drugom dijelu rada, promatra se zidana kamena zgrada na području grada Rijeke. Zidana zgrada izvedena je od kamenih blokova povezanih vapnenim mortom. Iz Arhiva grada Rijeke preuzeta je dokumentacija zgrade čija je geometrija prikazana na nacrtima na kraju diplomskog rada. Pretpostavljeni mehanizmi analiziraju se s obzirom na geometriju označenog bloka te položaj unutar konstrukcije koji bitno utječe na ponašanje mehanizma. Pretpostavlja se da će blokovi na višim katovima biti kritičniji zbog manjih vrijednosti uzdužnih sila u zidovima (što znači da ne postoji velika težina koja pridržava blok) te zbog amplitude ubrzanja potresnog djelovanja koja ima veći iznos na višoj koti konstrukcije.

Razmotrit će se ponašanje i sigurnost postojeće zgrade na djelovanje sila okomito na ravninu zida te će biti dan uvid u načine poboljšanja odziva na potresno djelovanje.

2. ANALIZA MEHANIZAMA OTKAZIVANJA ZIDOVA IZVAN RAVNINE

2.1. Mehanizmi otkazivanja izvan ravnine

U slučaju kada konstrukcija ne prikazuje jasno globalno ponašanje, nego na potres reagira kao skup podsustava potresno ponašanje i ocjenu potresne sigurnosti građevine potrebno je analizirati uzimajući u obzir mehanizme lokalnog otkazivanja. Pritom je važno uzeti u obzir da će otkazivanje putem lokalnih mehanizama biti manje otporno i duktilno za razliku od ukupnog odgovora građevine [1].

Identifikacija mehanizama otkazivanja zidova izvan ravnine postiže se promatranjem čimbenika koje najviše utječu na potresni odgovor konstrukcije, a to su [1,2]:

- Geometrija zgrade te položaj i dimenzije otvora u zgradi,
- Vrsta i kvaliteta građevnog materijala,
- Učinkovitost veze između pojedinih konstruktivnih elemenata (veza zid-zid i zidstrop),
- Djelovanja na nosive elemente koja su nepovoljna za ravnotežu,
- Vrsta i učinkovitost ojačanja.

Otkazivanje zidova izvan ravnine javlja se prvenstveno zbog nedovoljne povezanosti dijelova konstrukcije. Najčešće se otkazivanje pojavljuje kod fasadnih i zabatnih zidova, jer osim što se nalaze na višem dijelu konstrukcije te su izloženi većim amplitudama pomaka, nisu opterećeni vertikalnim opterećenjem koji djeluje stabilizacijski. Lokalni mehanizam otkazivanja može imati veliki utjecaj na vertikalnu nosivost zida i stabilnost konstrukcije u cjelini čime direktno može ugroziti sigurnost ljudi [3].

Mehanizmi otkazivanja su okarakterizirani s obzirom na njihove posebnosti kako bi se postojeća oštećenja zglobova (pukotine) mogla povezati s mogućim uzrocima. S obzirom na mjesta formiranja zglobova te geometriju, potrebna je pažljiva inženjerska procjena te iskustvo iz prethodnih potresa kako bi se analizom i pregledom konstrukcije i njenih oštećenja moglo razaznati o kojem tipu otkazivanja zida se radi [3].

U ovom poglavlju detaljno su prikazani i objašnjeni osnovni tipovi mehanizama otkazivanja izvan ravnine koji su zabilježeni promatranjem oštećenja i pukotina nakon potresa, a u poglavlju 3 opisane su metode koje se mogu upotrijebiti kako bi se njihova pojava spriječila tj. kako bi se nosivi elementi konstrukcije povezali tako da se konstrukcija ponaša kao cjelina.

2.2. Osnovni tipovi mehanizama otkazivanja zidova izvan ravnine

Osnovni mehanizmi otkazivanja vanjskih zidova izvan ravnine prikazani su na slici 1. Na slici su prikazani i mehanizmi lokalnog otkazivanja lastavice zabata te prevrtanje zida nadogradnje, koji često imaju različitu debljinu i svojstva ziđa nego ostatak konstrukcije. Provodi se analiza apsolutno krutog modela bloka koji se prevrće pod 90° ili rotira pod određenim kutom u odnosu na točkasti ili linijski zglob. Stvarna otpornost zida na prevrtanje je manja nego što je otpornost apsolutnog krutog modela [3].

Za potrebe analize moguće je razmatrati najviše 5 katova te se analiza provodi za ulično pročelje zgrade [2].

ſ	А	B1	B2	С	D	E	F
	VERTICAL OVERTURNING	OVERTURNING WITH 1 SIDE WING	OVERTURNING WITH 2 SIDE WINGS	CORNER FAILURE	PARTIAL OVERTURNING	VERTICAL STRIP OVERTURNING	VERTICAL ARCH
			FURTHER PAI	RTIAL FAILURES	ASSOCIATE) FAILURES	
ſ	G	Н	I	L			

HORIZONTAL ARCH	IN PLANE FAILURE	VERTICAL ADDITION	GABLE OVERTURNING	ROOF/FLOORS COLLAPSE	MASONRY FAILURE
	882				A Solution A So

Slika 1. Osnovni mehanizmi otkazivanja zidova izvan ravnine [2]

2.2.1. Mehanizam tipa A

Mehanizam tipa A ili prevrtanje zida pročelja odnosi se na prevrtanje fasade izvan ravnine bez sudjelovanja bočnih zidova. Razlog pojave ovakvog mehanizma je izostanak veze između pročelja i međukatne konstrukcije i bočnih zidova ili ako je postojeća veza nedovoljna [2].

Ovakav mehanizam se definira kroz krutu rotaciju cijelog pročelja ili dijela zida izvan svoje ravnine. Karakterizira ga: nepovezanost zidova s krovnom konstrukcijom, slaba povezanost između susjednih zidova te izostanak zatega i veznih greda. Razvoju ovog mehanizma doprinosi i prisutnost neuravnoteženih potisaka na zid (npr. od svodova i lukova). Dolazi do pojave vertikalnih pukotina na spoju zidova, te se formira horizontalni zglob u podnožju zida oko kojeg se vrši rotacija pročelja [1].

Slika 2. Prevrtanje zida pročelja: shema [2], primjeri [1]

2.2.2. Mehanizam tipa B1 i B2

Mehanizmi B1 i B2 ili prevrtanje zida iz vlastite ravnine zajedno s bočnim dijelom zida će se pojaviti umjesto mehanizma A kada je povezanost pročelja i bočnih zidova bolja, zbog čega mehanizam uključuje jedan (mehanizam B1) ili oba bočna zida (mehanizam B2) u prevrtanje. Pojavljuju se dijagonalne pukotine na bočnim zidovima i horizontalni zglob na pročelju zgrade [2]. Dolazi do krute rotacije cijelog pročelja ili dijelova zida s povlačenjem dijelova susjednih bočnih zidova. Razlog pojave ovog tipa mehanizma događa se uslijed nedostatka pridržanja na vrhu. Razvoju ovog mehanizma doprinosi prisutnost neuravnoteženih potisaka na zid i otvori u blizini ugla. Ovakav mehanizam otkazivanja je karakterističan za zidove slabijih mehaničkih svojstava [1].

Slika 3. Shema prevrtanja zida pročelja uz slom na jednom bočnom zidu (B1) i zida pročelja uz slom na oba bočna zida (B2) [2]

Slika 4. Prevrtanje zida pročelja s bočnim dijelom zida [1]

2.2.3. Mehanizam tipa C

Mehanizam tipa C ili otkazivanje na uglu se pojavljuje na uglu zgrade kada dva susjedna zida imaju dobru povezanost na samom kraju, ali relativno lošu kvalitetu ziđa u ravnini. Mehanizam se očituje rotacijom zida oko zgloba gdje se dvije dijagonalne pukotine pomiču prema rubu zidova s većim dijelom svakog zida [2]. Rotacija makroelementa se događa u smjeru potiska pod kutom od najčešće 45° u odnosu na ravninu zidova [1].

Mehanizmi ovog tipa su česti u zgradama koje imaju potiske koncentrirane na vrhu ugla, te kod zgrada gdje je jedan ugao slobodan, tj. nije povezan sa susjednom zgradom. Razvoju ovog mehanizma doprinosi i loša povezanost zidova i stropne konstrukcije te prisutnost otvora u blizini kuta [1].

Slika 5. Slom ugla zida: shema [2], primjer [1]

Slika 6. Slom ugla nakon potresa u Petrinji 2020.godine [8,10]

2.2.4. Mehanizam tipa D

Mehanizam tipa D ili djelomično prevrtanje zida iz vlastite ravnine se pojavljuje kada je slaba kvaliteta ziđa te je povezanost pročelja s bočnim zidovima slaba i nejednolika [2]. Dolazi do krute rotacije gornjih dijelova pročelja u odnosu na dijagonalnu os koja se proteže duž zgrade. U ovom slučaju prevrtanje se odnosi samo na gornju razinu zgrade ili dijelove zida ispod krova [1].

Slika 7. Djelomično prevrtanje zida pročelja iz vlastite ravnine – shema [2]

Slika 8. Djelomično prevrtanje zida nakon potresa u Petrinji 2020. godine [5]

Slika 9. Djelomično prevrtanja zida nakon potresa u Italiji [15]

2.2.5. Mehanizam tipa E

Mehanizam tipa E ili prevrtanje vertikalne trake iz vlastite ravnine pojavljuje se uslijed pravilnog položaja otvora u vertikalnim nizovima te slabe povezanosti parapeta iznad otvora [2]. Dolazi do stvaranja vertikalne pukotine duž pročelja koja odvaja zidanu traku od ostatka pročelja.

Slika 10. Prevrtanje vertikalne trake: shema [2], primjer [4]

Slika 11. Prevrtanje vertikalne trake [10]

2.2.6. Mehanizam tipa F

Osim čimbenika poput povezanosti susjednih zidova, kvalitete materijala i rasporeda otvora, pri definiranju mehanizama veliku važnost ima prisutnost elemenata za ojačanje, poput zatega ili obodnih prstenastih greda. Ukoliko je zid ojačan zategama ili obodnim prstenastim gredama u krovnoj ravnini, ali veza s jednom od stropnih konstrukcija nije zadovoljavajuća postoji mogućnost nastanka mehanizma tipa F [2].

Mehanizam tipa F ili otkazivanje putem formiranja vertikalnog luka se očituje pojavom horizontalne pukotine koji zid dijeli na dva dijela, odnosno dva bloka sa zajedničkim unutarnjim linijskim zglobom i vanjskim zglobovima pri vrhu i dnu kojim su blokovi pričvršćeni za ostatak konstrukcije. Pojavi ovog tipa mehanizma pogoduje vrlo dobra povezanost na vrhu zida koja učinkovito zadržava zid, nedovoljna povezanost pročelja s bočnim zidovima, prevelika vitkost zida, lokalni horizontalni potisci unutar stropne konstrukcije od lukova ili svodova te slaba povezanost po horizontali na jednom od katova [1]. Slom ovog tipa može nastupiti i zbog linijskog oslabljenja zida poput postavljanja ležaja za novu armiranobetonsku ploču pri rekonstrukciji [3]. Ovisno o povezanosti katova, bilo sa zategama ili prstenastim gredama, mehanizam tipa F može se pojaviti u kombinaciji s tipovima od A do E na etažama iznad pojačanja [2].

Slika 12. Formiranje vertikalnog luka: shema [2], primjeri [1,7]

2.2.7. Mehanizam tipa G

Ukoliko postoje veze fasade i stropne konstrukcije ili bočnog zida, one će definirati položaj zgloba te hoće li se luk javiti vertikalno (mehanizam otkazivanja tipa F) ili horizontalno (mehanizam otkazivanja tipa G) [2].

Mehanizam otkazivanja tipa G se očituje izbacivanjem zida u obliku klina iz vršnog dijela pročelja nakon formiranja jedne vertikalne i dvije kose pukotine. Ovaj se mehanizam javlja u slučaju slabe veze zida i stropne odnosno krovne konstrukcije (ne postoji pridržanje na vrhu zgrade koje bi zadržalo zid) i istovremeno male nosivosti ziđa na savijanje oko osi okomite na horizontalne sljubnice [3]. Pročelje je pritom dobro povezano s bočnim zidovima. Razvoju mehanizma će doprinijeti prisutnost potiska (poput oslonaca krovne konstrukcije), prisutnost širokih otvora (prozora) te nepostojanje protupotresnih mjera (poput zatega). Javljaju se vertikalne i kose pukotine pri čemu dolazi do urušavanja krovnih greda [1].

Slika 13. Formiranje horizontalnog luka: shema [2], primjeri [1]

Slika 14. Formiranje horizontalnog luka nakon potresa u Petrinji 2020. godine [8]

2.2.8. Mehanizam tipa H

Mehanizam otkazivanja tipa H ili otkazivanje u ravnini nastaje uslijed prekoračenja nosivosti ziđa, kada dolazi do razvoja dijagonalne pukotine uslijed horizontalnog djelovanja u ravnini fasade. Kada se dijagonalna pukotina razvije do ruba, dio fasade gubi stabilnost te se prevrće ili sklizne preko donjeg dijela [2].

Slika 15. Otkazivanje u ravnini – shema [2]

Slika 16. Otkazivanje zida u ravnini [10]

2.2.9. Mehanizam tipa l

Mehanizam tipa I ili prevrtanje zida uvučene nadogradnje se događa zbog diskontinuiteta u visini, razlike u krutosti te povećanog ubrzanja gornjeg dijela fasade [2]. Dolazi do rotacije i pada pročelja nadogradnje koje nije dovoljno dobro povezano s krovnom konstrukcijom [3].

Slika 17. Prevrtanje zida nadogradnje - shema [2]

2.2.10. Mehanizam tipa L

Mehanizam tipa L ili prevrtanje lastavice zabatnog zida jedan je od djelomičnog oblika otkazivanja zidova. Očituje se rotacijom zida na gornjem području zabata gdje se dio zida odvaja u obliku klina. Otkazivanje se događa zbog nedostatka nosivosti konzolnog dijela zida na savijanje te zbog slabe povezanosti zabata na vrhu s krovnom konstrukcijom. Zabatni zidovi obično imaju manju debljinu od zidova pa time i veću opasnost od prevrtanja [2]. Na lastavicu ne djeluje stabilizacijsko vertikalno opterećenje od krovne konstrukcije stoga ne postoji sila koja bi stvarala pritisak i pozitivno djelovala na težinu lastavice te na taj način pridržavala lastavicu [1].

Slika 18. Prevrtanje lastavice zabata: shema [2], primjer [1]

Slika 19. Prevrtanje lastavice zabata nakon potresa u Petrinji 2020.godine [9,12]

2.2.11. Ostala otkazivanja

Osnovni mehanizmi sloma mogu biti popraćeni sa slomovima poput urušavanja krova ili stropne konstrukcije te lokalnim rušenjem ziđa [3]. Urušavanje krova ili stropne konstrukcije nastaje kada konstrukcija nije prikladno povezana za rubne zidove zgrade. U tom slučaju dolazi do klizanja krovne konstrukcije sa zidova i u konačnici urušavanje krova [2].

Slika 20. Urušavanje krova: shema [2], primjer nakon potresa u Petrinji [5]

Prazna mjesta u zidu i loša veza između gradivnog materijala (nehomogenost) dovode do raslojavanja materijala te oštećenja u zidovima koja rezultiraju rušenjem dijela ziđa izvan ravnine [2]. Dolazi do urušavanja dijela zida zbog nedovoljne nosivosti na posmičnu i vlačnu silu. Uzrok ovakvog otkazivanja može biti i loša kvaliteta zida [1].

Slika 21. Lokalni slom ziđa: shema [2], primjer [10]

3. METODE POBOLJŠANJA VEZE ZID-ZID I VEZE ZID-STROP

Većina graditeljske povijesne baštine u brojnim europskim gradovima smatra se potresno vrlo rizičnom te se zbog njihove povijesne važnosti javlja potreba o njihovom pojačanju. Pojačanje zidanih zgrada je kroz povijest bilo oduvijek od velike važnosti. Prilikom gradnje koristili su se uglovni blokovi većih dimenzija od osnovnog zidanog materijala čime se osiguravala cjelovitost i prijenos opterećenja između okomitih zidova. Uz razvoj tehnologije i novih materijala, počinju se koristiti i željezne ili čelične zatege (u stropnoj ili krovnoj ravnini) koje povezuju vanjske zidove. Osim toga, sve se više koriste armiranobetonske ploče i krovovi, kao krute dijafragme, koje se oslanjaju i povezuju s vanjskim zidovima te postupak injektiranja kojim se popunjavaju šuplji dijelovi unutar zida [2].

U nastavku su prikazane metode koje se koriste kako bi se elementi konstrukcije povezali i ponašali kao jedinstvena cjelina. Osiguravanjem zadovoljavajuće krutosti stropne konstrukcije, sile potresne pobude će biti ravnomjerno raspoređene na zidove te će se konstrukcija ponašati poput "kutije". Osim krutog stropa koji učvršćuje konstrukciju te osigurava ponašanje poput kutije, nužno je da zidovi budu međusobno povezani. Na slici 22 je prikazano kako spoj zidova i način spajanja zidova sa stropom utječe na ponašanje zidanih zgrada u potresu [13].

Slika 22. Ponašanje zidanih zgrada tijekom potresa (a) zgrada s drvenim stropom bez zatega, (b) zgrada s drvenim stropom i zidovima povezanim zategama i (c) zgrada s krutim stropom i veznom gredom (serklažem) [13]

Metode za osiguranje cjelovitosti konstrukcije uključuju [13]:

- povezivanje zidova čeličnim zategama
- povećanje krutosti stropne konstrukcije i povezivanje sa zidovima
- ojačanja uglova zidova

Ideja povezivanja zidova zategama (čeličnim ili drvenim) poznata je stoljećima. Obično se čelične zatege postavljaju neposredno ispod stropne konstrukcije. Najčešće su to čelične šipke koje na kraju imaju navoj te se pričvršćuju na čelične sidrene ploče i osiguravaju maticama (slike 23 i 24). Šipke se postavljaju simetrično sa svake strane zida u horizontalnim kanalima u žbuci debljine 4-5 cm. Nije nužno bušiti zid te postavljati šipke unutar njega. Čelične sidrene ploče moraju biti debljine najmanje 15 mm i malo dulje od debljine zida, dok im širina mora biti najmanje 200 mm. Čelične šipke se prednapinjanju te međusobno povezuju na kraju zida. Preporučuje se promjer šipki 16-20 mm. Izvode se na razini kata te bitno povećavaju krutost stropa [13].

Slika 23. Položaj čeličnih zatega u tlocrtu (gore), uvećani prikaz povezivanja čelične šipke s zidom (dolje) [14]

Slika 24. Položaj čeličnih šipki po visini konstrukcije [13]

U starim zidanim zgradama gdje su drveni stropovi vrlo fleksibilni te nemaju odgovarajuću krutost u ravnini, potrebna je intervencija. Oni se mogu zamijeniti krutom armiranobetonskom pločom ili montažnom pločom s obodnim veznim gredama koji se za zidove pričvršćuju uz pomoć čeličnih šipki koje sidrimo na uglovima. Druga je opcija zadržati postojeću drvenu stropnu konstrukciju i osigurati da se ponaša kao horizontalna dijafragma (ugradnja zatega, čeličnih rešetki, još jednog sloja daski iznad postojećih pod 90°, drvenih ploča...) Na slici 25 su prikazana uobičajena pojačanja stropne konstrukcije: na lijevoj slici drveni je strop zamijenjen armiranobetonskom pločom, dok je na desnoj slici zadržan postojeći drveni strop, ali su dodane čelične zatege [13].

Slika 25. Pojačanja stropne konstrukcije: nova AB ploča (lijevo), zadržavanje drvene stropne konstrukcije i ugradnja zatega (desno) [13]

Slika 26. Detalj povezivanja postojeće drvene stropne konstrukcije i zida pomoću čeličnih šipki [13]

U postojećoj drvenoj stropnoj konstrukciji, drvene grede se sidre u zidove uz pomoć čeličnih šipki (slika 26). Kada je postojeća stropna konstrukcija velikog raspona te ju je nužno zadržati zbog njenog važnog povijesnog značaja, mogu se ugraditi čelični rešetke neposredno iznad grede koje se uz pomoć sidrenih vijaka pričvršćuju u zid (slika 27) [13].

Slika 27. Pojačanje drvenog stropa velikog raspona sa čeličnom rešetkom [13]

Ukoliko se ploča izvodi od montažnih elemenata, potrebno je iznad njih izvesti armiranobetonsku ploču debljine najmanje 40 mm. Kako bi se osigurala dobra veza između nove ploče i postojećeg zida, oko spoja se injektira sloj cementa nakon povezivanja ploče. Detalj sidrenja nove armiranobetonske ploče u zid prikazan je na slici 28 [13].

Slika 28. Detalj povezivanja nove AB ploče u zid [13]

Slom zida u uglu jedan je od čestih mehanizama koji se pojavljuje i uzrokuje veliku štetu tokom potresa, čak i kada su zidovi dobro povezani čeličnim zategama na razini kata. Osim povezivanja zidova, ojačavanja stropne konstrukcije i saniranja pukotina injektiranjem, uglove zida je nužno kontinuirano pojačati pomoću spojnih kamenih blokova ili čeličnih zatega. Korištenjem spojnog kamenja, kameni blokovi u postojećem zidu se uklanjaju na svakih 50-75 cm visine. Napravljena rupa se očisti i navlaži te se u nju dijagonalno postavlja
spojno kamenje. Ostatak rupe ispunjava se cementnim mortom koje osigurava krutu povezanost [13].

Slika 29. Pojačanje ugla pomoću spojnih kamenih blokova [13]

Druga mogućnost pojačanja ugla je korištenje čeličnih sidara. Zidovi se buše na duljini 2,5-3 debljine zida na svakih 50-75 cm visine. U probušenu rupu se postavljaju čelične ploče, a preostali otvor se puni cementnim mortom.

Slika 30. Pojačanje ugla pomoću čeličnih ploča [13]

Na uglovima, križanjima zidova i uz velike otvore mogu se dodati vertikalni serklaži koji će omogućiti duktilno ponašanje u potresu. Vertikalne serklaže je opravdano dodati samo ukoliko već postoje horizontalne armiranobetonske grede i kruti armiranobetonski stropovi u konstrukciji i u slučaju zidova od opeke ili blokova. Postavljaju se tako da se ukloni po cigla po cigla tako da je kontaktna površina između zida i novog betona nazubljena. Čelične šipke su promjera najmanje 14 mm te se nastavljaju sve do temelja gdje ih je potrebno usidriti [13].

Slika 31. Pojačanje zidova ugradnjom AB vertikalnih serklaža [13]

Priručnik "Urgentni program potresne obnove - uppo" [11] sadrži poglavlje posvećeno tavanskim zidovima u kojem su detaljno opisane metode za sanaciju urušavanja tavanskih zidova odnosno lastavica zabatnih zidova što opisuje mehanizam otkazivanja tipa L. Rješenja za sanaciju dana su za zgrade s drvenom stropnom konstrukcijom tavana i drvenom krovnom konstrukcijom koja nije odgovarajuće povezana s tavanskim zidovi. Procjenjuje se da će se veći dio tavanskog zida obnoviti tako da se izvedu novi zidovi koji su omeđeni armiranobetonskim serklažima (horizontalni, vertikalni i završni serklaž na vrhu zida). Ukoliko je visina zidova veća od 3,5 m potrebno je uz navedene dodati i horizontalne međuserklaže [11]. Osim navedenog, u tavanskim prostorima preporučuje se izvedba krutih dijafragmi u obliku armiranobetonske ploče spregnute s drvenim grednikom u koju su elastično upeti horizontalni serklaži ispod zabatnih zidova kako bi se osigurao ravnomjeran prijenos sila i povezanost konstrukcije u jednu cjelinu [3].

4. PARAMETARSKA ANALIZA MEHANIZAMA OTKAZIVANJA ZIDOVA IZVAN

RAVNINE

Potresna pobuda će uzrokovati pojavu ubrzanja u razini etaža. Ubrzanja na pojedinim katovima imaju različite vrijednosti frekvencija i amplitude ubrzanja za razliku od onih koje djeluju na tlu. Spomenute razlike u frekvencijama i amplitudama se javljaju zbog odziva konstrukcije na ubrzanja svakog kata. Ovisno o položaju zida po visini konstrukcije, ubrzanja koja mogu dovesti do prevrtanja zida se mijenjaju. Amplitude ubrzanja rastu s porastom kata, dok frekvencija mijenja svoj odziv prilikom porasta kata. Na višim katovima, najčešće se može očitati prevladavajući prvi translacijski oblik osciliranja. Ubrzanje koje djeluje na zid se u stvarnosti s porastom visine zida povećava, no zbog jednostavnosti proračuna usvaja se jednoliko raspoređeno na vrhu i na dnu zida [3].

Analiza mehanizama otkazivanja zidova izvan ravnine se može provesti primjenom kinematičke analize mehanizama s jednim stupnjem slobode gdje su zidovi modelirani kao kruti ili djelomično kruti blokovi. S obzirom na mogući položaj pukotina, definiraju se rubni uvjeti (način povezivanja zidova i stropa) i geometrija bloka odnosno zida [3].

Za analizu je najprije potrebno definirati mogućnosti rotacije, klizanja i sile koje djeluju na pojedine blokove. Za svaku zgradu potrebno je definirati nekoliko mogućih mehanizama otkazivanja na temelju kojih se odabire kritični oblik otkazivanja, a to je mehanizam s najmanjim iznosom ubrzanja koji uzrokuje aktivaciju mehanizma. U provjerama graničnih stanja, definira se ekvivalentni linearno elastičan sustav s jednim stupnjem slobode koji zamjenjuje stvarni mehanizam. Kinematička analiza može se provesti pomoću dva pristupa – linearna kinematička analiza i nelinearna kinematička analiza [3]. U ovom diplomskom radu razmatrana je linearna kinematička analiza koja se temelji na vrijednostima sila.

Za provjeru zahtjeva za granična stanja zidova na otkazivanje izvan ravnine u ovom su diplomskom radu primijenjena pravila i upute dane u talijanskom tehničkom propisu NTC 2008 [24]. Trenutno važeći Hrvatski normativni dokument HRN EN 1998-3 [22] ne sadrži pravila za proračun lokalnih mehanizama otkazivanja zidova izvan ravnine [3].

22

4.1. Linearna kinematička analiza

Za provedbu linearne kinematičke analize otkazivanja zidova izvan ravnine [17], potrebno je najprije definirati kinematički model te horizontalna i vertikalna opterećenja koja djeluju na blokove. Vertikalna opterećenja koja imaju inercijalni učinak zamjenjuju se horizontalnim ekvivalentnim statičkim opterećenjem koji uzrokuju pojedini tip lokalnog otkazivanja. Zatim se proračunava faktor aktivacije mehanizama kojim se množe vertikalne sile s inercijalnim učinkom. Spomenuti faktor je omjer stabilizirajućega momenta i momenta prevrtanja. Moguće ga je dobiti postavljanjem jednadžbe virtualnog rada ili uvjeta ravnoteže momenta oko točke rotacije [3].

Formiranje mehanizma se pretpostavlja s obzirom na rubne uvjete (način oslanjanja) i geometriju zida. Nakon određivanja geometrije blokova i položaje zglobova i ležajeva, potrebno je odrediti tip mehanizma sloma koji će se najvjerojatnije dogoditi. Zatim se određuju horizontalna i vertikalna opterećenja na blokove te položaji hvatišta ovih sila. Prema principu virtualnog rada dobiva se izraz za proračun faktora aktivacije mehanizma [17, 3]:

$$\alpha_0 \left(\sum_{i=1}^n P_i \delta_{x,i} + \sum_{j=n+1}^{n+m} P_j \delta_{x,j} \right) - \sum_{i=1}^n P_i \delta_{y,i} - \sum_{h=1}^o F_h \delta_h = L_{fi}$$
(4.1)

gdje je:

n – broj svih sila težine na blokove u promatranom mehanizmu

m – broj sila težine koje ne djeluju izravno na blokove, njihova masa zbog učinka potresnog djelovanja stvara horizontalne sile koje utječu na mehanizam

o – broj vanjskih sila koje nisu povezane s masama, a djeluju na blokove u mehanizmu P_i – sila težine (vlastita težina bloka koja djeluje u težištu bloka ili neki drugi teret koji djeluje izravno na blok)

 $\delta_{x,i}$ – horizontalni virtualni pomak točke djelovanja i-te sile P_i

 P_j – sila težine čija masa zbog učinka potresnog djelovanja stvara horizontalne sile na koje utječu na mehanizam jer se one ne mogu učinkovito prenijeti na druge nosive elemente $\delta_{x,j}$ – horizontalni virtualni pomak točke djelovanja j-te sile P_j $\delta_{y,i}$ – vertikalni virtualni pomak točke djelovanja i-te sile P_i F_h– vanjska sila koja djeluje na blok u mehanizmu δ_h – virtualni pomak točke gdje djeluje h-ta vanjska sila F_h L_{fi} – virtualni rad unutarnjih sila.

Osim faktora aktivacije mehanizma, potrebno je odrediti pripadno spektralno ubrzanje odgovarajućeg ekvivalentnog sustava s jednim stupnjem slobode. Najprije je potrebno izračunati proračunsku modalnu masu M^{*} i faktor udjela proračunske modalne mase e^{*} mehanizma prema izrazima [3]:

$$M^{*} = \frac{\left(\sum_{i=1}^{n+m} P_{i} \delta_{Px,i}\right)^{2}}{g \sum_{i=1}^{n+m} P_{i} \delta_{Px,i}^{2}}$$
(4.2)

$$e^* = \frac{g \cdot M^*}{\sum_{i=1}^{n+m} P_i}$$

$$(4.3)$$

gdje su:

 $P_{i}-\mbox{sve}$ sile težine koje imaju inercijalni učinak

 $\delta_{Px,i}$ – i-ti horizontalni virtualni pomak.

Spektralno ubrzanje ekvivalentnog sustava a_0^* određuje se prema izrazu [3]:

$$a_0^* = \frac{a_0 \cdot g}{e^* \cdot F_c} \tag{4.4}$$

gdje je:

 F_c – razina znanja odnosno faktor povjerenja; ukoliko se pretpostavi da su blokovi kruti tj. ne uzima se u obzir tlačna čvrstoća ziđa preporuča razina znanja LC1 gdje je F_c = 1,35 [17].

Dobivena vrijednost spektralnog ubrzanja aktiviranja mehanizma uspoređuje se s odgovarajućim vršnim ubrzanjem potresnog zahtjeva. Zadani su kriteriji odnosno granična stanja na temelju kojih se radi provjera ubrzanja, a to su "granično stanje oštećenja" (SLD tal. *Stato limite di Danno*) i "granično stanje zaštite života" (SLV tal. *Stato limite di salvaguardia della vita*) [3].

Ukoliko je spektralno ubrzanje aktiviranja mehanizma veće od potresnog zahtjeva vršnog ubrzanja tada je provjera sigurnosti zadovoljena. Provjere koje moraju biti zadovoljene ovisne o položaju promatranog dijela zgrade: za blokove u razini tla uspoređuje se s ubrzanjem na razini tla, dok se kod blokova na višim katovima uspoređuje s ubrzanjem na razini kata. Kriteriji graničnog stanja oštećenja podrazumijevaju zadane zahtjeve kod koje konstrukcija, ukoliko zadovolji, omogućava samo privremenu neuporabivost nakon potresa. Vjerojatnost prekoračenja P_{VR} iznosi 63 % u referentnom razdoblju V_R, dok je povratni period T_R jednak referentnom razdoblju V_R [3].

Zahtjev za granično stanje SLD ukoliko se promatra element zgrade koji se većim dijelom oslanja na tlo ili se radi o izoliranom elementu, gdje se promatra elastični spektar za T = 0, ubrzanje aktiviranja mehanizma a_0^* mora zadovoljiti uvjet:

$$\mathbf{a}_0^* \ge \mathbf{a}_g \left(\mathbf{P}_{VR} \right) \cdot \mathbf{S} \tag{4.5}$$

gdje je:

 $a_g(P_{VR})$ – vrijednost vršnoga ubrzanja tla građevine (određen pomoću vjerojatnosti prekoračenja graničnog stanja i referentnog razdoblja)

S – koeficijent topografskog pojačanja

Ukoliko se promatra zid na određenoj visini konstrukcije, ubrzanje aktiviranja mehanizma a_0^* se određuje pomoću izraza:

$$a_0^* \ge S_e(T_1) \cdot \psi(Z) \cdot \Gamma_1 \tag{4.6}$$

gdje je:

 $S_e(T_1)$ – vrijednost elastičnog spektra odziva (određen pomoću vjerojatnosti prekoračenja odabranog graničnog stanja – u ovom slučaju 63 % referentnog razdoblja i osnovnog perioda titranja zgrade T₁)

 ψ (Z) – faktor oblika titranja

 $\vec{\Gamma}_1$ – faktor modalne participacije

Faktor oblika titranja i faktor modalne participacije računaju se prema izrazima:

$$\Psi_{i}(Z) = \frac{Z}{H}$$
(4.7)

$$\Gamma_{i} = \frac{3n}{2n+1} \tag{4.8}$$

gdje je:

Z – visinska kota zida

H – ukupna visina zgrade

Drugo granično stanje koje je potrebno zadovoljiti je granično stanje zaštite života (SLV) pri kojem zgrada ima oštećenja, ali zadržava otpornost i krutost na potresna djelovanja. Zahtjevana vjerojatnost prekoračenja P_{VR} iznosi 10 % s povratnim periodom $T_R = 9,5 \cdot V_R$. Zahtjev za provjeru modela ukoliko se zidovi nalaze na razini tla:

$$a_0^* \ge \frac{a_g \left(P_{VR}\right) \cdot S}{q} \tag{4.9}$$

gdje je:

 $a_g (P_{VR})$ – vrijednost vršnoga ubrzanja tla građevine (određen na osnovu vjerojatnosti prekoračenja graničnog stanja (u ovom slučaju – 10 %) i referentnog razdoblja)

S – koeficijent topografskog pojačanja

q – koeficijent konstrukcije (uzima se q = 2)

Ukoliko se zidovi nalaze na određenoj visinskoj koti, potrebno je napraviti provjeru:

$$a_0^* \ge \frac{S_e(T_1) \cdot \psi(Z) \cdot I_1'}{q}$$
 (4.10)

gdje su izrazi S_e (T_1), ψ (Z), Γ_1 isti kao u jednadžbi (4.6) uz vjerojatnost prekoračenja od 10 % u referentnom razdoblju V_R.

4.2. Primjena linearne kinematičke analize

Za analizu mehanizma otkazivanja zidova izvan ravnine najprije je potrebno definirati geometriju zida (blokova) koji se prevrće uključujući uvjete ograničenja zida na različitim razinama zida. U nastavku su opisani primjeri modela tri tipa mehanizma otkazivanja zida gdje dolazi do prevrtanja zidova. Za pojedini model provedene su provjere graničnih stanja te je naveden faktor aktivacije mehanizma α_0 čija je ovisnost o vitkosti i odnosu sila detaljnije promatrana u parametarskoj analizi. U promatranim lokalnim mehanizmima dolazi do formiranja linijskog zgloba što se očituje u prevrtanju dijela zida duž cijele duljine bloka [1].

4.2.1. Mehanizam otkazivanja tipa A – prevrtanje zida

U nastavku je promatran model višekatnog jednoslojnog zida gdje je u mehanizam uključeno više stropnih konstrukcija. Pretpostavlja se formiranje bloka pri čemu dolazi do prevrtanja uzduž linijskog zgloba s vanjske strane pod pretpostavkom nedostatka povezanosti zidne konstrukcije i horizontalnih elemenata na pojedinim etažama [1]. Na slici 32 je prikazana shema jednostavnog kinematičkog modela na kojoj su vidljive pripadajuće sile te oznake definirane u tablici 1. ovisno o broju katova *i* gdje je *i* = 1,...,n.

OZNAKA	OBJAŠNJENJE
i	broj kata
n	broj katova uključenih u mehanizam
Wi	vlastita težina zida na katu <i>i</i>
Psi	težina stropne konstrukcije koja djeluje na zid na katu i
Ti	sila od zatege koja se nalazi na vrhu zida na katu <i>i</i> (u ravnini stropne konstrukcije)
F <i>нi</i>	horizontalna sila potiska luka ili svoda na zid na katu <i>i</i>
Fvi	vertikalna sila potiska luka ili svoda na zid na katu <i>i</i>
Рн	horizontalna sila potiska koju prenosi pokrov na vrhu zida
Si	debljina zida na katu <i>i</i>
hi	visina zida na katu <i>i</i>
hvi	vertikalna udaljenost hvatišta sile potiska luka ili svoda od linijskog zgloba
di	horizontalna udaljenost hvatišta sile Psi od linijskog zgloba
dvi	horizontalna udaljenost hvatišta sile Fvi od linijskog zgloba
УGi	vertikalna udaljenost hvatišta sile Wi u odnosu na linijski zglob
α_0	faktor aktivacije mehanizma

Tablica 1. Objašnjenje oznaka za mehanizam otkazivanja A [1]

Modelu se dodaju horizontalne sile koje su proporcionalne stabilizirajućim silama težine bloka [3]. Spomenute horizontalne sile su jednake umnošku stabilizirajuće sile težine i faktora aktivacije mehanizma a₀ koji će se odrediti u nastavku pomoću sheme virtualnih pomaka i postavljanjem jednadžbi ravnoteže oko točke rotacije. Za jednostavnu geometriju promatranog mehanizma sloma poput ove, proračun se može pojednostaviti te se rješenje vrlo jednostavno dobiva pomoću uvjeta ravnoteže momenata. Za složene mehanizme pretpostavljaju se virtualni pomaci te se na temelju njih postavlja jednadžba virtualnog rada gdje se faktor aktivacije mehanizma (množitelj vertikalnog opterećenja) α_0 dobiva primjenom principa virtualnog rada [1].

Slika 32. Shema virtualnih pomaka za mehanizam otkazivanja tipa A (modificirano prema [1])

Slika 33. Uvećani prikaz plana vertikalnih pomaka za mehanizam otkazivanja tipa A

Stvaranjem linijskog zgloba prilikom zaokretanja, doći će do pojave momenta prevrtanja. Momentu prevrtanja se suprotstavlja povoljno djelovanje koje stabilizira blok. Postavljanjem ravnotežnog uvjeta za moment oko linijskog zgloba potrebno je odrediti stabilizirajući moment te njemu suprotstavljajući moment prevrtanja.

Izraz za stabilizirajući moment [1]:

$$M_{S} = \sum_{i=1}^{n} W_{i} \cdot \frac{s_{i}}{2} + \sum_{i=1}^{n} F_{vi} \cdot d_{Vi} + \sum_{i=1}^{n} P_{si} \cdot d_{i} + \sum_{i=1}^{n} T_{i} \cdot h_{i}$$
(4.11)

Izraz za moment prevrtanja [1]:

$$M_{P} = \alpha_{0} \left[\sum_{i=1}^{n} W_{i} \cdot y_{Gi} + \sum_{i=1}^{n} F_{vi} \cdot h_{Vi} + \sum_{i=1}^{n} P_{Si} \cdot h_{i} \right] + \sum_{i=1}^{n} F_{Hi} \cdot h_{Vi} + P_{H} \cdot h_{i}$$
(4.12)

Ukoliko je uvjet $M_P < M_S$ zadovoljen, promatrani sustav je stabilan. Izjednačavanjem M_S i M_P dolazi do pojave prevrtanja te se iz tog uvjeta dobiva faktor aktivacije mehanizma [1]:

$$\alpha_{0} = \frac{\sum_{i=1}^{n} W_{i} \frac{S_{i}}{2} + \sum_{i=1}^{n} F_{vi} d_{Vi} + \sum_{i=1}^{n} P_{si} d_{i} + \sum_{i=1}^{n} T_{i} h_{i} - \sum_{i=1}^{n} F_{Hi} h_{Vi} - P_{H} h_{i}}{\sum_{i=1}^{n} W_{i} y_{Gi} + \sum_{i=1}^{n} F_{vi} h_{Vi} + \sum_{i=1}^{n} P_{si} h_{i}}$$
(4.13)

U nastavku su opisani primjeri proračuna prevrtanja jednoslojnog zida visine 2 kata primjenom stabilizacijskog momenta i momenta prevrtanja te pomoću principa virtualnog rada. U shemi virtualnih pomaka horizontalni pomak točke C je zadan kao jedinična vrijednost pri čemu točka C predstavlja kontrolnu točku, dok točka A predstavlja točku rotacije. Parametarska analiza provedena je pomoću programiranih formula u programskom paketu Excel.

Opterećenje stropne konstrukcije prikazano je u tablici 2 uz pretpostavku da je raspon stropa (koji nosi u 1 smjeru) jednak 5,5 m. Faktor redukcije Ψ_2 odabran je za kategoriju A koja obuhvaća kuće i stambene zgrade prema HRN EN 1998-1 (Ψ_2 = 0,3) [19].

OPTEREĆENJE STROPNE KONSTRUKCIJE		
Stalno opterećenje G _k [kN/m2]	3,00	
Uporabno opterećenje Q _k [kN/m2]		
POTRESNA KOMBINACIJA G + $\Psi_2 \cdot Q$ [kN/m2]		
Površina stropa [m2]		
Ukupno opterećenje [kN]		

Tablica 2. Vrijednosti za opterećenje stropne konstrukcije

U obzir su uzeta 5 slučaja koja promatraju utjecaj geometrije bloka, kraka djelovanja sile P_{si} i učinak zatege na faktor aktivacije mehanizma. U svim slučajevima odabrana je jednaka visina katova ($h_1 = h_2$) te se na oba kata prenosi opterećenje od stropne konstrukcije u jednakom iznosu ($P_{s1} = P_{s2}$)

SLUČAJ	debljina zida	hvatište sile P _i	ZATEGA
1	S ₁ =S ₂	di=0,75∙si	-
2	s ₁ =s ₂	di=0,5·si	-
3	s ₁ =0,75·s ₂	d _i =0,75∙s _i	-
4	s ₁ =s ₂	d _i =0,75∙s _i	T ₁
5	S ₁ =S ₂	d _i =0,75⋅s _i	T ₂

Tablica 3. Mehanizam otkazivanja A - parametri

Slučaj 1 obuhvaća istu geometriju promatrana dva bloka zida pri čemu je horizontalna udaljenost hvatišta sile P_{si} iznosi d_i = $\frac{3}{4} \cdot s_i$. U slučaju 2 radi se o istoj geometriji oba bloka dok je d_i = 0,5 · s_i. U slučaju 3 širina drugog bloka je manja nego prvog pri čemu je d_i = $\frac{3}{4} \cdot s_i$. Slučaj 4 promatra istu geometriju blokova kao i u 1 slučaju uz dodatnu zategu na prvom katu. Slučaj 5 obuhvaća geometriju kao i u 1 slučaju s dodatnom zategom na drugom katu. Na slici 34 su prikazane oznake geometrije i virtualnih pomaka promatranog primjera otkazivanja.

Slika 34. Geometrija zida i pretpostavljeni mehanizam tipa A

Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja tipa A za slučaj 1 nalazi se u tablici 4. Vrijednost horizontalne udaljenosti hvatišta sile P_{si} od linijskog zgloba d_i iznosi $\frac{3}{4}$ s_i. Ostali parametri geometrije prvog i drugog bloka imaju iste vrijednosti.

Proračun mehanizma otkazivanja tipa A - slučaj 1.					
	GEOMETRIJA				
Kat	1 2				
si [m]		0,4		0,4	
d <i>i</i> [m]		0,3		0,3	
dvi [m]					
y _{Gi} [m]		1,75		1,75	
hvi [m]					
hi [m]		3,5		3,5	
	D	JELOVANJA NA BLOKOVE	1		
Kat		1	2		
Wi [kN]		75,6		75,6	
Psi [kN]		29,7		29,7	
Ti [kN]					
F н <i>i</i> [kN]					
Fvi [kN]					
Рн [kN]					
	K	ontrolna točka		Α	
		Vlastita težina zidova [kNm]		30,24	
Momenti stabiliz	acije	Opterećenje podova [kNm]		17,82	
Womenti Stabiliz	acije	Djelovanje luka ili svoda [kNm]		-	
		Djelovanje zatega [kNm]		-	
		Inercija zidova [kNm]		529,20	
		Inercija podova [kNm]		311,85	
Momenti prevrtanja		Inercija luka ili svoda [kNm]		-	
		Statički potisak luka ili svoda [kNm]		-	
Inercija statičkog pojačanja [kNm]			-		
PODACI ZA IZRAČUN α					
Moment stabilizacije Ms [kNm] 48,0			48,06		
Moment	prevr	tanja Mp [kNm]		841,05	
	α₀ 0,05				

Tablica 4. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 1

S obzirom da je moment prevrtanja većeg iznosa nego moment stabilizacije doći će do pojave prevrtanja. Pomoću navedenih podataka i izraza (4.20) dobiva se faktor aktivacije mehanizma $\alpha_0 = 0,057$.

Radi provjere točnosti dobivenog iznosa faktora aktivacije α_0 , proveden je i proračun pomoću virtualnih pomaka označenih na slici 34. Vrijednosti virtualnih pomaka za jediničnu vrijednost pomaka u točki C navedene su u tablici 5.

Virtualni pomaci	[δ]
δwıx	0,250
δw1y	0,029
δw2x	0,750
δw2y	0,029
δPs1x	0,500
δPs1y	0,043
δPs2x	1,000
δ _{Ps2y}	0,043

Tablica 5. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 1

Faktor aktivacije mehanizma proračunava se pomoću jednadžbe virtualnog rada:

$$\alpha_{0} = \frac{W_{1} \cdot \delta_{w_{1y}} + W_{2} \cdot \delta_{w_{2y}} + Ps_{1} \cdot \delta_{p_{s1y}} + Ps_{2} \cdot \delta_{p_{s2y}}}{W_{1} \cdot \delta_{w_{1x}} + W_{2} \cdot \delta_{w_{2x}} + Ps_{1} \cdot \delta_{p_{s1x}} + Ps_{2} \cdot \delta_{p_{s2x}}} = \frac{6,97}{120,15} = 0,057,$$

gdje se dobiva ista vrijednost kao i u tablici 4.

Proračunska modalna masa i faktor udjela proračunske modalne mase iznose:

$$M^{*} = \frac{(W_{1} \cdot \delta_{W_{1x}} + W_{2} \cdot \delta_{W_{2x}} + Ps_{1} \cdot \delta_{Ps_{1x}} + Ps_{2} \cdot \delta_{Ps_{2x}})^{2}}{g \cdot (W_{1} \delta_{W_{1x}}^{2} + W_{2} \delta_{W_{2x}}^{2} + Ps_{1} \delta_{Ps_{1x}}^{2} + Ps_{2} \delta_{Ps_{2x}}^{2})} = 17,44$$
$$e^{*} = \frac{g \cdot M^{*}}{W_{1} + W_{2} + Ps_{1} + Ps_{2}} = \frac{9,81 \cdot 17,44}{889,11} = 0,81$$

Spektralno ubrzanje pri kojem se aktivira pretpostavljeni mehanizam sloma iznosi:

$$\mathbf{a}_0^* = \frac{\mathbf{a}_0 \cdot \mathbf{g}}{\mathbf{e}^* \cdot \mathbf{F}_c} = \frac{0,057 \cdot 9,81}{0,81 \cdot 1,35} = 0,51 \ \frac{m}{s^2}$$

Za provjeru graničnih stanja, faktor razine znanja F_c , faktor konstrukcije q i vršno ubrzanje tla a_g s obzirom na odgovarajuće granično stanje preuzeti su iz talijanskog propisa NTC 2008 [17]. Pretpostavljene su sljedeće vrijednosti: na temelju zahtjeva za "granično stanje oštećenja" (SLD) vršno ubrzanje tla za povratni period od 50 godina a_g = 0,10 g, a na temelju zahtjeva za "granično stanje zaštite života" (SLV) i povratni period od 475 godina odabrano je vršno ubrzanje tla je a_g = 0,24 g.

Tablica 6. Parametri zgrade za proračun lokalnih mehanizama

Specifična težina ziđa Υ [kN/m ³]	18,00
Vršno ubrzanje tla ag (TR = 50godina) [m/s ²]	0,98
Vršno ubrzanje tla ag (TR = 475godina) [m/s ²]	2,35
Prvi period građevine T ₁ [s]	0,22
Faktor konstrukcije q	2,00
Faktor razine znanja Fc	1,35

Parametri zgrade za proračun lokalnih mehanizama usvojeni su u sljedećim primjerima. Maksimalno ubrzanje se proračunava na temeljnom tlu tipa A čije su vrijednosti za elastični spektar odziva tipa 1 navedene u tablici 7.

Tablica 7. Vrijednosti parametara za elastični spektar odziva tipa 1 za tip tla A [19]

Tip tla	S	$T_B[s]$	$T_C[s]$	$T_D[s]$
A	1,0	0,1	0,4	2,0

Za horizontalnu komponentu potresnog djelovanja, elastični spektar odziva $S_e(T_1)$ određen je jednadžbama [19]:

$$0 \le T \le T_B : S_e(T_1) = a_g \cdot S \cdot \left[1 + \frac{T}{T_B} \cdot (\eta \cdot 2, 5 - 1)\right]$$
 (4.14)

$$T_{B} \le T \le T_{C} : S_{e}(T_{1}) = a_{g} \cdot S \cdot \eta \cdot 2,5$$
 (4.15)

$$T_{C} \le T \le T_{D} : S_{e}(T_{1}) = a_{g} \cdot S \cdot \eta \cdot 2, 5 \cdot \left[\frac{T}{T_{B}}\right]$$
(4.16)

$$T_{C} \leq T \leq T_{D} : S_{e}(T_{1}) = a_{g} \cdot S \cdot \eta \cdot 2, 5 \cdot \left[\frac{T_{C} \cdot T_{D}}{T^{2}}\right]$$
(4.17)

gdje su:

S_e – elastični spektar odziva

- T period vibracija linearnog sustava s 1 stupnjem slobode
- $a_g\,$ proračunsko ubrzanje na temeljnom tlu ($a_g\,$ = $\Upsilon_1\,\cdot\, a_{gr}$)
- T_B donja granica perioda s granom konstantnog spektralnog ubrzanja
- T_c gornja granica perioda s granom konstantnog spektralnog ubrzanja
- T_D vrijednost koja definira početak konstantnog raspona odziva u spektru pomaka
- S faktor tla

η – faktor korekcije prigušenja uz poredbenu vrijednost η = 1 za 5 %-tno viskozno prigušenje

$$(\eta = \sqrt{\frac{10}{5+\xi}} \ge 0.55)$$
, gdje je ξ omjer viskoznog prigušenja konstrukcije izražen postotkom

U ovom slučaju $\eta = \sqrt{\frac{10}{5+5}} = 1,0$

S obzirom na zadane uvjete za kriterij SLD dobiva se elastični spektar:

 $S_{e,SLD}(T_1) = a_{g,SLD} \cdot S \cdot \eta \cdot 2,5 = 0,98 \cdot 1,0 \cdot 1,0 \cdot 2,5 = 2,45 \text{ m/s}^2$

Za kriterij SLV elastični spektar iznosi:

 $S_{e,SLV}(T_1) = a_{g,SLV} \cdot S \cdot \eta \cdot 2,5 = 2,35 \cdot 1,0 \cdot 1,0 \cdot 2,5 = 5,89 \text{ m/s}^2$

Prvi period titranja konstrukcije T₁ dobiva se iz izraza:

$$T_1 = C_1 \cdot H^{\frac{3}{4}}$$
(4.18)

pri čemu C₁ iznosi 0,05, dok H predstavlja visinu građevine. Slijedi da je prvi period titranja konstrukcije:

$$T_1 = 0,05 \cdot 7^{\frac{3}{4}} = 0,22 s$$

Zahtjev ubrzanja koji mora biti zadovoljen ovisno o graničnom stanju:

$$a_0^* \ge a_{0,\min}^*$$

S obzirom da se zid nalazi u razini tla, zahtjevi se provjeravaju prema izrazima (4.5) i (4.9). Prema izrazu (4.5) za "granično stanje oštećenja" (SLD) $a_{0,\min}^*$ iznosi:

$$a_{0,\min}^* = a_g (P_{VR}) \cdot S = 0.98 \cdot 1 = 0.98 \frac{m}{s^2}$$

Uvjet za SLD nije zadovoljen.

Dok za "granično stanje zaštite života" (SLV), sukladno izrazu (4.9) $a_{0,min}^*$ iznosi:

$$a_{0,\min}^* = \frac{a_g (P_{VR}) \cdot S}{q} = \frac{2,35 \cdot 1,00}{2} = 1,18 \frac{m}{s^2}$$

Uvjet za SLV nije zadovoljen.

Prikazani su dijagrami faktora aktivacije mehanizma a_0 i spektralno ubrzanje a_0^* u ovisnosti o omjeru vitkosti h_1/s_1 i odnosu težine stropne konstrukcije P_1 i vlastite težine zida W_1 . Važno je napomenuti da vrijednost faktora aktivacije ne ovisi o odnosu sila P_1/W_1 stoga je prikazan samo odnos $P_1/W_1 = 1$. Težina stropne konstrukcije P_{si} (oznaka P1 u dijagramima) je ista u svim slučajevima pri čemu je $P_{s1} = P_{s2}$.

Slika 35. Faktor aktivacije za mehanizam otkazivanja A - slučaj 1

Slika 36. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 1

Proveden je proračun za slučaj 2 naveden u tablici 9. Horizontalna udaljenosti hvatišta sile P_{si} od linijskog zgloba d_i u ovom slučaju je $\frac{1}{2}$ s_i, dok je geometrija blokova ista kao u prethodnom primjeru.

Proračun mehanizma otkazivanja tipa A - slučaj 2.			
	GEOMETRIJA		
Kat	1	2	
si [m]	0,4		0,4
d <i>i</i> [m]	0,2		0,2
dvi [m]			
y _{Gi} [m]	1,75		1,75
hvi [m]			
hi [m]	3,5		3,5
D	JELOVANJA NA BLOKOV	E	
Kat	1	2	
Wi [kN]	75,6		75,6
Psi [kN]	29,7		29,7
T <i>i</i> [kN]			
F н <i>i</i> [k N]			
Fvi [kN]			
Рн [kN]			
Kontrolr	na točka	Α	
	Vlastita težina zidova [kNm] 30		30,24
Momenti stabilizacije	Opterećenje podova [kNm]		11,88
womenti stabilizacije	Djelovanje luka ili svoda [kNm]		-
	Djelovanje zatega [kNm]		-
	Inercija zidova [kNm]		529,20
	Inercija podova [kNm]		311,85
Momenti prevrtanja	Inercija luka ili svoda [kNm]		-
	Statički potisak luka ili svoda [kNm]		-
	Inercija statičkog pojačanja [kNm]		
F	PODACI ZA IZRAČUN αα)	
Moment stabiliz	zacije Ms [kNm]		42,12
Moment prevrt	anja Mp [kNm]		841,05
α	0		0,050
Proračunska mo	odalna masa M [*]		17,44
Faktor udjela proračur	nske modalne mase e [*]		0,81
Spektralno u	ubrzanje α_0^*		0,45
UV.	JET	$\alpha^*_0 \ge \alpha$	* 0,min
SLD	$\alpha^*_{0,min}$ [m/s ²]		0,98
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZADOVOLJEN		
SLV	$\alpha^*_{0,min}$ [m/s ²]		1,18
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE Z	ADOVOLJEN	

Tablica 8. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 2

Proračun faktora aktivacije proveden je i metodom virtualnih pomaka. Dobivena je ista vrijednost faktora aktivacije kao i postavljanjem uvjeta ravnoteže $\alpha_0 = 0,05$.

Virtualni pomaci	[δ]
δw1x	0,250
δωιγ	0,029
δw2x	0,750
δw2y	0,029
δPs1x	0,500
δPs1y	0,029
δPs2x	1,000
δPs2y	0,029
α_0	0,050

Tablica 9. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 2

Dijagram faktora aktivacije mehanizma A za slučaj 2 i pripadajuće spektralno ubrzanje prikazani su na slikama 37 i 38.

Slika 38. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 2

Treći slučaj pretpostavlja da je drugi kat manje debljine zida nego prvi pri čemu je s₂ = 0,75 \cdot s₁. Horizontalna udaljenosti hvatišta sile P_{si} od linijskog zgloba d_i u ovom slučaju je $\frac{3}{4} \cdot$ s_i.

Proračun mehanizma otkazivanja tipa A - slučaj 3.				
GEOMETRIJA				
Kat	1	2		
si [m]	0,6	0,45		
d <i>i</i> [m]	0,45	0,34		
d _{vi} [m]				
y <i>Gi</i> [m]	1,75	1,75		
hvi [m]				
hi [m]	3,5	3,5		
	DJELOVANJA NA BLOKOV	E		
Kat	1	2		
Wi [kN]	113,4	85,05		
Psi [kN]	29,7	29,7		
Ti [kN]				
F н <i>i</i> [k N]				
Fvi [kN]				
Рн [kN]				
	Kontrolna točka	A		
	Vlastita težina zidova [kNm	n] 53,16		
Momonti stabilizacije	Opterećenje podova [kNm] 23,39		
	Djelovanje luka ili svoda [k	Nm] -		
	Djelovanje zatega [kNm]	-		

Tablica 10. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 3

	Inercija zidova [kNm]		644,96
	Inercija podova [kNm]		311,85
Momenti prevrtanja	Inercija luka ili svoda [kNm]	-
	Statički potisak luka ili svo	da [kNm]	-
	Inercija statičkog pojačanja	a [kNm]	-
	PODACI ZA IZRAČUN α	0	
Moment sta		76,55	
Moment pre	956,81		
		0,080	
Proračunska		20,69	
Faktor udjela prora		0,79	
Spektral		0,74	
	UVJET	$\alpha^*_0 \ge 0$	ل* 0,min
SLD	SLD $\alpha^*_{0,\min} [m/s^2]$		0,98
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZADOVOLJEN		
SLV	SLV $\alpha^*_{0,\min} [m/s^2]$		1,18
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZADOVOLJEN		

Faktor aktivacije mehanizma, radi provjere, proveden je metodom virtualnih pomaka s pretpostavkom jediničnog pomaka u točki C. Dobivena je jednaka vrijednost fakotra aktivacije kao i postavljanjem uvjeta ravnoteže $\alpha_0 = 0,08$.

Virtualni pomaci	[δ]
δw1x	0,250
δw1y	0,043
δw2x	0,750
δw2y	0,032
δPs1x	0,500
δPs1y	0,064
δPs2x	1,000
δPs2y	0,048
α ₀	0,080

Tablica 11. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 3

Slika 39. Faktor aktivacije za mehanizam otkazivanja A - slučaj 3

Slika 40. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 3

Primjer 4 obuhvaća potpuno istu geometriju blokova kao i horizontalnu udaljenost d_i kao u primjeru 1 uz dodatak zatege od 50 kN na 1.katu.

Proračun mehanizma otkazivanja tipa A - slučaj 4.				
		GEOMETRIJA		
Kat		1	2	
si [m]		0,4		0,4
d <i>i</i> [m]		0,3		0,3
dvi [m]				
y _{Gi} [m]		1,75		1,75
hvi [m]				
hi [m]		3,5		3,5
		DJELOVANJA NA BLOKOV	E	
Kat		1	2	
Wi [kN]		75,6		75,6
Psi [kN]		29,7		29,7
Ti [kN]		50		
Fн <i>i</i> [kN]				
Fvi [kN]				
Рн [kN]				
		Kontrolna točka		Α
		Vlastita težina zidova [kNm]		30,24
		Opterećenje podova [kNm]	17,82
	e	Djelovanje luka ili svoda [k	Nm]	-
		Djelovanje zatega [kNm]		175
		Inercija zidova [kNm]		529,20
		Inercija podova [kNm]		311,85
Momenti prevrtanja	а	Inercija luka ili svoda [kNm]		-
		Statički potisak luka ili svoda [kNm]		-
		Inercija statičkog pojačanja [kNm]		-
		PODACI ZA IZRAČUN α	D	
Moment sta	abi	lizacije Ms [kNm]		223,06
Moment prevrtanja Mp [kNm]		rtanja Mp [kNm]		841,05
αο		αο		0,265
Proračunska modalna masa M [*]		nodalna masa M^*		17,44
Faktor udjela proraču		unske modalne mase e [*]	0,8	
Spektralno ubrzanje α_0^*			2,37	
UVJET		$\alpha^*_0 \ge 0$	t* 0,min	
SLD		α* _{0,min} [m/s ²]		0,98
$\alpha^*_0 \ge \alpha^*_{0,\min}$		UVJET ZAD	OVOLJEN	
SLV		$\alpha *_{0,min} [m/s^2]$		1,18
$\alpha^*_0 \ge \alpha^*_{0,\min}$		UVJET ZAD	OVOLJEN	-

Tablica 12. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 4

Faktor aktivacije proračunom preko virtualnih pomaka i vrijednosti virtualnih pomaka nalaze se u tablici 14.

Virtualni pomaci	[δ]
δw1x	0,250
δw1y	0,029
δw2x	0,750
δw2y	0,029
δPs1x	0,500
δΡs1y	0,043
δPs2x	1,000
δPs2y	0,043
δτx	0,500
α_0	0,265

Tablica 13. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 4

Prikazan je dijagram faktora aktivacije mehanizma a_0 i spektralnog ubrzanja a_0^* u ovisnosti o omjeru vitkosti h_1/s_1 te odnosu omjera sile u zatezi i težine bloka 1 T₁/W₁. Omjer P1/W1 u slučaju 4 i 5 iznosi 1.

Slika 41. Faktor aktivacije za mehanizam otkazivanja A - slučaj 4

Slika 42. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 4

Slučaj 5 pretpostavlja istu geometriju blokova uz horizontalnu udaljenost $d_i = 3/4 s_i$. Položaj zatege pretpostavljen je na visini drugog kata. U tablici 15. dan je proračun mehanizma prevrtanja zida s postavljenom zategom iznosa 50 kN na visini od 7 m.

Proračun mehanizma otkazivanja tipa A - slučaj 5.				
GEOMETRIJA				
Kat	1	2		
si [m]	0,4	0,4		
d <i>i</i> [m]	0,3	0,3		
dvi [m]				
ygi [m]	1,75	1,75		
hvi [m]				
hi [m]	3,5	3,5		
DJELOVANJA NA BLOKOVE				
Kat	1	2		
Wi [kN]	75,6	75,6		
Psi [kN]	29,7	29,7		
Ti [kN]		50		
Fн <i>i</i> [kN]				
Fvi [kN]				
Рн [kN]				
Kontrolna točka A				
	Vlastita težina zidova [kNm	a] 30,24		
Momenti stabilizacije	Opterećenje podova [kNm] 17,82		
	Djelovanje luka ili svoda [k	Nm] -		

Tablica 14. Ulazne vrijednosti parametra i proračun mehanizma otkazivanja tipa A - slučaj 5

	Djelovanje zatega [kNm]		350
	Inercija zidova [kNm]	Inercija zidova [kNm]	
	Inercija podova [kNm]		311,85
Momenti prevrtanja	Inercija luka ili svoda [kNm]	-
	Statički potisak luka ili svo	da [kNm]	-
	Inercija statičkog pojačanja	a [kNm]	-
	PODACI ZA IZRAČUN α	D	
Moment stabilizacije Ms [kNm]			398,06
Moment prevrtanja Mp [kNm]			841,05
α ₀			0,473
Proračunska modalna masa M [*]			17,44
Faktor udjela proračunske modalne mase e [*]			0,81
Spektralno ubrzanje α^*_0			4,23
UVJET		$\alpha^*_0 \ge 0$	l*0,min
SLD	α* _{0,min} [m/s ²]		0,98
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET ZADOVOLJEN		
SLV	$\alpha^*_{0,min}$ [m/s ²]		1,18
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET ZADOVOLJEN		

Vrijednosti virtualnih pomaka i faktor aktivacije dobiven postavljanjem jednadžbe virtualnog rada prikazani su u tablici 16.

Virtualni pomaci	[δ]
δwıx	0,250
δwıy	0,029
δw2x	0,750
δw2y	0,029
δPs1x	0,500
δPs1y	0,043
δPs2x	1,000
δPs2y	0,043
δτx	1,000
α_0	0,473

Tablica 15. Vrijednosti virtualnih pomaka za mehanizam otkazivanja tipa A – slučaj 5

Može se primijetiti kako je postavljanje zatege znatno povećalo faktor aktivacije mehanizma (posebno u slučaju 5, budući da je veći krak sile), te su pritom zadovoljena oba zahtjeva za granično stanje SLD i SLV.

Slika 43. Faktor aktivacije za mehanizam otkazivanja A – slučaj 5

Slika 44. Spektralno ubrzanje za mehanizam otkazivanja A - slučaj 5

U slučaju 1 gdje je položaj sile na 3/4 duljine zida vrijednost faktora aktivacije uvijek će imati jednaku vrijednost, bez obzira na omjer sila P_1/W_1 . Kada se položaj djelovanja sile P smanji na s_i/2 (slučaj 2) odnosno kada se hvatište sile P približi vanjskom rubu oko kojeg se događa prevrtanje, krak sile u stabilizirajućem momentu će imati manji iznos što rezultira manjim faktorom aktivacije. Vrijednost faktora aktivacije, iako manjeg iznosa, približno je ista faktoru aktivacije u prvom slučaju, stoga zaključujemo da položaj sile P nema veliki utjecaj

na rezultat. Ukoliko blokovi zida nisu iste debljine (slučaj 3) vrijednosti faktora aktivacije će biti vrlo slične kao u slučaju 1, ali će postojati mala razlika s obzirom na omjer sila. Iz dijagrama slučajeva 4 i 5 vidljivo je da će manju vrijednost faktora aktivacije imati mehanizam s zategom na manjoj visini jer sila zatege djeluje na manjem kraku što rezultira manjem momentom stabilizacije. U oba slučaja sa zategom, vrijednosti faktora su veće nego u prethodnim slučajevima što potvrđuje da sila u zatezi bitno doprinosi stabilnosti zida.

Dijagrami se mogu upotrijebiti za jednostavno određivanje potrebne sile u zatezi kako bi proračuni bili zadovoljeni s obzirom na postojeću vitkost i zahtijevano spektralno ubrzanje.

4.2.2. Mehanizam otkazivanja tipa B1 – Prevrtanje s jednim bočnim zidom

Model višekatnog jednoslojnog mehanizma koji se očituje prevrtanjem cijelog zida ili njegovih dijelova uz povlačenje jednog susjednog bočnog zida promatran je u nastavku. Na slici 45. je prikazana navedena kinematika koja se pojavljuje u konstrukciji ukoliko je zid pročelja na vrhu nedovoljno pridržan, ali je učinkovito povezan sa susjednim bočnim zidom što uzrokuje njegovo povlačenje.

Slika 45. Shematski prikaz mehanizma otkazivanja tipa B1 [16]

Na shemi geometrije modela i pretpostavljenog mehanizma (slika 46.) naznačene su pripadajuće sile koje djeluju prije i nakon prevrtanja. Uz model prikazana je shema virtualnih pomaka. Korištene oznake objašnjene su u tablici 17.

OZNAKA	OBJAŠNJENJE
α	kut nagiba klina
i	broj kata
n	broj katova uključenih u mehanizam
Wi	vlastita težina zida na katu <i>i</i>
Woi	vlastita težina klina na katu <i>i</i>
Psi	težina stropne konstrukcije koja djeluje na zid na katu <i>i</i>
Ps0i	težina stropne konstrukcije koja djeluje na klin na katu <i>i</i>
Ti	sila od zatege koja se nalazi na vrhu zida na katu <i>i</i> (u ravnini stropne konstrukcije)
Fнi	horizontalna sila potiska luka ili svoda na zid na katu <i>i</i>
Fvi	horizontalna sila potiska luka ili svoda na zid na katu <i>i</i>
Pн	statički potisak koji prenosi pokrov na vrhu zida
Si	debljina zida na katu <i>i</i>
hi	visina zida na katu <i>i</i>
hvi	vertikalna udaljenost hvatišta sile potiska luka ili svoda od linijskog zgloba
di	horizontalna udaljenost hvatišta sile Psi od linijskog zgloba
d Oi	horizontalna udaljenost hvatišta sile Psoi od linijskog zgloba
dvi	horizontalna udaljenost hvatišta sile Fvi od linijskog zgloba
XGOi	horizontalna udaljenost hvatišta sile Woi do linijskog zgloba
Y GOi	vertikalna udaljenost hvatišta sile Woi do linijskog zgloba
УGi	visina težišta zida kata <i>i</i> u odnosu na linijski zglob
α_0	faktor aktivacije mehanizma

Tablica 16. Objašnjenje oznaka za mehanizam otkazivanja B1 [1]

Slika 46. Shema virtualnih pomaka za mehanizam otkazivanja tipa B1 (modificirano prema [1])

Slika 47. Uvećani prikaz plana vertikalnih pomaka za mehanizam otkazivanja tipa B1 U nastavku su prikazane oznake udaljenosti težišta klina te su navedeni izrazi za proračun težine i težišta klinova referirajući se na sliku 48.

Slika 48. Koordinate težišta klinova

Pomoćne vrijednosti udaljenosti na slici 48. računaju se pomoću izraza:

$$a = \mathbf{h}_1 \cdot tg \ \alpha \tag{4.19}$$

$$b = a + (s_1 - s_2) \tag{4.20}$$

$$c = h_2 \cdot tg \ \alpha \tag{4.21}$$

Klin na prvom katu pojavljuje se u obliku trokuta čija se površina računa prema formuli:

$$W_{01} = \left(\frac{1}{2} \cdot \mathbf{h}_1 \cdot a\right) \cdot \mathbf{s}_1 \cdot \mathbf{\gamma}$$
(4.22)

Izrazi za težište prvog klina:

$$X_{GO1} = S_1 + \frac{1}{3} \cdot a \tag{4.23}$$

$$y_{GO1} = \frac{2}{3} \cdot h_1$$
 (4.24)

Geometrija klina drugog kata ima oblik trapeza. Površina klina na drugom katu računa se prema formuli:

$$W_{02} = \left[\left(\frac{2b+c}{2} \right) \cdot h_2 \right] \cdot s_2 \cdot \Upsilon$$
(4.25)

Opća formula za proračun težišta trapeza prikazana je u nastavku:

$$X_{\rm T} = \frac{3 \cdot b^2 + 3 \cdot b \cdot c + c^2}{3 \cdot (2 \cdot b + c)}$$
(4.26)

$$y_{T} = \frac{h_{2} \cdot (3b+2c)}{3 \cdot (2 \cdot b+c)}$$
(4.27)

Koordinate težište klina na drugom katu računaju se prema izrazima:

$$x_{GO2} = s_2 + x_T$$
 (4.28)

$$y_{GO2} = h_1 + y_T$$
 (4.29)

Primjenjujući uvjet ravnoteže u referentnoj točki oko koje se događa prevrtanje, potrebno je razmotriti izraze za momente koji djeluju na model. Izraz za stabilizirajući moment [1]:

$$M_{S} = \sum_{i=1}^{n} W_{i} \cdot \frac{s_{i}}{2} + \sum_{i=1}^{n} F_{vi} \cdot d_{Vi} + \sum_{i=1}^{n} W_{0i} \cdot x_{G0i} + \sum_{i=1}^{n} P_{si} \cdot d_{i} + \sum_{i=1}^{n} P_{s0i} \cdot d_{0i} + \sum_{i=1}^{n} T_{i} \cdot h_{i}$$
(4.30)

Izraz za moment prevrtanja [1]:

$$M_{P} = \alpha \left[\sum_{i=1}^{n} W_{i} \cdot y_{Gi} + \sum_{i=1}^{n} W_{Oi} \cdot y_{GOi} + \sum_{i=1}^{n} F_{vi} \cdot h_{Vi} + \sum_{i=1}^{n} P_{Si} \cdot h_{i} + \sum_{i=1}^{n} P_{SOi} \cdot h_{i} \right] + \sum_{i=1}^{n} F_{Hi} \cdot h_{Vi} + P_{H} \cdot h_{i}$$
(4.31)

Prevrtanje se pojavljuje ukoliko se momenti izjednače, pri čemu se dobiva izraz za faktor aktivacije mehanizma [1]:

$$\alpha_{0} = \frac{\sum_{i=1}^{n} W_{i} \frac{S_{i}}{2} + \sum_{i=1}^{n} F_{vi} d_{Vi} + \sum_{i=1}^{n} W_{Oi} \cdot x_{GOi} + \sum_{i=1}^{n} P_{Si} d_{i} + \sum_{i=1}^{n} P_{SOi} \cdot h_{i} + \sum_{i=1}^{n} T_{i} h_{i} - \sum_{i=1}^{n} F_{Hi} h_{Vi} - P_{H} h_{i}}{\sum_{i=1}^{n} W_{i} y_{Gi} + \sum_{i=1}^{n} W_{Oi} y_{OGi} + \sum_{i=1}^{n} F_{vi} h_{Vi} + \sum_{i=1}^{n} P_{SOi} h_{i} + \sum_{i=1}^{n} P_{SOi} h_{i}}$$
(4.32)

Provedeno je sedam primjera proračuna mehanizma ovog tipa otkazivanja primjenom uvjeta ravnoteže i metodom virtualnih pomaka na pretpostavljenoj konstrukciji čije su karakteristike korištene u proračunu mehanizama otkazivanja tipa A. Shema virtualnih pomaka te geometrija mehanizma prikazani su na slici 49.

SLUČAJ	debljina zida	Kut nagiba klina α
1	$s_1 = s_2$	15°
2	$s_1 = s_2$	30°
3	s ₁ = s ₂	45°
4	s ₂ = 0	15°
5	s ₂ = 0	30°
6	s ₂ = 0	45°
7	$s_1 = 0,75 \cdot s_2$	30°

Tablica 17. Mehanizam otkazivanja B1 - parametri

Prva tri slučajeva u obzir su uzimaju dva bloka odnosno prizemlje i 1.kat dok ostali slučajevi promatraju samo donji blok odnosno prizemlje pri kutu nagiba klina od 15°, 30° i 45°. U primjerima duljina zida iznosi 7 m.

Slika 49. Geometrija zida i pretpostavljeni mehanizam tipa B1

Vrijednosti geometrije, pripadajućih sila te proračun mehanizma prikazan je u tablici 19. Pretpostavljeni kut odvajanja bočnog zida iznosi 15°.

Tablica 18. Ulazne vrijednosti parametara i proračun mehanizma otkazivanja tipa B1 – slučaj 1

Proračun mehanizma otkazivanja tipa B1 - slučaj 1.				
GEOMETRIJA				
Kat	1	2		
α [°]	15			
si [m]	0,40	0,40		
di [m]	0,30	0,30		

dvi [m]				
doi [m]				
xgoi [m]		0,71		1,13
ygoi [m]		2,33		5,44
ygi [m]		1,75		1,75
h _{vi} [m]				
hi [m]		3,50		3,50
		DJELOVANJA NA BLOKOVE		
Kat		1		2
Wi [kN]		176,4		176,4
W <i>o</i> [kN]		11,81		35,44
Psi [kN]		29,70		29,70
Pso [kN]				
Ti [kN]				
F н <i>i</i> [kN]				
Fvi [kN]				
Рн [kN]				
		Kontrolna točka		A
		Vlastita težina zidova [kNm]		70,6
		Vlastita težina klina [kNm]		48,4
Momenti stabilizaci	iiم	Opterećenje podova na zid [k	:Nm]	17,8
	ŋе	Opterećenje podova na klin [kNm]	-
		Djelovanje luka ili svoda [kNn	n]	-
		Djelovanje zatega [kNm]		-
		Inercija zidova [kNm]		1234,8
		Inercija klina [kNm]		220,5
		Inercija podova na zidu [kNm]		311,9
Momenti prevrtanj	ja	Inercija podova na klinu [kNm]		-
		Inercija luka ili svoda [kNm]		-
		Statički potisak luka ili svoda [kNm]		-
		Inercija statičkog pojačanja [kNm]		-
		PODACI ZA IZRAČUN α ₀		
Moment stabilizacij		bilizacije Ms [kNm]		136,82
Moment pre		evrtanja Mp [kNm]		1767,19
		α ₀		0,077
Proračunska m		modalna masa M [*]	masa M [*]	
Faktor udjela proraču		čunske modalne mase e [*]	0,	
Spektralno ubrzanje α*		0,69		
UVJET $\alpha^*_0 \ge \alpha^*$		$\geq \alpha^*_{0,\min}$		
SLD		$\alpha^*_{0,min}$ [m/s ²]		0,98
$\alpha^*_0 \ge \alpha^*_{0 \min}$		UVJET NIJE ZA	F ZADOVOLIEN	
		$\alpha^*_{0 \min} [m/s^2]$		1 19
0*• > 0*• ·				1,10
ີ 0 - ີ 0,min				

Virtualni pomaci	[δ]
δw1x	0,25
δw1y	0,03
δw2x	0,75
δw2y	0,03
δwO1x	0,33
δwO1y	0,10
δwO2x	0,78
δ wO2y	0,16
δPs1x	0,50
δΡs1y	0,04
δPs2x	1,00
δPs2y	0,04
α ₀	0,077

Tablica 19. Vrijednosti virtualnih pomaka za mehanizam tipa B1 - slučaj 1

Dijagrami vrijednosti faktora aktivacije i spektralnog ubrzanja ovisno o vitkosti te odnosu opterećenja za kut nagiba klina u iznosu od 15° prikazani su na slici 50.

Slika 50. Faktori aktivacije za mehanizam tipa B1 - slučaj 1

Slika 51. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 1

Proračun u nastavku je proveden za istu geometriju bloka uz kut nagiba klina od 30°.

Proračun mehanizma otkazivanja tipa B1 - slučaj 2.				
GEOMETRIJA				
Kat	1	2		
α [°]	30			
si [m]	0,40	0,40		
di [m]	0,30	0,30		
dvi [m]				
d oi [m]				
xgoi [m]	1,07	1,97		
ygoi [m]	2,33	5,44		
yGi [m]	1,75	1,75		
hvi [m]				
hi [m]	3,50	3,50		
	DJELOVANJA NA BLOKOVE			
Kat	1	2		
Wi [kN]	176,4	176,4		
W <i>o</i> [kN]	25,45	76,34		
Psi [kN]	29,70	29,70		
Pso [kN]				
Ti [kN]				
FHi [kN]				
Fvi [kN]				
Рн [kN]				

Tablica 20. Ulazne vrijednosti parametara i proračun mehanizma otkazivanja tipa B1 – slučaj 2

Kontrolna točka			Α
	Vlastita težina zidova [kNm]		70,6
	Vlastita težina klina [kNm]		177,7
Momonti stabilizacijo	Opterećenje podova na zid [k	Nm]	17,8
womenti stabilizacije	Opterećenje podova na klin [kNm]	-
	Djelovanje luka ili svoda [kNm]		-
	Djelovanje zatega [kNm]		-
	Inercija zidova [kNm]		1234,8
	Inercija klina [kNm]		475,0
	Inercija podova na zidu [kNm]	311,9
Momenti prevrtanja	Inercija podova na klinu [kNn	ן]	-
	Inercija luka ili svoda [kNm]		-
	Statički potisak luka ili svoda [kNm]		-
	Inercija statičkog pojačanja [kNm]		-
PODACI ZA IZRAČUN α ₀			
Moment stabilizacije Ms [kNm]			266,13
Moment prevrtanja Mp [kNm]			2021,64
α ₀			0,132
Proračunska	modalna masa M^*		43,30
Faktor udjela prora	ičunske modalne mase e *		0,83
Spektral	no ubrzanje α*		1,16
UVJET		α* ₀	$\geq \alpha^*_{0,min}$
SLD	$\alpha^*_{0,min} [m/s^2]$		0,98
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET ZADOVOLJEN		
SLV	$\alpha *_{0,min} [m/s^2]$		1,18
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET NIJE ZADOVOLJEN		

Tablica 21. . Vrijednosti virtualnih pomaka za mehanizam tipa B1 - slučaj 2

Virtualni pomaci	[δ]
δw1x	0,25
δw1y	0,03
δw2x	0,75
δw2y	0,03
δwO1x	0,33
δωΟ1γ	0,15
δwO2x	0,78
δwO2y	0,28
δPs1x	0,50
δPs1y	0,04
δPs2x	1,00
δPs2y	0,04
α₀	0,132

Slika 52. Faktori aktivacije za mehanizam B1 - slučaj 2

Slika 53. Spektralno ubrzanje za mehanizam B1 - slučaj 2
Treći slučaj promatra kut nagiba klina iznosa 45°.

Tablica 22. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkazivar	١ja
tipa B1 – slučaj 3	

Proračun mehanizma otkazivanja tipa B1 - slučaj 3			
GEOMETRIJA			
Kat	1	2	
α [°]	45		
si [m]	0,40	0,40	
di [m]	0,30	0,30	
d _{vi} [m]			
d oi [m]			
xgoi [m]	1,57	3,12	
ygoi [m]	2,33	5,44	
yGi [m]	1,75	1,75	
hvi [m]			
hi [m]	3,50	3,50	
	DJELOVANJA NA BLOKOVE		
Kat	1	2	
W i [kN]	176,4	176,4	
W <i>o</i> [kN]	44,10	132,30	
Psi [kN]	29,70	29,70	
Pso [kN]			
Ti [kN]			
F н <i>i</i> [kN]			
Fvi [kN]			
Рн [kN]			
	Kontrolna točka	A	
	Vlastita težina zidova [kNm]	70,6	
	Vlastita težina klina [kNm]	482,2	
Momonti stabilizacii	Opterećenje podova na zid [k	:Nm] 17,8	
	Opterećenje podova na klin [kNm] -	
	Djelovanje luka ili svoda [kNn	n] -	
	Djelovanje zatega [kNm]	-	
	Inercija zidova [kNm]	1234,8	
	Inercija klina [kNm]	823,2	
	Inercija podova na zidu [kNm] 311,9	
Momenti prevrtanja	a Inercija podova na klinu [kNm	n] -	
	Inercija luka ili svoda [kNm]	-	
	Statički potisak luka ili svoda	[kNm] -	
Inercija statičkog pojačanja [kNm] -			
PODACI ZA IZRAČUN α ₀			
Moment	Moment stabilizacije Ms [kNm] 570		
Moment prevrtanja Mp [kNm] 2369		2369,85	
	α ₀	0,241	
Proračunska modalna masa M [*]		50,29	
Faktor udjela pr	0,84		

Spektralno ubrzanje α^*		2,09
UVJET		$\alpha^*_0 \ge \alpha^*_{0,min}$
SLD $\alpha^*_{0,\min} [m/s^2]$		0,98
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET ZADO	OVOLJEN
SLV	$\alpha *_{0,min} [m/s^2]$	1,18
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET ZADOVOLJEN	

Slika 54. Faktori aktivacije za mehanizam tipa B1 - slučaj 3

Slika 55. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 3

Četvrti slučaj gdje se promatra utjecaj samo jednog bloka u mehanizmu s kutem nagiba klina od 15°, opisan je u nastavku.

Proračun mehanizma otkazivanja tipa B1 - slučaj 4			
GEOMETRIJA			
Kat	1	2	
α [°]	15		
si [m]	0,40		
di [m]	0,30		
d _{vi} [m]			
doi [m]			
xgoi [m]	0,71		
ygoi [m]	2,33		
yGi [m]	1,75		
h _{vi} [m]			
hi [m]	3,50		
	DJELOVANJA NA BLOKOVE		
Kat	1	2	
Wi [kN]	176,4		
W <i>o</i> [kN]	11,81		
Psi [kN]	29,70		
Pso [kN]			
T <i>i</i> [kN]			
Fн/ [kN]			
Fvi [kN]			
Рн [kN]			
Kontroina tocka		A	
	Vlastita težina zidova [kNm]	35,3	
	Vlastita težina klina [kNm]	8,4	
Momenti stabilizacij	e Opterecenje podova na zid [k	(Nm] 8,9	
	Opterecenje podova na klin [KNMJ -	
	Djelovanje luka ili svoda [kNn	<u>-</u>	
	Djelovanje zatega [kNm]	-	
		308,7	
		27,6	
	Inercija podova na zidu [kivm	104,0	
Nomenti prevrtanja	Inercija podova na klinu [kNm	<u>1] -</u>	
	Statiški patisak luka ili svoda	-	
inercija statickog pojacanja [kNm] -			
Moment	Moment stabilizacije Ms [kNm] 52,		
ivioment		440,22	
		0,120	
Proracunska modalna masa M 20		20,40	
Faktor udjela proračunske modalne mase e [*]		0,92	
Spektralno ubrzanje α*		0,95	

Tablica 23. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkazivanja tipa B1 – slučaj 4

UVJET		$\alpha^*_0 \ge \alpha^*_{0,min}$
SLD	$\alpha *_{0,min} [m/s^2]$	0,98
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET NIJE ZA	DOVOLJEN
SLV	$\alpha *_{0,min} [m/s^2]$	1,18
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET NIJE ZADOVOLJEN	

Slika 56. Faktori aktivacije za mehanizam tipa B1 - slučaj 4

Slika 57. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 4

Slučaj 5 obuhvaća kut nagiba klina α = 30°.

Tablica 24. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkazivanj	а
tipa B1 – slučaj 5	

Proračun mehanizma otkazivanja tipa B1 - slučaj 5			
GEOMETRIJA			
Kat	1 2		
α [°]	30		
si [m]	0,40		
di [m]	0,30		
d _{vi} [m]			
doi [m]			
xgoi [m]	1,07		
ygoi [m]	2,33		
yGi [m]	1,75		
hvi [m]			
hi [m]	3,50		
	DJELOVANJA NA BLOKOVE		
Kat	1	2	
Wi [kN]	176,4		
W <i>o</i> [kN]	25,45		
Psi [kN]	29,70		
Pso [kN]			
Ti [kN]			
F н <i>i</i> [kN]			
Fvi [kN]			
Рн [kN]			
	Kontrolna točka	A	
	Vlastita težina zidova [kNm]	35,3	
	Vlastita težina klina [kNm]	27,3	
Momenti stabilizacii	Opterećenje podova na zid [k	Nm] 8,9	
	Opterećenje podova na klin [l	kNm] -	
	Djelovanje luka ili svoda [kNn	ו <u>-</u>	
	Djelovanje zatega [kNm]	-	
	Inercija zidova [kNm]	308,7	
	Inercija klina [kNm]	59,4	
	Inercija podova na zidu [kNm] 104,0	
Momenti prevrtanj	a Inercija podova na klinu [kNm	ı] -	
	Inercija luka ili svoda [kNm]	-	
	Statički potisak luka ili svoda	[kNm] -	
Inercija statičkog pojačanja [kNm] -		:Nm] -	
	PODACI ZA IZRAČUN α ₀		
Moment	stabilizacije Ms [kNm]	71,50	
Moment	Moment prevrtanja Mp [kNm]		
	α_0	0,151	
Proračunska modalna masa M [*]		21,78	
Faktor udjela proračunske modalne mase e [*]		0,92	

Spektralno ubrzanje α^*		1,19
UVJET		$\alpha^*_0 \ge \alpha^*_{0,min}$
SLD	SLD $\alpha^*_{0,min} [m/s^2]$	
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET ZADO	OVOLJEN
SLV	$\alpha *_{0,min} [m/s^2]$	1,18
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET ZADO	OVOLJEN

Dijagrami ovisnosti faktora aktivacije i spektralnog ubrzanja o vitkosti s obzirom na odnos sila P/W prikazani su u nastavku za slučaj 5.

Slika 58. Faktori aktivacije za mehanizam tipa B1 – slučaj 5

Slika 59. Spektralno ubrzanje za mehanizam tipa B1- slučaj 5

Slučaj 6 predstavlja kut nagiba klina od 45°.

Tablica 25. Ulazne vrijednosti parametara za proračun faktora aktivacije mehanizma otkazivanja tipa B1 – slučaj 6

Proračun mehanizma otkazivanja tipa B1 - slučaj 6				
GEOMETRIJA				
Kat		1		2
α [°]		45		
si [m]		0,40		
di [m]		0,30		
dvi [m]				
d oi [m]				
xgoi [m]		1,57		
y GOi [m]		2,33		
y Gi [m]		1,75		
h _{vi} [m]				
hi [m]		3,50		
		DJELOVANJA NA BLOKOVE		
Kat		1		2
Wi [kN]		176,4		
W <i>o</i> [kN]		44,10		
Psi [kN]		29,70		
Pso [kN]				
Ti [kN]				
Fн <i>i</i> [kN]				
Fvi [kN]				
Рн [kN]	Рн [kN]			
		Kontrolna točka		Α
		Vlastita težina zidova [kNm]		35,3
		Vlastita težina klina [kNm]		69,1
		Opterećenje podova na zid [kNm]		8,9
Momenti stabilizac	ije	Opterećenje podova na klin [kNm]		-
		Djelovanje luka ili svoda [kNm]		-
		Djelovanje zatega [kNm]		-
		Inercija zidova [kNm]		308,7
		Inercija klina [kNm]		102,9
		Inercija podova na zidu [kNm]		104,0
Momenti prevrtan	ja	Inercija podova na klinu [kNm]		-
		Inercija luka ili svoda [kNm]		-
		Statički potisak luka ili svoda [kNm]		-
Inercija statičkog pojačanja [kNm] -			-	
		PODACI ZA IZRAČUN α₀		
Moment	sta	bilizacije Ms [kNm]		113,28
Moment	Moment prevrtanja Mp [kNm] 515.		515,55	
α ₀ 0.		0,220		
Proračunska modalna masa M [*] 23.		23,68		
Faktor udjela proračunske modalne mase e [*] 0,			0,93	

Spektralno ubrzanje α^*		1,72
UVJET		$\alpha^*_0 \ge \alpha^*_{0,min}$
SLD	SLD $\alpha^*_{0,\min} [m/s^2]$	
$\alpha^*_0 \ge \alpha^*_{0,min}$	UVJET ZADO	OVOLJEN
SLV	$\alpha *_{0,min} [m/s^2]$	1,18
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET ZADOVOLJEN	

Slika 60. Faktori aktivacije za mehanizam tipa B1 - slučaj 6

Slika 61. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 6

Vrijednosti faktora aktivacije će biti manjeg iznosa kada su u mehanizam uključena dva bloka ukoliko je vitkost blokova malena. Porastom vitkosti vrijednosti faktora aktivacije imaju slične vrijednosti što ukazuje da bez obzira radi li se o dva bloka ili više, ukoliko je vitkost velika faktor aktivacije će biti jako malog iznosa.

Što je kut nagiba veći to će vrijednost faktora aktivacije biti veća jer se radi o većoj geometriji uključenog bloka što uzrokuje veću težinu zida čime zahtjeva veće ubrzanje zida koje bi uzrokovalo aktivaciju mehanizma.

Uspoređeni su dijagrami faktora aktivacije i spektralnog tipa A za slučaj 3 i tipa B1 za slučaj 7 gdje je drugi blok manje debljine zida od prvog. Mehanizam tipa B1 spomenute geometrije nalazi se na slikama 62 i 63.

Slika 62. Faktori aktivacije za mehanizam tipa B1 - slučaj 7

Slika 63. Spektralno ubrzanje za mehanizam tipa B1 - slučaj 7

Mehanizmi otkazivanja tipa B1 će imati dodatne blokove zbog bočnog zida pa time i veće stabilizacijske momente što će time zahtjevati veću vrijednost faktora aktivacije.

Modifikacijom izraza (4.31) moguće je modelirati i mehanizam otkazivanja B2 (slučaj kada su aktivirana oba bočna krila). U tom slučaju, nužno je dodati članove za drugo bočno krilo (W_{oi} i P_{soi}).

4.2.3. Mehanizam otkazivanja tipa G – Formiranje horizontalnog luka u zidu

Izbacivanjem materijala zida iz ravnine dolazi do pojave zglobova oko kojih se zid prevrće. S obzirom da je pročelje učinkovito povezano sa susjednim bočnim zidovima, zglobovi će se pojaviti prije ugla gdje su okomiti zidovi spojeni. Za potrebe dobivanja virtualnih pomaka točaka te množitelja horizontalnih sila α , pretpostavlja se da je jedinstvena virtualna rotacija Ψ = -1 [1].

Slika 64. Shematski prikaz mehanizma otkazivanja tipa G [16]

Shema geometrije modela mehanizma otkazivanja tipa G te pripadajuće sile prikazane su na slici 65.

Slika 65. Shema modela za mehanizam otkazivanja tipa G (modificirano prema [16, 1])

OZNAKA	OBJAŠNJENJE
i	broj bloka
Wi	vlastita težina bloka i
Pvi1	i-to vertikalno opterećenje preneseno na blok 1
Pvi2	i-to vertikalno opterećenje preneseno na blok 2
Рні1	statički potisak krova na vrhu bloka 1
Рні2	statički potisak krova na vrhu bloka 2
Н	maksimalni iznos reakcije koju zid ili horizontalna zatega može preuzeti
S	debljina zida
Li	duljina bloka <i>i</i>
di1	horizontalna udaljenost hvatišta sile Pvi1 do zgloba A
di2	horizontalna udaljenost hvatišta sile Pvi2 do zgloba B
XGi	horizontalna udaljenost hvatišta sile Wi od zgloba
α_0	faktor aktivacije mehanizma

Tablica 26. Objašnjenje oznaka za mehanizam otkazivanja G [1]

Pomoću virtualnih pomaka dva makroelemenata dobivaju se parametri pomaka koji opisuju mehanizam. Rješenje se dobiva postavljanjem virtualne rotacije Ψ = -1 tijelu 1. S obzirom da je točka A nepomična te ne dozvoljava pomak, slijede uvjeti [16]:

$$u_A = 0$$
; $v_A = 0$; $\theta_1 = \Psi = -1$
 $v_B = 0$

Iz uvjeta jednakosti u točki C (u_{C1} = u_{C2} \ i \ v_{C1} = v_{C2}) dobiva se [1]:

$$\begin{cases} u_{C1} = s \\ v_{C1} = -L_1 \end{cases}$$
$$\begin{cases} u_{C2} = u_B - \Phi \cdot s \\ v_{C2} = -\Phi \cdot L_2 \end{cases}$$

Slijedi:

 $\Phi = \frac{L_1}{L_2} \tag{4.33}$

$$u_B = s \left(1 + \frac{L_1}{L_2} \right) \tag{4.34}$$

Kinematički parametri, s obzirom na deformacije sustava, određeni su u nastavku:

BLOK 1			BLOK 2
W ₁	$\delta_{1y} = x_{G1}$	W ₂	$\delta_{2y} = \frac{L_1}{L_2} \cdot x_{G2}$
P _{Vi1}	$\delta_{Pi1y} = d_{i1}$	P _{Vi2}	$\delta_{Pi2y} = \frac{L_1}{L_2} \cdot d_{i2}$
P _{Hi1}	$\delta_{Hi1} = -d_{i1}$	P _{Hi1}	$\delta_{Hi2} = -\frac{L_1}{L_2} \cdot d_{i2}$
		н	$\delta_{Hx} = s \left(1 + \frac{L_1}{L_2} \right)$

Tablica 27. Kinematički parametri mehanizma otkazivanja tipa G [1, 16]

Jednadžba virtualnog rada [1]:

$$\alpha_{0} \cdot \left[W_{1} \delta_{1y} + W_{2} \delta_{2y} + \sum_{i} P_{Vi1} \delta_{Pi1y} + \sum_{i} P_{Vi2} \delta_{Pi2y} \right] + \sum_{i} P_{Hi1} \delta_{Pi1y} + \sum_{i} P_{Hi2} \delta_{Pi2y} - H \delta_{Hx} = 0$$
(4.35)

Uvrštavanjem izraza za pomake u jednadžbu virtualnog rada, uz pretpostavku da je virtualni rad komponenti statičkog potiska krova na vrhu zida pozitivnog predznaka dobiva se izraz [1]:

$$\alpha_{0} \cdot \left[W_{1} \cdot x_{G1} + W_{2} \frac{L_{1}}{L_{2}} \cdot x_{G2} + \sum_{i} P_{Vi1} \cdot d_{i1} + \sum_{i} P_{Vi2} \frac{L_{1}}{L_{2}} \cdot d_{i2} \right]$$

= $H \cdot s \cdot \left(1 + \frac{L_{1}}{L_{2}} \right) - \sum_{i} P_{Hi1} \cdot d_{i1} - \sum_{i} P_{Hi2} \cdot \frac{L_{1}}{L_{2}} \cdot d_{i2}$ (4.36)

Iz jednadžbe (4.25) dobiva se faktor aktivacije mehanizma [1]:

$$\alpha_{0} = \frac{H \cdot s \left(1 + \frac{L_{1}}{L_{2}}\right) - \sum_{i} P_{Hi1} d_{i1} - \sum_{i} P_{Hi2} \frac{L_{1}}{L_{2}} d_{i2}}{W_{1} x_{G1} + W_{2} \frac{L_{1}}{L_{2}} x_{G2} + \sum_{i} P_{Vi1} d_{i1} + \sum_{i} P_{Vi2} \frac{L_{1}}{L_{2}} d_{i2}}$$
(4.37)

68

Ovdje se kao dodatna nepoznanica javlja sila H, koja predstavlja silu koju pružaju nosivi zidovi, koji mogu djelovati zajedno s ojačanjem poput npr. zatege. Ovu je silu H moguće dobiti promatranjem mehanizma poprečnog zida (slika 46) na kojeg se oslanjanju blokovi mehanizma G (poprečni zid i mehanizam G su međusobno okomiti).

Slika 66. Shema potpornog zida (modificirano prema [1])

Momenti stabilizacije i prevrtanja proračunavaju se pomoću izraza:

$$M_{S(A)} = W \frac{s_c}{2} + F_V d_V + P_S d + Th$$
(4.38)

$$M_{P(A)} = Hh_H + F_H h_V + P_H h (4.39)$$

Izjednačavanjem izraza (4.37) i (4.38) dobiva se izraz za proračun sile H:

$$H = (W\frac{s_c}{2} + F_V d_V + P_S d + Th - F_H h_V - P_H h)/h_H$$
(4.40)

Članovi povezani s inercijom vertikalnih opterećenja (W, F_v i P_s) se ne pojavljuju u proračunu momenata jer je potresno djelovanje paralelno s promatranim zidom. Visinu h_H moguće je proračunati tek nakon što je utvrđena visina b bloka uključenog u kinematiku. Parametar θ iznosi 0,5 ukoliko su blokovi mehanizma G pravokutnog oblika te 0,33 za trokutasti oblik blokova [1].

U nastavku je prikazan primjer proračuna mehanizma ovog tipa otkazivanja. Shema virtualnih pomaka i geometrija prikazani su na slici 67.

Slika 67. Geometrija zida i pretpostavljeni mehanizam tipa G (modificirano prema [16])

Vrijednosti geometrije i pripadajućih sila pomoću kojih je dobiven faktor aktivacije mehanizma prikazani su u tablici 29 gdje su promatrani blokovi istih dimenzija.

GEOMETRIJA							
Blok	1	2					
si [m]	0,5	0,5					
d <i>i</i> [m]	1	1					
x _{gi} [m]	1	1					
Li [m]	2	2					
ΣL [m]	2	1					
D	JELOVANJA NA BLOKOV	E					
Blok	1	2					
Wi [kN]	14,4	14,4					
Pvi [kN]	19,8	19,8					
Р <i>ні</i> [kN]							
H [kN]	7,	62					
PODACI ZA IZRAČUN α₀							
Moment stabili	Moment stabilizacije Ms [kNm] 7,6						
Moment prevrt	anja Mp [kNm]	68,40					
α	0	0,11					

Tablica 28. Ulazne vrijednosti parametara i proračun mehanizma otkazivanja tipa G

Geometrija i djelovanja na zid koji se odupire pomaku u poprečnom smjeru u odnosu na smjer djelovanja mehanizma G definirani su u nastavku u tablici 30.

Zid u poprečnom smjeru						
GEOMET	RIJA					
sc [m]	0,5					
d [m]	0,375					
d _v [m]						
y <i>G</i> [m]	1,75					
hv [m]						
h [m]	3,5					
L [m]	3					
hн [m]	3,10					
DJELOVANJA NA MA	AKROELEMENTE					
W [kN]	94,5					
Ps [kN]						
T [kN]						
Fн [kN]						
Fv [kN]						
Рн [kN]						

Tablica 29. Geometrija i djelovanja na zid u poprečnom smjeru

Sila kojom se poprečni zid odupire otvaranju vertikalne pukotine i formiranju luka u zidu H dobiva se pomoću prethodno definiranih sila i geometrije poprečnog zida. Uvrštavanjem definiranih parametara u izraz (4.40) pri čemu se pretpostavlja je zidana traka pravokutnog oblika (θ = 0,5) dobiva se iznos sile H koji iznosi 7,62 kN.

Pomoću sljedećih izraza dobivena je proračunska modalna masa te faktor udjela proračunske modalne mase čije su vrijednosti prikazane u tablici 31.

$$M^{*} = \frac{\left(W_{1} \cdot x_{G1} + W_{2} \cdot \frac{L_{1}}{L_{2}} \cdot x_{G2} + P_{\text{Vi1}} \cdot d_{i1} + P_{\text{Vi2}} \cdot \frac{L_{1}}{L_{2}} \cdot d_{i2} + H \cdot s\left(1 + \frac{L_{1}}{L_{2}}\right)\right)^{2}}{g \cdot (W_{1}x_{G1}^{2} + W_{2}\frac{L_{1}}{L_{2}} \cdot x_{G2}^{2} + P_{\text{Vi1}}d_{i1}^{2} + P_{\text{Vi2}}\left(\frac{L_{1}}{L_{2}} \cdot d_{i2}\right)^{2} + H \cdot s\left(1 + \frac{L_{1}}{L_{2}}\right)^{2})} \quad (4.41)$$
$$e^{*} = \frac{g \cdot M^{*}}{W_{1} + W_{2} + P_{\text{Vi1}} + P_{\text{Vi2}} + H} \quad (4.42)$$

Pomoću izraza (4.7) i (4.8) dobiva se faktor oblika titranja i faktor modalne participacije:

$$\Psi (Z) = \frac{8,2}{9,0} = 0,91$$
$$\Gamma = \frac{3\cdot 2}{2\cdot 2+1} = 1,29$$

Pretpostavlja se da promatrana zgrada ima dva kata.

Proračunska modalna masa M*		7,75
Faktor udjela proračunske modalne	1,00	
Spektralno ubrzanje α^*		0,81
UVJET	$\alpha^*_0 \ge \alpha^*_0$	0,min
SLD	$\alpha^*_{0,\min} = \max(\alpha^*_0)$,min1; α [*] 0,min2)
$\alpha^*_{0,min1}$ [m/s ²]		0,98
$\alpha^*_{0,min2}$ [m/s ²]		1,09
$\alpha^*_{0,min}$ [m/s ²]		1,09
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZAD	DOVOLJEN
SLV	$\alpha^*_{0,\min}$ = max (α^*_0	,min1; α* _{0,min2})
$\alpha^*_{0,min1}$ [m/s ²]		1,18
$\alpha^*_{0,min2}$ [m/s ²]		3,22
$\alpha^*_{0,min}$ [m/s ²]		3,22
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZAD	DOVOLJEN

Tablica 30. Proračun mehanizma otkazivanja G

S obzirom da na poprečni zid djeluje samo vlastita težina zida, vrijednost sile H neće biti velikog iznosa. Za usporedbu pretpostavlja se postojanje zatege koja bitno doprinosi stabilnosti zida i krutosti zida. U tablici 32. su prikazane vrijednosti sile H i faktora aktivacije ukoliko je sila u zatezi T = 0, 50, 75, 100, 150 i 200 kN.

T [kN]	H [kN]	Faktor aktivacije α_0
0	7,62	0,11
50	64,07	0,94
75	92,3	1,35
100	120,52	1,76
150	176,98	2,59
200	233,43	3,41

Tablica 31. Vrijednosti sile H i faktora aktivacije o sili u zatezi T

Pri velikom iznosu sile u zatezi T, sila kojom poprečni zid sprječava nastanak pukotina i daljnjeg mehanizma H će biti oko 20 % veća od sile u zatezi što bitno doprinosi stabilnosti vertikalne trake na kojoj se javlja mehanizam. Ukoliko su poprečni zidovi jako kruti, formiranje mehanizma otkazivanja tipa G će nastupiti zbog prekoračenja tlačne čvrstoće ziđa [1].

5. TEHNIČKI OPIS POSTOJEĆE KONSTRUKCIJE

Analizirana je postojeća stambena zgrada u Vukovarskoj ulici u Rijeci koja je sagrađena oko 1887. godine. Na stambenoj zgradi nisu provedena odgovarajuća istraživanja, stoga su vrijednosti materijalnih karakteristika pretpostavljene prema [21].

5.1. Opis konstrukcije

Nacrtna dokumentacija i podaci o stambenoj zgradi preuzeti su iz Državnog arhiva u Rijeci [18]. Stambena zgrada obuhvaća 3 zasebna stana na svakom katu – prizemlju i tri kata. Tlocrt svakog kata je identičan, razlikuju se visine prozora. Zgrada ima tlocrtne dimenzije 26 x 13 m te visinu od 14,60 m odnosno 17,39 m do sljemena. Visina prizemlja, prvog i drugog kata je 3,5 m, dok visina trećeg kata iznosi 3,3 m. Konstrukciju čine masivni nosivi zidovi od kamenih blokova debljine 60 cm i pregradni zidovi od opeke standardnog formata (250x120x65 mm) debljine 12 cm.

Slika 68. Prikaz pročelja stambene zgrade u Vukovarskoj ulici

Krovna konstrukcija je roženičko krovište pokriveno cijepom od opeke koji je letvicama pričvršćen za rogove. U sljemenu su rogovi spojeni na polupreklop. Opterećenje dvostrešnog krovišta prenosi se na uzdužne vanjske zidove i središnji zid.

Arhivski nacrt zgrade prikazan je na slici 69. S obzirom da je tijekom procesa gradnje došlo do promjene, nacrt ne odgovara sagrađenom stanju. Nema podataka o promjenama unutar konstrukcije nakon izgradnje, ali su zbog funkcionalnosti pretpostavljene određene promjene. Tlocrti prizemlja i katova analizirane konstrukcije te presjek dani su na kraju diplomskog rada.

Slika 69. Arhivski nacrti zgrade [18]

Na slici 70. prikazana je pretpostavljena stropna konstrukcija koja se sastoji od parketa, slijepog poda, blazinice, nasipa, gornje i donje oplate, drvenih grednika dimenzija 18/22 cm postavljenih na razmaku od 80 cm te gips kartonskih ploča.

Slika 70. Pretpostavljeni slojevi stropne konstrukcije

5.2. Djelovanja na konstrukciju

Konstrukcija se projektira da tijekom predviđenog uporabnog vijeka preuzme i prenese određena opterećenja koja se javljaju, a to su: stalno, promjenjivo i izvanredno odnosno potresno opterećenje.

5.2.1. Stalno djelovanje

Stalno djelovanje obuhvaća djelovanja koja djeluju na konstrukciju tijekom njenog uporabnog vijeka. Vlastita težina konstrukcije ovisno o slojevima te njihovoj težini jedna je od bitnih djelovanja na konstrukciju.

Pomoću zadane specifične težine, programski paket 3 Muri automatski računa vlastitu težinu zidova.

Stalno opterećenje stropne konstrukcije je proračunato s obzirom na površinu stropne ploče koja iznosi 338 m² te debljinu pojedinih slojeva.

	Dimenzije [m]	Volumen [m3]	Specifična težina [kN/m3]	Težina [kN]
Parket	0,014*26,00*13,00	4,73	7,00	33,12
Slijepi pod	0,024*26,00*13,00	8,11	4,10	33,26
Blazinica, šuta i pijesak	0,08*26,00*13,00	27,04	12,00	324,48
Gornja oplata	0,024*26,00*13,00	8,11	4,10	33,26
Drvena greda	0,18*26,00*13,00	60,84	7,50	456,30
Donja oplata	0,018*26,00*13,00	6,08	4,10	24,94
Gips kartonska ploča	0,02*26,00*13,00	6,76		100,00
Spajala				1,00
	Ukupno			1006,37
	Površina [m	2]		338
Stalno	opterećenje stropne k	onstrukcije [kN	I/m2]	2,98 ≈ 3

Tablica 32. Stalno opterećenje stropne konstrukcije

Usvaja se stalno opterećenje stropne konstrukcije u iznosu od 3 kN/m².

5.2.2. Promijenjivo djelovanje

U nacionalnom dodatku HRN EN 1991-1-1 preporučene su vrijednosti uporabnog opterećenja. Za kategoriju A koja obuhvaća stambene zgrade i kuće, uporabno opterećenje q iznosi 2,0 kN/m².

5.2.3. Potresno djelovanje

Iz karte potresnih područja Republike Hrvatske [19] dobivaju se vrijednosti vršnog ubrzanja zla s obzirom na lokaciju stambene zgrade te povratno razdoblje i vrstu razreda tla. Tip temeljnog tla odabran je s obzirom stratigrafski profil promatranog područja. Grad Rijeka se nalazi u području tipa temeljnog tla A koji obuhvaća područja tla stijene ili slične geološke formacije, uključujući najviše 5 m slabijeg materijala na površini.

Iz karte potresnih područja Republike Hrvatske za tip temeljnog tla razreda A za područje grada vršno ubrzanje temeljnog tla za povratno razdoblje od 475 godina iznosi $a_{gR} = 0,205$ g (2,01 m/s²), dok vršno ubrzanje za povratno razdoblje od 95 godina iznosi $a_{gR} = 0,105$ g (1,03 m/s²).

Parametri koji opisuju horizontalni elastični spektar odziva tipa 1 za tip temeljnog tla A nalaze su u tablici 7.

Zgrade su podijeljene u 4 razreda važnosti prema posljedicama rušenja za živote ljudi i njihove važnosti neposredno nakon potresa. Faktor važnosti za obične zgrade, kao što je promatrana konstrukcija, iznosi 1,00 [19].

5.3. Svojstva materijala

Materijalne karakteristike nosivog i pregradnog zida izvedene su iz tablice 34 [21]. Pregradni zid građen je od pune opeke s vapnenim mortom. Nosivi element sastoji se od kamenog zida čije su vrijednosti parametara određene aproksimacijom između zida od neobrađenog kamena s fasadnim zidom ograničene debljine i središnjom ispunom i zida od obrađenog kamena dobrih vezivnih svojstava.

Vrsta gradiva	Tlačna čvrstoća f _c [MPa]	Vlačna čvrstoća ft [MPa]	Modul elastičnosti E [MPa]	Modul posmika G [MPa]	Specifična težina Y [kN/m³]
Zid od nepravilnog kamena (obluci, nejednak i nepravilan kamen)	1,00-1,80	0,020-0,048	200-1050	130-350	19
Zid od neobrađenog kamena s fasadnim zidom ograničene debljine i središnjom ispunom	2,00-3,00	0,053-0,080	1020-1440	340-480	20
Zid od obrađenog kamena dobrih vezivnih svojstava	2,60-3,80	0,084-0,111	1500-1980	500-660	21
Zid od mekog kamena (tuf, vapnenac itd.)	1,40-2,40	0,042-0,063	900-1700	300-420	16
Zid od pravokutno obrađenog kamena	4,70-8,00	0,135-0,180	740-3200	200-940	22
Zid od pune cigle s vapnenim mortom	2,00-4,00	0,040-0,140	240-1800	80-600	18

Tablica 33. Karakteristične vrijednosti mehaničkih svojstava ziđa [N/mm2] [21]

Mehanička svojstva nosivog elementa iznose:

- tlačna čvrstoća f_c = 2,5 MPa
- vlačna čvrstoća f_t = 0,08 MPa
- modul elastičnosti E = 1300 MPa
- modul posmika G = 500 MPa
- specifična težina Υ = 21 kN/m³

Mehanička svojstva pregradnog zida od pune opeke:

- tlačna čvrstoća f_c = 3,0 MPa
- vlačna čvrstoća ft = 0,075 MPa
- modul elastičnosti E = 1200 MPa
- modul posmika G = 400 MPa
- specifična težina Υ = 18 kN/m³

Navedene vrijednosti su unesene u 3 Muri što je prikazano u sljedećem poglavlju. Drvene grede stropne konstrukcije su grede srednje kvalitete C22. Odabirom pripadajućeg razreda i vrste drveta, usvojene su materijalne vrijednosti za gredu podešene u programu.

6. MODELIRANJE U PROGRAMSKOM PAKETU "3 MURI"

U ovom poglavlju analizirana je otpornost konstrukcije na otkazivanje zidova izvan ravnine. Za analizu korišten je program paket 3 Muri koji provodi lokalnu provjeru makroelementa na pretpostavljenoj geometriji zida s obzirom na mogući tip mehanizma otkazivanja. Provedeni su pretpostavljeni mehanizmi otkazivanja dijela građevine uslijed potresnog opterećenja tako da ponašanje zgrade bude vrlo slično stvarnom ponašanju s ciljem utvrđivanja kritičnog ubrzanja koje dovodi do nastanka mehanizma sloma.

6.1. Model konstrukcije

Proračun je proveden na modelu kamene zgrade pomoću programskog paketa 3 Muri. U nastavku je prikazan numerički model konstrukcije koji je dobiven na temelju tlocrta pojedinih katova pomoću osnih linija. Zidovi se definiraju pridruživanjem karakteristika i geometrije osnim linijama. U nastavku su definirani zidovi te otvori prozora i vrata za prizemlje, prvi, drugi i treći kat. Prozori na tlocrtu prizemlja obojeni su žutom bojom, dok su otvori obojeni crvenom bojom.

Slika 71. Tlocrt prizemlja

Slika 72. Tlocrt prvog, drugog i trećeg kata

Tlocrti prvog, drugog i trećeg kata razlikuju se samo o dimenzijama prozora i visini kata gdje visina trećeg kata iznosi 3,3 m, dok su visine ostalih katova 3,5 m.

Slika 73. 3D vizualizacija stambene zgrade

Krovište je nekonstrukcijskog tipa pri čemu se doprinos krutosti zanemaruje, ali se opterećenje krovišta prenosi na zidove.

6.1.1. Definiranje zidova i otvora

Nakon definiranja osi zidova, određeni su vertikalni elementi konstrukcije te otvori u njima. Pregradni zidovi od opeke te nosivi zidovi od kamenih blokova definirani su pod opcijom "Definiraj karakteristike" što je prikazano na slikama 74. i 75. Unesene su vrijednosti visine zidova iznosa 350 cm te širina od 60 cm za nosive i 12 cm za pregradne zidova. Materijalni parametri zidova pojašnjeni su u poglavlju 6.2.

Zidni panel	Zidni panel + A	Zidni panel + AB vezna greda		lična/drvena greda	Zidni panel + šipke za povezivanje
AB zid	AB greda	Čelična/o	rvena greda	Šipka za povezivar	nje Bez svojstava
dni panel					
Visinska kota 350 [cm]					
Visina 350 [cm]		h			
Debljina 60,0 [cm]					
	Zidani ispunski	zid			
Statičke provjere					
Ekscentricitet 0,0 [cm]	Podvrgnut dje	ovanju vjetra			
Materijal					
Kameni blokovi		× 🚺			
Ojačano ziđe/Ojačanja					
		~ 10			
Ispod/preko prozora					
Ispod prozora	[m]				
Vamoni blokovi	ong				
Nameni Diokovi		10			
Iznad prozora					
Vameni blekevi					
Kameni biokovi					

Slika 74. Postavke nosivih zidova

Zidni panel		Zidni panel + AB vezna greda			Zidni panel + čelić	ína/drvena greda	Zidni panel	+ šipke za povezivanje
AB zid		AB greda		Čelična/drven	a greda	Šipka za povezivan	je 🗌	Bez svojstava
dni panel								
/isinska kota 350	[cm]							
/isina 350	[cm]			h				
Debljina 12,0	[cm]							
		7 idani izou nek						
Statičke provjere			1 210					
Ekscentricitet 0,0	[cm]	Podvrgnut dje	lovanju	/jetra				
Materijal								
Puna opeka			\sim					
Ojačano ziđe/Ojačanja								
				10 A				
.								
Ispod/preko prozora								
Debljina	12,0 [cm]							
Puna opeka				1 0				
Iznad prozora								
Debljina	12,0 [cm]							
Puna oneka				F				

Slika 75. Postavke pregradnih zidova

Vrata i prozori su postavljeni definiranjem otvora na predviđenim mjestima u zidu. U vanjskim nosivim zidovima prozori su široki 1 m, a visoki 1,7 m na prizemlju i drugom katu odnosno 1,8 m na prvom katu te 1,6 na posljednjem katu. Vrata u pregradnim zidovima široka su 0,9 m i visoka 2,2 m.

6.1.2. Definiranje stropne i krovne konstrukcije

Program nudi nekoliko vrsta stropnih konstrukcija s unaprijed definiranim karakteristikama. U ovom radu stropna konstrukcija je odabrana kao drveni grednik s jednim redom dasaka. Geometrijski parametri poput raspona, visine i širine grede te debljine dasaka su uneseni u program kao što je vidljivo na slici 76.

hive	Korisnički definirano	• 🗖 🗐	×			
	rveni grednik sa jednim redom rveni grednik sa preklopljenim rveni grednik sa dodanom betv ippelbaumdecke elični profili i šuplja opeka elični profili sa svodovima ert strop restressed slabs (Predales) orugirani limovi sa pločom	dasaka drvenim dask onskom tlačno	ama m pločom	T ‡ h ↓	i b	
Do	ovoljno povezane grede			Materijal Drveni nosači	C24 Halor. plep	✓ ≣
Do Gk2 (p	ovoljno povezane grede	2,00	[kt\/m2]	Materijal Drveni nosači	C24 Halor. plep	 Image: A start of the start of
Do Gk2 (p	ovoljno povezane grede odovi itd) ačunate vrijednosti	2,00	[kN/m2]	Materijal Drveni nosači Parametri	C24 Halor. plep	✓
Do Gk2 (p Prora	ovoljno povezane grede oodovi itd) ačunate vrijednosti oebijna [mm]	2,00	[ktv/m2]	Materijal Drveni nosači Parametri b [mm]	C24 Halor. plep	- 18
Do Gk2 (p Prora	ovoljno povezane grede oodovi itd) ačunate vrijednosti Jebijna [mm] [R4/m2]	2,00	[kN/m2]	Materijal Drveni nosači Parametri b [mm] h [mm]	C24 Halor. plep	18
Do Gk2 (p Prora € E	ovoljno povezane grede oodovi itd) ačunate vrijednosti Debljina [mm] 5 [6N/m2]	2,00	[kN/m2] 40 10.000,00 12.499,02	Materijal Drveni nosači Parametri b [mm] h [mm] i [mm]	C24 Halor, plep	× 18 18 22 80
Do Gk2 (p Prora E E	ovoljno povezane grede oodovi itd) ačunate vrijednosti Debljna [mm] a [dV/m2] ix [dV/m2] jx [dV/m2]	2,00	[dV/m2] 40 10.000,00 12.499,02 0,00	Materijal Drveni nosači Parametri b [mm] h [mm] i [mm] T [mm]	C24 Halor, plep	 Image: 18 Image: 18
Do Gk2 (p Prora G E E	ovoljno povezane grede oodovi itd) ačunate vrijednosti Debljna [rm] 5 [dv]m2] ix [dv]m2]	2,00	[dV/m2] 40 10.000,00 12.499,02 0,00 0	Materijal Drveni nosači Parametri b [mm] h [mm] i [mm] T [mm]	C24 Halor, plep	 18 22 80 2
Do Gk2 (p Prora E E E	2voljno povezane grede 2voljno povezane grede 2voljno (mm) 5 (dv/m2) 2v (dv/m2) 7 (-] 4x (lov/m2)	2,00	[dV/m2] 40 10.000,00 12.499,02 0,00 0,21	Materijal Drveni nosači Parametri b [mm] h [mm] i [mm] T [mm]	C24 Halor, plep	 IB 18 22 800 2⁴

Slika 76. Podaci o stropnoj konstrukciji

Iz tablice 33. gdje je prikazano stalno opterećenje stropne konstrukcije te uporabno opterećenje koji iznosi 2,0 kN/m2 popunjeni je tablica opterećenja na slici 77. Faktor redukcije Ψ_2 stambenih prostora prema normi HRN EN 1990 iznosi 0,3.

ledukatna konstrukcija			×	Nagib krovišta				
Opterećenja Qk Gk2 Gk2 </th <th>Visinska ko Gk Gk2 Qk Duljina os Δ extrados ele</th> <th>ta 5,500 [3] 0,00 [2,00 [2,00] 2,00 [2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2</th> <th>m] kN/m2] kN/m2] 0 [mm] 0 [mm] 0 [mm] 0 [mm] 0 [mm]</th> <th>Opterećenja Qk Gk2 Gk2 <th>Visinska k Gk Gk2 Qk Duljina o Δ extrados e</th><th>kota</th><th>13,800 [m 1,15 [k 0,00 [d 2,00 [d 0 0 0,000 0,000</th><th>1] N/m2] N/m2] [mm] [m] [m]</th></th>	Visinska ko Gk Gk2 Qk Duljina os Δ extrados ele	ta 5,500 [3] 0,00 [2,00 [2,00] 2,00 [2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2,00] 2	m] kN/m2] kN/m2] 0 [mm] 0 [mm] 0 [mm] 0 [mm] 0 [mm]	Opterećenja Qk Gk2 Gk2 <th>Visinska k Gk Gk2 Qk Duljina o Δ extrados e</th> <th>kota</th> <th>13,800 [m 1,15 [k 0,00 [d 2,00 [d 0 0 0,000 0,000</th> <th>1] N/m2] N/m2] [mm] [m] [m]</th>	Visinska k Gk Gk2 Qk Duljina o Δ extrados e	kota	13,800 [m 1,15 [k 0,00 [d 2,00 [d 0 0 0,000 0,000	1] N/m2] N/m2] [mm] [m] [m]
EC 0.20 UID	0.70 m	1.00	m		1.00 m		1.00	
EC Ψ2 0,30 Ψ0 Tip Drveni grednik s	0,70 φ	1,00 om dasaka 🗸	•	Ψ2 0,00 Ψ0 Tip Rigid floor	1,00 φ	01	1,00	•
EC Ψ2,30 Ψ0 Tip Drveni grednik s Debljina	0,70 φ a jednim redo 40 [1,00 om dasaka v	•	Ψ2 0,00 Ψ0 Tip Rigid floor Debljina	1,00 φ	[mm]	1,00 ~	•
EC Ψ2 0,30 Ψ0 Tip Drveni grednik s Debljina G	0,70 φ a jednim reda 40 [10.000,00 [1,00 m dasaka ∨ mm] kN/m2]	•	Ψ2 0,00 Ψ0 Tip Rigid floor Debljina G	1,00 φ	[mm] [kN/m2]	1,00 ~	0 ¢
EC W2 0,30 W0 Tip Drveni grednik s Debljina G Ex	0,70 φ a jednim redc 40 [10.000,00 [12.375.000 [1,00 mm dasaka ~ mm] kN/m2] kN/m2]	•	Ψ2 0,00 Ψ0 Tip Rigid floor Debljina G Ex	1,00 φ	[mm] [kN/m2] [kN/m2]	1,00 ~	0 ¢
EC W2 0,30 W0 Tip Drveni grednik s Debljina G Ex Ey	0,70 φ a jednim redu 40 [10.000,00 [12.375.000 [0,00 []	1,00 mm dasaka ~ mm] kN/m2] kN/m2]	•	ψ2 0,00 ψ0 Tip Rigid floor Debljina G Ex Ey	1,00 φ	[mm] [kV/m2] [kV/m2] [kV/m2]	1,00 ~	•
EC W2 0,30 W0 Tip Drveni grednik s Debljina G Ex Ey V	0,70 φ a jednim reda 40 [10.000,00 [12.375.000 [0,00 [0,00]	1,00 m dasaka ~ mm] kN/m2] kN/m2]	•	Ψ2 0,00 Ψ0 Tip Rigid floor Debljina G Ex Ey V	1,00 φ 0,00 0,00 0,00	[mm] [ktV/m2] [ktV/m2] [ktV/m2]	1,00 ~	•
EC W2 0,30 W0 Tip Drveni grednik s Debljina G Ex Ey V Opterećenje masom	0,70 φ a jednim reda 40 [10.000,00 [12.375.000 [0,00 [0,00]	1,00 m dasaka ~ mm] kN/m2] kN/m2]	•	ψ2 0,00 ψ0 Tip Rigid floor Debljina G Ex Ey V Opterećenje masom	1,00 φ 0,00 0,00 0,00	[mm] [dN/m2] [dN/m2] [dN/m2]	<u>1,00</u>	•
EC W2 0,30 W0 Tip Drveni grednik s Debljina G Ex Ey V Opterećenje masom O Jednosmjerno	0,70 φ a jednim reda 40 [10.000,00 [12.375.00C [0,00 [1,00 m dasaka ~ mm] kN/m2] kN/m2] kN/m2]	•	ψ2 0,00 ψ0 Tip Rigid floor Debljina G Ex Ey V Opterećenje masom I Jednosmjerno Jednosmjerno	1,00 φ 0,00 0,00 0,00 0,00	[mm] [ktV/m2] [ktV/m2] [ktV/m2]	1,00 ~	•
EC W2 0,30 W0 Tip Drveni grednik s Debljina G Ex Ey V Opterećenje masom Jednosmjerno Glavni smjer opterećenja	0,70 φ a jednim redc 40 10.000,00 12.375.00C 0,00 0,00 0,00 0,00 000	1,00 mm dasaka ~ mm] kN/m2] kN/m2] kN/m2] osmjerno ~ %	•	₩2 0,00 Ψ0 Tip Rigid floor Debljina G Ex Ey V V Opterećenje masom Jednosmjerno Glavni smjer opterećenja	1,00 φ 0,00 0,00 0,00 0,00 0,00 0,00	[mm] [ktV/m2] [ktV/m2] [ktV/m2]	1,00 ~	0 0

Podaci za opterećenje i koeficijenti kombinacije u krovnoj konstrukciji zadani su u programu. Koeficijenti kombinacije zadani su prema djelovanju određene kategorije što je u ovom slučaju kategorija H koja predstavlja krovove.

Krovna konstrukcija	g [kN/m2]		
Crijep	0,6		
Rogovi, podrožnica	0,55		
Ukupno	1,15		

Tablica 34. Opterećenje krovne konstrukcije

6.2. Materijalni parametri

Program omogućuje analizu postojećih i novih objekata, što utječe na definiranje karakteristika materijala. Ukoliko se radi o novoj građevini, parametri materijala se mogu unijeti ručno ili odabrati u programu pri čemu program generira karakteristike materijala poput modula elastičnosti E, modula posmika G, specifične težine materijala w, tlačne čvrstoće fm, posmične čvrstoće τ i stupnja poznavanja konstrukcije CF. Za potrebe diplomskog rada, promatrana konstrukcija je postojeća te se podaci za analizu podešavaju ručno.

6.2.1. Materijalni parametri zidova

Na slikama 71. i 72. su prikazane osne linije koje predstavljaju zidane elemente u konstrukciji. Nosivi i pregradni zidovi definirani su pomoću materijalnih karakteristika odabranih pod opcijom "Materijali" koja nudi odabir materijala poput opeke, drva, čelika i betona. Proračun zidova moguće je provesti pomoću dvije metode – metoda Turnšek-Čačovič i metoda Mohr-Coulomb. U obzir se uzima metoda Turnšek-Čačovič koja je preporučena za korištenje ukoliko se promatraju postojeći zidovi.

S obzirom da na konstrukciji nisu provedena istraživanja te podaci o mehaničkim svojstvima zida nisu dostupni, usvojeni podaci preuzeti su iz istraživanja [21].

Svojstva mate	erijala			×	Svojstva mat	erijala			
Tip Ime	Ziđe Kameni blokov	i	Stanje materijala O Postojeći	O Novo	Tip Ime	Ziđe Puna opeka		Stanje materijala O Postojeći	O Novo
	Boja materijala Tekstura		 Raspucala krutost Korisnički definirano 			Boja materijala Tekstura	_	 Raspucala krutost Korisnički definirano 	
E [kN/m2] G [kN/m2]		1300000 500000	Konstitutivni zakon		E [kN/m2] G [kN/m2]		1200000 400000	Konstitutivni zakon	
w [kg/m3]		2100	Turnsek/Cacovic	~	w [kg/m3]		1800	Turnsek/Cacovic	~
fm [kN/m2] τ [kN/m2]		2500 80			fm [kN/m2] т [kN/m2]		3000		
fk [kN/m2] Faktor povje	erenja	2000			fk [kN/m2] Faktor povi	erenia	2000		
γm		3			γm		3		
Pomak od po Pomak od sa	ivijanja	0,0053			Pomak od p Pomak od si	osmika avijanja	0,0053		
\$ 00		٥			\$ co		۵		
Opis					Opis				
Knjižnica		N	lorma	Poništi ?	Knjižnica			Norma 🛄 OK	Poništi 🕐

Slika 78. Materijalne karakteristike nosivog zida (lijevo) i pregradnog zida (desno)

Ovisno o razini poznavanja konstrukcije zadaje se određeni faktor povjerenja. Ukoliko je razina poznavanja konstrukcije velika te su svi parametri konstrukcije u potpunosti poznati, faktor povjerenja tada iznosi 1,0. Ukoliko su neki parametri konstrukcije nisu poznati, tada je znanje uobičajeno te faktor povjerenja iznosi 1,2. Ako je znanje ograničeno, kao u ovom slučaju, faktor povjerenja je 1,35.

6.2.2. Materijalni parametri stropne konstrukcije

U nastavku su prikazani podaci usvojeni u programu. Vrijednosti su generirane odabirom razreda čvrstoće C22 i ograničenog poznavanja konstrukcije.

ovojstva n	naterijala				
Тір	Drvo		Stanje materijala		
Ime	C22 Halor. plep	C22 Halor. plep		O Novo	
	Boja materijala				
	Tekstura	-			
E [kN/m2	2]	1E+07	Dening angels		
G [kN/m2	2]	630000	Razina znanja	min 101	
w [kg/m3	3]	418	Ograniceno zn	anje LCI 🗸 🗸	
fwm [kN/	/m2]	31000			
fwk [kN/i	m2]	22000			
Kmod		0,6			
Faktor povjerenja		1,35			
γw		1,3			
Opis	EN 338:2002				
				OK Poništi 🥑	

Slika 79. Podaci o karakteristikama drveta

6.3. Potresno opterećenje konstrukcije u programu 3Muri

Pomoću opcije "Seizmičko opterećenje" odabiru se parametri o potresnoj zoni i razredu tla s obzirom na odabranu normu. Postoje nekoliko ponuđenih normi (NTC, Eurokod, SIA, NPR) koje dokazivanje nosivosti konstrukcije. U nastavku su objašnjene razlike između Eurokoda i talijanske norme NTC novije verzije 2018 te NTC 2008 koje se koriste za dokazivanje nosivosti zidova na otkazivanje izvan ravnine.

6.3.3. Proračun prema Eurokodu

Temeljni zahtjevi u "Eurokodu 8 – Proračun potresne otpornosti konstrukcija – Dio 1-1: Opća pravila i potresno djelovanje" [19] određuju projektiranje tako da ne dođe do prekoračenja tri granična stanja – granično stanje blizu rušenja (BR), granično stanje znatnog oštećenja (ZO) i granično stanje ograničenog oštećenja (OO).

Granično stanje blizu rušenja (BR) opisuje stanje u kojem je konstrukcija teško oštećena. Preostala bočna čvrstoća i krutost su vrlo male. Vertikalni elementi preuzimaju opterećenje, dok je veliki broj nekonstruktivnih elemenata srušen. Smatra se, ukoliko bi došlo do umjerenog potresa, konstrukcija bi se urušila u potpunosti.

Granično stanje znatnog oštećenja (ZO) opisuje znatno oštećeno stanje građevine pri kojem ona ima malo veću bočnu čvrstoću i krutost u odnosu na stanje BR. Vertikalni elementi mogu nositi vertikalna opterećenja, dok su nekonstruktivni elementi oštećeni. Prilikom udara potresa manjeg intenziteta, popravak konstrukcije ne bi bio isplativ. Povratno razdoblje za ZO je 475 godina s vjerojatnosti prekoračenja od 10% u razdoblju od 50 godina.

Granično stanje ograničenog oštećenja (OO) opisuje stanje građevine s laganim oštećenjem i prvobitnom krutosti i bočnom čvrstom. Nekonstruktivni elementi mogu imati pukotine čije je popravljanje ekonomično. Na konstrukciji nisu potrebni veliki popravci. Povratno razdoblje za OO je 95 godina s vjerojatnosti prekoračenja od 10% za razdoblje trajanja građevine od 10 godina.

Podaci o poredbenom maksimalnom ubrzanju tla tipa A definirani su na razini pojedine države posebnim Nacionalnim dodatkom. Poredbeno vršno ubrzanje tla izraženo u jedinicama gravitacijskog ubrzanja g, za određenu lokaciju na području Republike Hrvatske, može se preuzeti iz potresne karte Republike Hrvatske na web stranici Geofizičkog odsjeka Prirodoslovno-matematičkog fakulteta u Zagrebu. Za temeljno tlo razreda A i područje grada Rijeke za provjeru graničnog stanja znatnog oštećenja (ZO) vršno ubrzanje temeljnog tla za povratno razdoblje od 475 godina iznosi $a_{gR} = 0,22$ g (2,16 m/s²). Za provjeru graničnog stanja ograničenog oštećenja (OO) vršno ubrzanje za povratno razdoblje od 95 godina iznosi $a_{gR} = 0,12$ g (1,18 m/s²). Granično stanje blizu rušenja (BR) je umnožak faktora 1,5 i vršnog ubrzanja tla za granično stanje znatnog oštećenja te on iznosi $a_{gR} = 0,33$ g (3,24 m/s²).

Oblik spektra	Parametarski			
		BR	ZO	00
Verifikacija			 Image: A set of the set of the	
a _{gR} [m/s²]		3,24	2,16	1,18
Tip tla	Α	-	A	A
s		1,00	1,00	1,00
T _B [s]		0,15	0,15	0,15
T _C [s]		0,40	0,40	0,40
T _D [s]		2,00	2,00	2,00
Faktor važnosti 1.00				

Slika 80. Prikaz podataka za seizmičko opterećenje prema Eurokodu

Odabir spektra odziva može biti i prilagođen pri čemu se nudi mogućnost odabira spektralnog dijagrama gdje se oblik spektra definira pomoću točaka pojedinačnim unošenjem tablice ili prenošenjem podataka iz npr. Excel-a. Točke spektra moguće je definirati posebno za svako granično stanje koje se odabire u padajućem izborniku.

6.3.4. Proračun prema NTC

Program 3 Muri nudi mogućnost odabira dvije verzije talijanske norme NTC – stariju verziju 2008. i noviju verziju 2018. Izbornik za unos podataka za potresno opterećenje je u potpunosti isti, osim što u novijoj verziji NTC 2018 nudi mogućnost odabira graničnog stanja, za razliku od NTC 2008 koji provodi provjeru sva tri granična stanja.

U talijanskim normama, potresni odziv ovisi o geografskim koordinatama odnosno gradu koji se odabire iz ponuđenih gradova u Italiji.

U NTC 2008. seizmički spektri ovise o geografskom položaju lokacije. Unosom grada, uporabnog vijeka i klase uporabljivosti dobivaju se parametri i shodno tome podaci za granična stanja. Navedeni su zahtjevi za tri granična stanja – granično stanje zaštite života (SLV) označeno s ULS, granično stanje ograničenog oštećenja (SLD) označeno s GS OO i granično stanje (SLO) označeno s OLS.

7. ANALIZA LOKALNIH MEHANIZAMA OTKAZIVANJA VIŠESTAMBENE

ZGRADE

3 Muri LM je računski modul unutar programa 3 Muri u kojem se može provesti lokalna analiza mehanizama otkazivanja zidova. Prije provjere potrebno je proračunati mrežu modela te postaviti parametre potresnog djelovanja u kartici "Analiza modela" [20].

Najprije je potrebno definirati kinematičke blokove odnosno beskonačno krute blokove koji se mogu pomicati u odnosu na drugi blok ili zid. Blokovi su međusobno povezani preko ograničenja (eng. *constraint*). Ukoliko ograničenje ne postoji, dva međusobno povezana bloka se promatraju kao jedinstveni blok. Stoga, ukoliko se radi o dva bloka nužno ih je povezati pomoću najmanje dvije zajedničke točke. Nakon definiranja opterećenja odabire se referentni kinematički blok. Moguće je postaviti dodatna koncentrirana ili linearna opterećenja koja djeluju na kinematički blok te silu u zatezi koja pridržava blok [20].

Prilikom proračuna odabire se opcija "Ograničenje tla" gdje se provjerava jedan element ili dio zgrade na tlu. Druga opcija "Ograničenje kvote" se odabire ukoliko se lokalni mehanizam provjerava na nekoj visini. Odabirom druge opcije javljaju se dodatni parametri, prvi period titranja konstrukcije T_1 i prvi vibracijski oblik Ψ , koje program automatski proračunava, no čija se vrijednost može prilagoditi. Također, moguće je provesti proračun graničnog stanja oštećenja GSU i retrakciju odnosno uvlačenje točke rotacije (zgloba) unutar bloka koja se postavlja ukoliko je tlačna čvrstoća ograničena [20].

U poglavlju analiza kinematskih mehanizama dan je uvid u mogućnost nastanka pojedinog mehanizma otkazivanja koji mogu uzrokovati oštećenje i gubitak nosivosti cijele konstrukcije. Provjere graničnog stanja zaštite života GSN (SLV) i granično stanje ograničenog oštećenja (SLD) provedene su na različitim geometrijama istog tipa mehanizma. Od provedenih mehanizama, kritični mehanizam je onaj mehanizam koji daje najmanju vrijednost aktivacijskog ubrzanja. Za provjeru, na samom kraju, pripadno spektralno ubrzanje uspoređuje se s minimalnim referentnim ubrzanjem dobivenim s obzirom na vjerojatnost prekoračenja SLV-a i SLD-a u referentnom povratnom periodu.

Prvi period titranja konstrukcije T₁ odnosi se na cijelu konstrukciju te se u nastavku podrazumijeva ista vrijednost u svakom tipu otkazivanja mehanizma. Dobiva se pomoću izraza (4.18):

$$T_1 = 0,05 \cdot 13,8^{\frac{3}{4}} = 0,36 s$$

Postavljeni su zahtjevi na ubrzanje bloka pri kojem vrijednost spektralnog ubrzanja α_0^* mora biti veća ili jednaka minimalnoj vrijednosti spektralnog ubrzanja α_0^* čiji su izrazi za proračun detaljnije objašnjeni u poglavlju 4.1.

S obzirom da je debljina zida duž katova konstantna, zglob se formira oko vanjskog ruba bloka pri čemu u proračun nije uključena opcija retrakcije.

7.1. Mehanizam A

Provedene su provjere otkazivanja zidova mehanizma tipa A sa četiri slučaja blokova različitih geometrija. Prvi i drugi slučaj obuhvaćaju prevrtanje posljednjeg kata, dok se u trećem i posljednjem slučaju promatra prevrtanje malog dijela kata na oslabljenim mjestima.

7.1.1. Primjer 1

Pretpostavljeno je prevrtanje lastavice zabatnog zida zajedno sa trećim katom čija je geometrija bloka prikazana na slici 81. Preko linearnog zgloba dolazi do prevrtanja bloka okomito na njegovu ravninu.

Slika 81. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 1 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Promatrani blok se nalazi iznad razine tla stoga je proračun proveden ograničenjem kvote. Prvi vibracijski oblik Ψ predstavlja odnos visinske kote zida te ukupne visine zgrade H. Potrebno ga je proračunati s obzirom na postavljeni uvjet ograničenja. Prema izrazu (4.7) za ovaj slučaj prvi vibracijski oblik Ψ iznosi:

$$\Psi_{i}(Z) = \frac{10.5 \text{ m}}{13.8 \text{ m}} = 0.76$$

U tablici 36. su prikazane ulazne vrijednosti proračuna navedenog primjera te rezultati i spektralno ubrzanje čija vrijednost uvjetuje ispunjenje zahtjeva.

ULAZNE VRIJEDNOSTI PARAMETARA							
Prvi period građevine T1	T ₁ = 0,36 s						
Visinska kota zida Z	Z = 10,5 m						
Prvi vibracijski oblik Ψ	Ψ = 0,76						
REZULTATI PRORAČUNA							
Faktor aktivacije mehanizma α_0	0,105						
Granična stanja	SLV	SLD					
Spektralno ubrzanje α^*_0	1,00	1,00					
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10	5,47					
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN					

Tablica 35. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 1

Blok u primjeru 1 ispunjava 24 % zahtjeva prema kriteriju SLV i 18 % zahtjeva prema SLD. Nužno je poboljšati povezanost zabatnog zida kako bi se prevrtanje zida spriječilo.

7.1.2. Primjer 2

Promatrano je prevrtanje posljednjeg kata pročelja s nadozidom konstrukcije. Pretpostavljeni blok sadrži veliki broj otvora koji imaju nepovoljan utjecaj na nosivost bloka.

Slika 82. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 2 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Blok duž cijelog zida pročelja nalazi se na visini od 10,5 m. Proračun mehanizma nalazi se u tablici 37.

ULAZNE VRIJEDNOSTI PARAMETARA							
Prvi period građevine T1	T ₁ = 0,36 s						
Visinska kota zida Z	Z = 10,5 m						
Prvi vibracijski oblik Ψ	Ψ = 0,76						
REZULTATI PRORAČUNA							
Faktor aktivacije mehanizma α_0	0,146						
Granična stanja	SLV	SLD					
Spektralno ubrzanje α^*_0	1,33	1,33					
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10	5,47					
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN					

Tablica 36. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 2

Zahtjevi SLV i SLD nisu zadovoljeni te upućuju da je blok potrebno bolje povezati s ostatkom konstrukcije. Primjer otkazivanja cijelog kata zida pročelja ne prikazuje stvarnu sliku otkazivanja jer se smatra da bi zid povezan krutom vezom s dva unutarnja nosiva zida ostao nepomičan s obzirom da ga unutarnji zidovi pridržavaju. Potrebno je provjeriti stanje spoja stropne konstrukcije i ziđa. Ukoliko je spoj loše izveden, kao što prikazani model pretpostavlja, poboljšanje je neophodno.
7.1.3. Primjer 3

Primjer u nastavku opisuje prevrtanje dijela zida pročelja posljednjeg kata. Shodno zaključku iz prethodnog primjera, provjeren je nastanak ovog tipa mehanizma gdje unutarnji nosivi zid nema utjecaja na promatrani blok.

Slika 83. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 3 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Prevrtanja zida događa se na visinskoj koti stropa drugog kata koja iznosa 10,5 m.

ULAZNE VRIJEDNOSTI PARAMETARA				
Prvi period građevine T1	T ₁ = 0,36 s			
Visinska kota zida Z	Z = 10,5 m			
Prvi vibracijski oblik Ψ	Ψ = 0,76			
REZULTATI PRORAČUNA				
Faktor aktivacije mehanizma α_0 0,146				
Granična stanja	SLV SLD			
Spektralno ubrzanje α^*_0	1,33	1,33		
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10 5,47			
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN NIJE ZADOVOLJEN			

Tablica 37. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A - primjer 3

Zahtjev za SLV je zadovoljen 33 % što zahtjeva mjere ojačanja protiv sprječavanja prevrtanja. Faktor aktivacije mehanizma isti je kao i u prethodnom primjeru jer se radi o istoj razini etaže što uvjetuje visinu i širinu blokova, te o istim iznosima opterećenja iznad bloka. Promatra se dio bloka koji je simetričan.

7.1.4. Primjer 4

Primjer 4 analiza geometriju bloka koji obuhvaća dva kata uključujući i nadozid u prevrtanje. Pukotina se pojavljuje na kraju otvora uključujući četiri otvora u blok. Program u obzir uzima vlastitu težinu zida, opterećenja od stropnih konstrukcija te opterećenje od krovne konstrukcije.

Slika 84. Geometrija pretpostavljenog bloka mehanizma otkazivanja A primjer 4 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Visinska kota Z predstavlja udaljenost od kote terena do kote drugog kata koji se nalazi na 7,0 m.

ULAZNE VRIJEDNOSTI PARAMETARA				
Prvi period građevine T ₁ T ₁ = 0,36 s				
Visinska kota zida Z	Z = 7,0 m			
Prvi vibracijski oblik Ψ	Ψ = 0,51			
REZULTATI PRORAČUNA				
Faktor aktivacije mehanizma α_0 0,077				
Granična stanja	SLV SLD			
Spektralno ubrzanje α^*_0	0,73	0,73		
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75	3,67		
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN NIJE ZADOVOLJEN			

Tablica 38. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja A – primjer 4

Uvjeti SLV i SLD nisu zadovoljeni. Pretpostavlja se da će doći do odvajanja blokova te da će se blok prevrnuti u odnosu na svoju ravninu. Potrebno je poduzeti mjere zaštite protiv prevrtanja.

Proračun faktora aktivacije je proveden pomoću radne knjižice Excela korištene u poglavlju 4.2.1. Opterećenje stropne i krovne konstrukcije dobiveno je primjenom podataka definiranih u programu, navedenih u prethodnim poglavljima. Podaci su navedeni u tablicama 40 i 41 gdje je težina stropne konstrukcije uzeta u obzir u proračunu 1 bloka, a suma težine stropne i krovne konstrukcije djeluje na blok 2.

Tablica 39. Opterećenje stropne konstrukcije na blokove u mehanizmu otkazivanja A – primjer 4

Opterećenje stropne konstrukcije		
Stalno opterećenje G [kN/m2]	3,00	
Promjenjivo opterećenje Q [kN/m2]	2,00	
POTRESNA KOMBINACIJA [kN/m2]	3,60	
Površina stropa [m2]	18,60	
Ukupno opterećenje [kN]	66,96	

Tablica 40. Opterećenje krovne konstrukcije na blokove u mehanizmu otkazivanja A – primjer 4

Opterećenje krovne konstrukcije		
Stalno opterećenje G [kN/m2]	1,15	
Promjenjivo opterećenje Q [kN/m2]	2,00	
POTRESNA KOMBINACIJA	1,15	
Površina stropa [m]	37,20	
Ukupno opterećenje [kN]	42,78	

Geometrija bloka, djelovanja na blokove i faktor aktivacije mehanizma prikazani su u tablici 42.

Tablica 41. Proračun faktora aktivacije mehanizma za mehanizam otkazivanja A – primjer 4

Proračun mehanizma otkazivanja tipa B1 – primjer 4			
GEOMETRIJA			
Kat	1	2	
si [m]	0,6	0,6	
d <i>i</i> [m]	0,45	0,45	
dvi [m]			
y _{Gi} [m]	1,75	2,05	
hvi [m]			
hi [m]	3,5	4,1	
DJELOVANJA NA BLOKOVE			
Kat	1	2	
Wi [kN]	264,6	309,96	
Psi [kN]	66,96	109,74	

Ti [kN]			
Fн <i>i</i> [kN]			
Fvi [kN]			
Рн [kN]			
	Kontrolna točka		Α
	Vlastita težina zidova [kNr	n]	172,37
Momonti stabilizaciji	Opterećenje podova [kNm	ו]	79,52
	Djelovanje luka ili svoda [ł	Djelovanje luka ili svoda [kNm]	
	Djelovanje zatega [kNm]		-
	Inercija zidova [kNm]	Inercija zidova [kNm]	
	Inercija podova [kNm]	Inercija podova [kNm]	
Momenti prevrtanja	Inercija luka ili svoda [kNn	Inercija luka ili svoda [kNm]	
	Statički potisak luka ili svoda [kNm]		-
	Inercija statičkog pojačanja [kNm]		
PODACI ZA IZRAČUN α₀			
Moment sta	Moment stabilizacije Ms [kNm] 251		251,88
Moment pr	evrtanja Mp [kNm]	3251,71	
	α ₀		0,077

Vrijednosti faktora aktivacije mehanizma proračunom u Excelu i proračunom programskim paketom 3 Muri se poklapaju.

U nastavku su navedeni parametri zgrade pomoću kojih je dobiveno minimalno spektralno ubrzanje.

KATEGORIJA TLA A	
S (T=0)	1,00
S _{e,SLD} (T1=0,36)	5,40
S _{e,SLV} (T1=0,36)	8,10
Z	7,00
Н	13,80
Ψ	0,51
PARAMETRI ZGRADE	
Specifična težina ziđa Y	21,00
Vršno ubrzanje tla ag (Tr = 50godina)	2,16
Vršno ubrzanje tla ag (Tr = 475godina)	3,24
Prvi period građevine T1	0,36
Koeficijent modalne participacije Ґ1	1,33
Koeficijent konstrukcije q	2,00
Faktor razine znanja Fc	1,35

Tablica 42. Podaci o potresnoj otpornosti građevine

Prema dobivenom faktoru aktivacije proračunata je proračunska modalna masa, faktor proračunske modalne mase i spektralno ubrzanje.

Tablica 43. Proračunska modalna masa, faktor proračunske modalne mase i spektralno ubrzanje mehanizma A – primjer 4

Proračunska modalna masa M [*]	61,53
Faktor udjela proračunske modalne mase e [*]	0,80
Spektralno ubrzanje α^*_0	0,70

Tablica 44. Vrijednosti zahtijevanih spektralnih ubrzanja i zadovoljenje uvjeta za mehanizam A – primjer 4

	UVJET	$\alpha^*_0 \ge \alpha^*_{0,\min}$
SLD	$\alpha^*_{0,\min} [m/s^2]$	
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZADOVOLJEN	
SLV	α* _{0,min} [m/s ²]	2,74
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZA	DOVOLJEN

Spektralno ubrzanje u programu 3 Muri iznosi 0,73 m/s² dok prema proračunu u Excelu dobiva se vrijednost 0,7 m/s². S obzirom da uvjeti nisu zadovoljeni, pojava prevrtanja na promatranoj geometriji je moguća već pri malim vrijednostima ubrzanja tla.

7.2. Mehanizam B1

Pretpostavljena su dva primjera mehanizma otkazivanja tipa B1 koja uključuju u prevrtanje pročelja i dio bočnog zida. Proračun drugog primjera proveden je kroz Excel kako bi se dobio uvid u rezultate dobivene u programu 3 Muri.

7.2.1. Primjer 1

Prvi primjer prevrtanja obuhvaća posljednja dva kata i lastavicu zabatnog zida uz uključenje dijela zida pročelja. Granice bloka, odnosno pukotina će se dogoditi uz oslabljenje zida.

Slika 85. Geometrija pretpostavljenog bloka mehanizma otkazivanja B1 primjer 1 (gore lijevo i u sredini), prikaz položaja zgloba (gore desno), položaj zida u konstrukciji (dolje)

Kota zida definirana je kotom stropa prvog kata koja iznosi 7,0 m.

ULAZNE VRIJEDNOSTI PARAMETARA				
Prvi period građevine T1	iod građevine T ₁ = 0,36 s			
Visinska kota zida Z	Z = 7,0 m			
Prvi vibracijski oblik Ψ	Ψ = 0,51			
REZULTATI PRORAČUNA				
Faktor aktivacije mehanizma α_0 0,074				
Granična stanja	SLV SLD			
Spektralno ubrzanje α^*_0	0,70	0,70		
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75 3,67			
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN NIJE ZADOVOLJEN			

Tablica 45. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja B1 – primjer 1

Zahtjev spektralnog ubrzanja za SLV ispunjen je 25 % dok je zahtjev za SLD ispunjen 19 %. S obzirom da su vrijednosti spektralnog ubrzanja nisu zadovoljavajuće, iako su zidovi povezani s zidovima okomitog smjera, nužno je osigurati bolju povezanost kako bi se pojava otkazivanja spriječila. Potrebno je obratiti pozornost na povezanost stropova sa zidovima.

7.2.2. Primjer 2

Pretpostavljeno je prevrtanje dijela pročelja koji obuhvaća posljednja dva kata i nadozid uz povlačenje dijela pročelja. Unutar bloka nalazi se šest prozora koja predstavljaju oslabljenje zidova.

Slika 86. Geometrija pretpostavljenog bloka mehanizma otkazivanja B1 primjer 2 (gore lijevo i u sredini), prikaz položaja zgloba (gore desno), položaj zida u konstrukciji (dolje)

Vanjski linijski zglob nalazi se, kao i u prethodnom primjeru istoga tipa, na razini stropa drugog kata.

Tablica 46. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja B1 – primjer 2

ULAZNE VRIJEDNOSTI PARAMETARA				
Prvi period građevine T1	T ₁ = 0,36 s			
Visinska kota zida Z	Z = 7	',0 m		
Prvi vibracijski oblik Ψ	Ψ = 0,51			
REZULTATI PRORAČUNA				
Faktor aktivacije mehanizma α_0 0,105				
Granična stanja	SLV SLD			
Spektralno ubrzanje α^*_0	0,96	0,96		
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75 3,67			
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN NIJE ZADOVOLJEN			

Blok ispunjava samo 35 % vrijednosti za SLV te 26 % za SLD. Postoji vjerojatnost pojave ovog tipa otkazivanja na pretpostavljenoj geometriji, potrebno je poduzeti mjere s ciljem sprječavanja prevrtanja.

Provjera mehanizma provedena u programiranoj radnoj knjižici Excela korištenoj u parametarskoj analiza. Težina dijela lastavice uzeta je u obzir preko opterećenja na klin. Kut nagiba klina pretpostavljen je s obzirom na geometriju klina te je izveden iz Autocad-a.

Proračun mehanizma otkazivanja tipa B1 - primjer 2					
GEOMETRIJA					
Kat		1		2	
α [°]		18			
si [m]		0,60			0,60
di [m]		0,45			0,45
d _{vi} [m]					
d oi [m]					
xgoi [m]		0,96			1,48
ygoi [m]		2,33			5,80
ygi [m]		1,75			2,05
h _{vi} [m]					
hi [m]		3,50			4,10
		DJELOVANJA NA BLOKOVE			
Kat		1		2	
Wi [kN]		264,6			309,96
W <i>o</i> [kN]		23,54			87,45
Psi [kN]		66,96			109,74
Pso [kN]					17,01
Ti [kN]					
F н <i>i</i> [k N]					
Fvi [kN]					
Рн [kN]					
		Kontrolna točka			Α
		Vlastita težina zidova [kNm]			172,4
		Vlastita težina klina [kNm]			152,3
Momonti stabilizaci	ie	Opterećenje podova na zid [kNm]			79,5
Momenti stabilizaci	je	Opterećenje podova na klin [kNm]			7,65
		Djelovanje luka ili svoda [kNm]			-
	Djelovanje zatega [kNm]		-		
		Inercija zidova [kNm]			2183,3
Momenti prevrtanj	a	Inercija klina [kNm]			562,3
		Inercija podova na zidu [kNm]			1068,4

Tablica 47. Proračun mehanizma otkazivanja za mehanizam B1 – primjer 2

	Inercija podova na klinu [kNm	129,28		
	Inercija luka ili svoda [kNm]	-		
	Statički potisak luka ili svoda	[kNm]	-	
	Inercija statičkog pojačanja [k	(Nm]	-	
	PODACI ZA IZRAČUN α₀			
Moment stal	bilizacije Ms [kNm]		411,88	
Moment pre	evrtanja Mp [kNm]		3943,32	
	0,104			
Proračunska	73,48			
Faktor udjela prora		0,84		
Spektralı	no ubrzanje α*		0,91	
	UVJET	α* ₀	≥α* _{0,min}	
SLD	$\alpha *_{0,min} [m/s^2]$		3,66	
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZADOVOLJEN			
SLV	$\alpha^*_{0,\min} [m/s^2]$			
$\alpha^*_0 \ge \alpha^*_{0,\min}$	UVJET NIJE ZA	DOVOLJEN		

Rezultati se poklapaju. Dobiveno odstupanje nastalo je zbog promatrane geometrije klina jer se u programskom paketu ne može očitati iznos kuta nagiba klina.

7.3. Mehanizam B2

Prikazana je geometrija pretpostavljenog bloka za mehanizam tipa B2 koji uključuje prevrtanja dva posljednja kata i lastavicu zabatnog zida uz uključenje oba bočna zida u mehanizam.

Slika 87. Geometrija pretpostavljenog bloka mehanizma otkazivanja B2 (gore), prikaz položaja zgloba (dolje lijevo), položaj zida u konstrukciji (dolje desno)

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	T ₁ = 0,36 s				
Visinska kota zida Z	Z = 7,0 m				
Prvi vibracijski oblik Ψ	Ψ = 0,51				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,0)87			
Granična stanja	SLV SLD				
Spektralno ubrzanje α^*_0	0,81	0,81			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75 3,67				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN			

Tablica 48. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja tipa B2

Pretpostavljeni blok za mehanizam otkazivanja tipa B2 zadovoljava 29% zahtjeva za SLV i 22% zahtjeva za SLD. Potrebno je osigurati bolje pridržanje zida osiguranjem bolje veze sa stropnom konstrukcijom.

7.4. Mehanizam C

Provedena su tri primjera mehanizma otkazivanja u kutu gdje se događa otkazivanje vrlo male geometrije blokova. Postojeća zgrada nije izvedena u nizu zgrada stoga postoji mogućnost nastanka mehanizma tipa C.

7.4.1. Primjer 1

Pretpostavljeno je otkazivanje u kutu zgrade koje uključuje blokove u obliku klina. Zglob je u pretpostavljen pod kutom od 45° pri čemu on više nije linijski kao u prethodnim primjerima, nego u obliku točke. Visinska kota predstavlja razinu posljednjeg kata koja se nalazi na visini od 10,5 m. Položaj zgloba i smjer prevrtanja bloka prikazani su na slici 88.

Slika 88. Geometrija pretpostavljenog bloka mehanizma otkazivanja C primjer 1 (gore lijevo i u sredini), prikaz položaja zgloba (gore desno), prikaz položaja zida u konstrukciji (dolje)

ULAZNE VRIJEDNOSTI PARAMETARA						
Prvi period građevine T ₁ T ₁ = 0,36 s						
Visinska kota zida Z	Z = 10	0,5 m				
Prvi vibracijski oblik Ψ	Ψ = 0,76					
REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	0,2	299				
Granična stanja	SLV SLD					
Spektralno ubrzanje α^*_0	2,36	2,36				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10	5,47				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Tablica 49. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja C – primjer 1

Prvi primjer otkazivanja u uglu ne zadovoljava zahtjeve SLV i SLD. Zahtjev SLV je ispunjen 56 % dok je zahtjev za SLD ispunjen 43 %. Potrebno je osigurati bolju vezu u uglu kako ne bi došlo do pojave ovog tipa otkazivanja.

7.4.2. Primjer 2

U nastavku je prikazano otkazivanje blokova na krajevima zida gdje su uključena dva kata i nadozid. Pukotina se javlja duž otvora te se blokovi prevrću oko zgloba u obliku točke pod 45° u odnosu na ravninu zida.

Slika 89. Geometrija pretpostavljenog bloka mehanizma otkazivanja C primjer 2 (gore lijevo i u sredini), prikaz položaja zgloba (gore desno), položaj u konstrukciji (dolje)

ULAZNE VRIJEDNOSTI PARAMETARA						
Prvi period građevine T ₁ T ₁ = 0,36 s						
Visinska kota zida Z	Z = 7	,0 m				
Prvi vibracijski oblik Ψ	Ψ = 0,51					
REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	0,1	.68				
Granična stanja SLV SLD						
Spektralno ubrzanje α^{*_0}	1,34	1,34				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75	3,67				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Tablica 50. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja C – primjer 2

Uvjet za zahtjev SLV je ispunjen 49 % dok je zahtjev za SLD ispunjen 36 %. Potrebno je osigurati poboljšanje s ciljem sprječavanja otkazivanja u kutu konstrukcije.

7.4.3. Primjer 3

Tip otkazivanja u primjeru 3 podrazumijeva blokove koji se protežu kroz cijelu visinu zgrade i obuhvaćaju sve katove zgrade. S obzirom da se točkasti zglob nalazi na koti tla, za proračun se uzima u obzir zahtjev postavljen ograničenjem tla.

Slika 90. Geometrija pretpostavljenog bloka mehanizma otkazivanja C primjer 3 (gore lijevo i u sredini), prikaz položaja zgloba (gore desno), položaj zida u konstrukciji (dolje)

			×			-		-
Fablica 51. Vri	jiednosti ulaznih	parametara i	proračun	mehanizma	otkazivania	a C – I	primier	÷3.
	Jeen						e	-

REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	0,099					
Granična stanja	SLV SLD					
Spektralno ubrzanje α^*_0	0,82	0,82				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	1,62	2,16				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Zahtjevi SLV i SLD nisu zadovoljeni. Blokovi ispunjavaju 51 % zahtjeva za SLV te 38 % zahtjeva za SLD. Velika je vjerojatnost da će se na konstrukciji pojaviti otkazivanje u kutu, stoga je od velike važnosti poduzeti mjere zaštite protiv pojavljivanja ovog tipa mehanizma.

7.5. Mehanizam D

Provedeno je otkazivanje dijela zida na dva posljednja kata bočnog istočnog zida uključujući nekoliko otvora prozora.

Slika 91. Geometrija pretpostavljenog bloka mehanizma otkazivanja D (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Tablica 52. Vrijednosti ulaznih pa	arametara i proračun	mehanizma otkazivanja D
------------------------------------	----------------------	-------------------------

ULAZNE VRIJEDNOSTI PARAMETARA						
Prvi period građevine T ₁ T ₁ = 0,36 s						
Visinska kota zida Z	Z = 7	',0 m				
Prvi vibracijski oblik Ψ	Ψ = 0,51					
REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	0,0	172				
Granična stanja SLV SLD						
Spektralno ubrzanje α^*_0	0,64	0,64				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75	3,67				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Zahtjevi za SLV i SLD nisu zadovoljeni. Blok ispunjava 23 % zahtjeva za SLV te 17 % zahtjeva za SLD. Nužno je poduzeti mjere protiv sprječavanja otkazivanja koje su vrlo slične mjerama u primjerima otkazivanja tipa A.

7.6. Mehanizam E

Provedene su tri provjere otkazivanja putem formiranja vertikalnog luka pri čemu je u dvije provjere blok oslonjen na tlo, dok se u trećoj provjeri blok rotira na određenoj visinskoj koti iznad otvora. Pretpostavlja se pojava pukotina i odvajanje zida na mjestima oslabljenja na području oko otvora u zidu.

7.6.1. Primjer 1

Pretpostavljeno je formiranje vertikalne trake duž cijele konstrukcije na mjestu oslabljenja unutar bloka. Dolazi do rotacije oko zgloba na koti tla te prevrtanja vertikalne tlake pročelja.

Slika 92. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa E primjer 1 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Tablica 53. V	rijednosti ulaznił	n parametara	i proračun	mehanizma	otkazivanja	E – primjer 1
	5				,	

REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	tor aktivacije mehanizma α_0 0,033					
Granična stanja	SLV SLD					
Spektralno ubrzanje α^*_0	0,31	0,31				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	1,62	2,16				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Rezultati proračuna pokazuju da zahtjevi nisu ispunjeni. Blok ispunjava zahtjev za SLV 19 %, dok je zahtjev za SLD ispunjen 14 %. S obzirom da se na sredini bloka nalazi uzdužni nosivi zid, pretpostavlja se da će ga on pridržati. Provjera pretpostavlja odcjepljenje nosivih konstruktivnih zidova.

Unutarnji nosivi zidovi, ukoliko su pravilno povezani s vanjskim zidom, imaju veliku ulogu u sprječavanju aktivacije ovog mehanizma.

7.6.2. Primjer 2

Na temelju pretpostavke iz prethodnog primjera, provedena je provjera otkazivanja zida gdje na blok ne utječe nosivi unutarnji zid. Pretpostavlja se formiranje vertikalne trake koja se rotira oko zgloba na koti terena.

Slika 93. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa E primjer 2 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	a α ₀ 0,038					
Granična stanja	SLV SLD					
Spektralno ubrzanje α^*_0	0,37	0,37				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	1,62	2,16				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Tablica 54.	Vriiednosti	ulaznih pa	rametara i	proračun	mehanizma	otkazivania	E – primier 2
	Viljeanosti	alazinii pa	i unite tur u i	prorucuit	menunzina	otkazivanja	

Rezultati proračuna vrlo su slični s rezultatima prethodnog primjera što upućuje da je potrebno provesti mjere za ojačanje kako se ovaj tip mehanizma ne bi razvio.

7.6.3. Primjer 3

Primjer 3 pretpostavlja prevrtanje vertikalnog traka pročelja iznad otvora na visini od 2,2 m. Svi zidovi pročelja oslabljeni su parapetima visine 1,0 m i širine duljine bloka.

Slika 94. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa E primjer 3 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Vrijednosti ulaznih parametara za proračun dane su u tablici 56.

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = 0$),36 s			
Visinska kota zida Z	Z = 2	2,2 m			
Prvi vibracijski oblik Ψ	Ψ = 0,16				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,059				
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	0,60	0,60			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	0,86	1,15			
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN			

Tablica 55. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja E – primjer 3

Uvjet za SLV je zadovoljen 70 %, a uvjet za SLD je zadovoljen 52 %.

7.7. Mehanizam F

U nastavku su ispitani primjeri otkazivanja putem formiranja horizontalnog luka. Potrebno je postaviti uvjete ograničenja tako da se vanjski zglob (zelena linija) postavlja na donjem rubu označenog bloka, nakon toga se definira unutarnji zglob (plava linija) koji se nalazi između dva bloka te vanjski ležaj (žuta linija) koji dopušta samo vertikalni pomak, ali ne i horizontalni te zadržava blok na vrhu zida. Promatrano je 12 primjera ovog tipa otkazivanja pri kojem su u obzir uzete razne geometrije blokova. Potrebno je dodatno postaviti

opterećenje težine zida i stropne konstrukcije ukoliko se iznad bloka nalazi zidani element te ukoliko zid prihvaća opterećenje stropne konstrukcije jer 3 Muri to ne računa automatski.

7.7.1. Primjer 1

Pretpostavljeno je formiranje dva bloka slične geometrije na pročelju zgrade. Visina trećeg kata iznosi 3,3 m, dok je visina drugog kata 3,5 m. Osim toga, dužina bloka kao i širina su istog iznosa. Opterećenje vlastite težine nadozida nije uzeto u obzir. Točka rotacije, u ovom tipu otkazivanja, promatra se na udaljenosti do unutarnjeg zgloba što je u ovom slučaju na razini trećeg kata.

Slika 95. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 1 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = C$),36 s			
Visinska kota zida Z	Z = 10),5 m			
Prvi vibracijski oblik Ψ	Ψ = 0,76				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,3	56			
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	3,93	3,93			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10	5,47			
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN			

Tablica 56. Vrijednosti ulaznih	parametara i p	roračun mehanizma	otkazivania F –	- primier 1
rubiica 50. vrijeanosti alazimi	purumetururp	nonucum menumzinu	otkuzivarija i	prinijer ±

Blok zadovoljava 96 % zahtjeva za SLV i 72 % zahtjeva za SLD. S obzirom se je zahtjev gotovo ispunjen te da se vertikalno opterećenje krovne konstrukcije ne uzima u obzir, pretpostavljeno je da će postavljanjem opterećenja od vlastite težine nadozida uvjet biti zadovoljen.

Vlastita težina nadozida visine 0,8 m, širine 7 m i debljine 0,6 m iznosi 10,08 kN/m'. Postavljanjem proračunatog linijskog opterećenja na vrh linije bloka, dobiva se zahtijevano ubrzanje spektralno iznosa 5,17 m/s² koji ispunjava uvjet za SLV. Faktor aktivacije mehanizma tada iznosi 0,417.

7.7.2. Primjer 2

Opisan je primjer u kojem prvi blok obuhvaća geometriju prizemlja i prvog kata zida pročelja, dok drugi blok obuhvaća drugi kat. Vanjski zglob se nalazi na tlu, dakle uvjet za ograničenja tla je mjerodavan. U obzir nije uzeto opterećenje od vlastite težine zida iznad bloka.

Slika 96. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 2 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0 0,172						
Granična stanja	SLV	SLD				
Spektralno ubrzanje α^*_0	1,65	1,65				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	1,62	2,16				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	NIJE ZADOVOLJEN				

Tablica 57. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 2

Uvjet za zahtjev SLV je zadovoljen dok uvjet SLD nije zadovoljen te je ispunjen 76 %. Opterećenje od zidova iznad bloka dodatno bi opteretio zid i time utjecalo na veću vrijednost faktora aktivacije mehanizma i spektralnog ubrzanja te moguće zadovoljenje uvjeta.

7.7.3. Primjer 3

Prethodni mehanizam ne uzima u obzir povezanost unutarnjeg nosivog zida sa zidom pročelja, stoga je proveden proračun za pola zida pročelja tako da unutarnji nosivi zid nema utjecaja na mehanizam. Zadano je opterećenje vlastite težine zidova iznad bloka.

Slika 97. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 3 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Opterećenje je zidano linijski duž gornje linije bloka. Podaci o opterećenju nalaze se na slici 98.

k	Koncentrirano Distribuirano Veza šipki za povezivanje									
		pterećenji	Čvor	Zid	dxi [m]	dxj [m]	dy [m]	dz [m]	Opterećenja kao masa	qz [kN/m]
	•	1	8	4	0	4,8	0	0		-63,15

Slika 98. Opterećenje u mehanizmu otkazivanja tipa F primjer 3

Tablica 58. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 3

REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0 0,338					
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	4,89	4,89			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	1,62	2,16			
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN			

Zahtijevani uvjeti za SLV i SLD su ispunjeni.

7.7.4. Primjer 4

Primjer 4 sadrži blokove formirane na zabatnom zidu. Pretpostavka je da su blokovi zabatnih zidova učinkovito povezani s bočnim zidovima, dok su sa stropom povezani samo na jednoj razini kata.

Slika 99. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 4 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Točka rotacije je kota stropa na kojoj zidovi nisu povezani, ona se nalazi na stropu drugog kata i iznosi 10,5 m.

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = C$),36 s			
Visinska kota zida Z	Z = 10),5 m			
Prvi vibracijski oblik Ψ Ψ = 0,76					
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,342				
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^{*_0}	3,25	3,25			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN			

Tablica 59. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 4

Uvjet za SLV je ispunjen 79 % dok je zahtjev za SLD ispunjen 59 %. Blok pridržava uzdužni nosivi zid unutar konstrukcije, ukoliko je spoj vanjskog i unutarnjeg okomitog zidova neprikladan, proračun mehanizma će biti mjerodavan. Proveden je proračun koji ne uključuje uzdužni nosivi zid.

7.7.5. Primjer 5

Na temelju zaključka iz prethodnog primjera proveden je proračun na polovici zabatnog zida te je u obzir uzeto opterećenje od zida iznad bloka. Važno je napomenuti da unutarnji uzdužni zid nema utjecaja na ponašanje bloka.

Slika 100. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 5 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Postavljeno je opterećenje koje uključuje vlastitu težinu lastavice zabatnog zida iznad bloka.

ł	Koncentrirano Distribuirano Veza šipki za povezivanje									
		pterećenji	Čvor	Zid	dxi [m]	dxj [m]	dy [m]	dz [m]	Opterećenja kao masa	qz [kN/m]
	•	1	6	4	0	4,8	0	0		-21,95

Slika 101. Opterećenje u mehanizmu otkazivanja tipa F primjer 5

Tablica 60. Vrijednosti ulazni	h parametara i proračur	n mehanizma otkazivar	ija F – primjer 5
--------------------------------	-------------------------	-----------------------	-------------------

ULAZNE VRIJEDNOSTI PARAMETARA				
Prvi period građevine T ₁	$T_1=C$),36 s		
Visinska kota zida Z	Z = 10),5 m		
Prvi vibracijski oblik Ψ	Ψ = 0,76			
REZULTATI PRORAČUNA				
Faktor aktivacije mehanizma α_0	0,4	48		
Granična stanja	SLV	SLD		
Spektralno ubrzanje α^*_0	5,72	5,72		
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,10	5,47		
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN		

Zahtjevi su zadovoljeni.

7.7.6. Primjer 6

U primjeru 6 pretpostavlja se stvaranje unutarnjeg zgloba tako da nije cijela geometrija kata uključena u mehanizam. Smatra se da su rubovi po vertikali zida dobro povezani s ostatkom konstrukcije te da se pukotina događa dalje od spoja zidova u kutu.

Slika 102. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 6 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = 0$),36 s			
Visinska kota zida Z	Z = 7	',0 m			
Prvi vibracijski oblik Ψ Ψ = 0,51					
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,366				
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	3,58	3,58			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$ 2,75					
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	NIJE ZADOVOLJEN			

Tablica 61. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 6

Uvjet za SLV je zadovoljen dok zahtjev za ispunjenje SLD nije zadovoljen, ali je vrlo blizu.

7.7.7. Primjer 7

U primjeru 7 pretpostavlja se otkazivanja dijela pročelja tako da unutarnji nosivi zid nije uključen u prevrtanje. Pukotina se, kao i u prethodnom slučaju, ne događa na mjestu spajanja okomitih zidova. Razvija se dijagonalna pukotina sve do zajedničkog mjesta ograničenja na razini stropne konstrukcije.

Slika 103. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 7 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Konce	Koncentrirano Distribuirano Veza šipki za povezivanje								
	pterećenj	Čvor	Zid	dxi [m]	dxj [m]	dy [m]	dz [m]	Opterećenja kao masa	qz [kN/m]
•	1	6	4	٥	4,8	0	0		-63,53

Slika 104. Opterećenje u mehanizmu otkazivanja tipa F primjer 7

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T ₁	T ₁ = 0,36 s				
Visinska kota zida Z	Z = 7,0 m				
Prvi vibracijski oblik Ψ	Ψ = 0,51				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,914				

SLV

ZADOVOLJEN

17,45

2,75

Tablica 62. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 7

Uvi	ieti	72	siv	iS	חו	su	zado	vol	ieni	
0.0	JCU	20		13	LD	Su	2000	voi	jem	•

Spektralno ubrzanje α^*_0

Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$

Granična stanja

Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$

115

SLD

ZADOVOLJEN

17,45

3,67

7.7.8. Primjer 8

Pretpostavlja se pojava horizontalnog zgloba unutar trećeg kata zida pročelja. Zidovi su povezani sa stropnom konstrukcijom, ali nisu povezani s zidovima iz okomitog smjera. Unutarnji zglob oko kojeg se događa rotacija se tada pojavljuje na sredini kata pri čemu dolazi do izbacivanja blokova prema van.

Slika 105. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 8 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

ULAZNE VRIJEDNOSTI PARAMETARA						
Prvi period građevine T ₁ $T_1 = 0,36$ s						
Visinska kota zida Z	Z = 12	,15 m				
Prvi vibracijski oblik Ψ	Ψ = 0,88					
REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	0,7	'55				
Granična stanja	SLV	SLD				
Spektralno ubrzanje α^*_0	7,25	7,25				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,75 6,					
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN				

Tablica 63. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 8

Zahtjevi za SLV i SLD su zadovoljeni što upućuje da se ovakav tip otkazivanja na ovom mjestu neće dogoditi. Proračun je proveden duž cijelog kata s tim da u obzir nije uključen unutarnji nosivi zid koji ga pridržava, niti opterećenja od vlastite težine lastavice zabatnog zida. Navedene pojedinosti bi pozitivno djelovale na otpornost računskom potresu.

7.7.9. Primjer 9

Proveden je proračun dijela zabatnog zida tako da blok nije povezan s unutarnjim uzdužnim zidom. Također, postavljeno je opterećenje od zida iznad bloka.

Slika 106. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 9 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Konce	entrirano [Distribuirano	Veza šipk	i za povezivanje					
	pterećenj	Čvor	Zid	dxi [m]	dxj [m]	dy [m]	dz [m]	Opterećenja kao masa	qz [kN/m]
.1	1	3	4	0	4,8	0	0		-21,95

Slika 107. Zadano opterećenje na blok mehanizma otkazivanja tipa F primjer 9

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	T ₁ = 0,36 s				
Visinska kota zida Z	Z = 12,15 m				
Prvi vibracijski oblik Ψ	Ψ = 0,88				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	1,3	15			
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	22,12	22,12			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,75 6,3				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN			

Tablica 64. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 9

Zahtjevi za SLV i SLD su zadovoljeni što upućuje da je mehanizam otkazivanja tipa F siguran na otkazivanje izvan ravnine na ovom mjestu .

7.7.10. Primjer 10

Slično prethodnom primjeru, pretpostavlja se otkazivanje formiranjem vertikalnog luka unutar malog dijela zida trećeg kata na pročelju zgrade. Dio zida obuhvaća tri otvora prozora u zgradi. Zidovi su dobro povezani sa stropnom konstrukcijom na jednoj razini.

Slika 108. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 10 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = 0$),36 s			
Visinska kota zida Z	Z = 12	,35 m			
Prvi vibracijski oblik Ψ	Ψ = 0,89				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,7	'12			
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	6,69	6,69			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,81 6,4				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN			

Tablica 65. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 10

Zahtijevani uvjeti su zadovoljeni te ne postoji vjerojatnost pojavljivanja otkazivanja ovog tipa na opisanoj geometriji konstrukcije.

7.7.11. Primjer 11

Primjer 11 pretpostavlja otkazivanje zida pročelja na trećem katu pri čemu dolazi do rotacije na sredini kata.

Slika 109. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 11 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Na uzdužnom dijelu zida potrebno je zadati vertikalno opterećenje težine zida iznad bloka i opterećenje od stropne konstrukcije. Moguće je zadati opterećenje krovne konstrukcije, ali nije nužno jer ukoliko se ona ne uzme u obzir proračun je na strani sigurnosti. Na blok djeluje težina zida iznad (umanjena za težinu otvora) iznosa 43,02 kN/m' i težina od stropne konstrukcije dobivena množenjem ukupnog opterećenja 3,6 kN/m2 i polovice raspona na kojem djeluje opterećenje (6,2/2) te se u konačnici dobiva opterećenje iznosa 54,18 kN/m'.

K	once	ntrirano D	istribuirano	Veza šipl	i za povezivanje					
		pterećenji	Čvor	Zid	dxi [m]	dxj [m]	dy [m]	dz [m]	Opterećenja kao masa	qz [kN/m]
	•	1	3	5	0	7	0	0		-54, 18

Slika 110. Zadano opterećenje na blok mehanizma otkazivanja tipa F primjer 11

Tablica 66. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 11

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = 0$),36 s			
Visinska kota zida Z	Z = 12	,35 m			
Prvi vibracijski oblik Ψ	Ψ = 0,89				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	2,8	52			
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	133,96	133,96			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	4,81 6,				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN			

Uvjeti za SLV i SLD su zadovoljeni.

7.7.12. Primjer 12

Primjer 12 obuhvaća prvi i drugi kat pročelja zgrade. Rotacija se događa oko kote stropa prvog kata.

Slika 111. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa F primjer 12 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Postupak određivanja opterećenja je isti kao i u prethodnom primjeru. Na blok djeluje težina zida iznad bloka koja je umanjena za težinu dva otvora te iznosi 41,58 kN/m' i težina od stropne konstrukcije koja iznosi 11,6 kN/m'. Ukupno opterećenje koje djeluje na vrhu bloka iznosi 53,18 kN/m'.

Konce	entrirano [)istribuirano	Veza šipk	ki za povezivanje					
	pterećenj	Čvor	Zid	dxi [m]	dxj [m]	dy [m]	dz [m]	Opterećenja kao masa	qz [kN/m]
1	1	6	5	0	4	0	0		-53,18

Slika 112. Zadano opterećenje na blok mehanizma otkazivanja tipa F primjer 12

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = C$),36 s			
Visinska kota zida Z	Z = 7	,0 m			
Prvi vibracijski oblik Ψ	Ψ = 0,51				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,6	58			
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	12,32	12,32			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	2,75 3,				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	ZADOVOLJEN	ZADOVOLJEN			

Tablica 67. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja F – primjer 12

Uvjeti za SLV i SLD su zadovoljeni.

7.8. Mehanizam G

Zbog nemogućnosti označavanja vertikalnog linijskog zgloba, mehanizam tipa G nije moguće kreirati u programskom paketu.

7.9. Mehanizam L

Prevrtanje lastavice zabatnog zida odnosno zidova u pokrovlju jedan je od čestih tipova otkazivanja na konstrukciji. Pretpostavljena su dva primjera gdje prvi primjer obuhvaća prevrtanje nadozida, dok drugi primjer ne uključuje nadozid.

7.9.1. Primjer 1

U prvom primjeru uz prevrtanje lastavice zabatnog zida uključeno je i prevrtanje nadozida visine 0,8 m. Točka rotacije oko koje će doći do prevrtanja nalazi se na visini zadnjeg stropa.

Slika 113. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa L primjer 1 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

ULAZNE VRIJEDNOSTI PARAMETARA						
Prvi period građevine T ₁ T ₁ = 0,36 s						
Visinska kota zida Z	Z = 13,8 m					
Prvi vibracijski oblik Ψ	Ψ = 1,0					
REZULTATI PRORAČUNA						
Faktor aktivacije mehanizma α_0	0,2	241				
Granična stanja	SLV	SLD				
Spektralno ubrzanje α^*_0	1,92	1,92				
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	5,40 7					
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NIJE ZADOVOLJEN	NIJE ZADOVOLJEN				

Tablica 68. Vrijednosti ulaznih parametara i proračun mehanizma otkazivanja L – primjer 1

Zahtjev za SLV ispunjen je 36 %, dok je zahtjev za SLD ispunjen 27 %. Zabatni zid u potkrovlju nije povezan s krovištem te je potrebno poduzeti mjere protiv prevrtanja.

7.9.2. Primjer 2

U nastavku je opisan primjer prevrtanja lastavice zabatnog zida bez uključivanja nadozida.

Slika 114. Geometrija pretpostavljenog bloka mehanizma otkazivanja tipa L primjer 2 (lijevo), prikaz položaja zgloba (u sredini), položaj zida u konstrukciji (desno)

Tablica 69. Vrijednosti ulaznih parametara te proračun mehanizma otkazivanja L – primjer 2

ULAZNE VRIJEDNOSTI PARAMETARA					
Prvi period građevine T1	$T_1 = C$),36 s			
Visinska kota zida Z	Z = 14	1,6 m			
Prvi vibracijski oblik Ψ	Ψ = 1,06				
REZULTATI PRORAČUNA					
Faktor aktivacije mehanizma α_0	0,3	23			
Granična stanja	SLV	SLD			
Spektralno ubrzanje α^*_0	2,34	2,34			
Zahtjevano spektralno ubrzanje $\alpha^*_{0,min}$	5,72 7,				
Uvjet $\alpha^*_0 \ge \alpha^*_{0,\min}$	NE ZADOVOLJEN	NE ZADOVOLJEN			

Zahtjev za SLV ispunjen je 41 %, dok je zahtjev za SLD ispunjen 31 %. Potrebno je osigurati zid lastavice tako da bude povezan s ostatkom konstrukcije. U 3. poglavlju opisane su mjere osiguranja prema Urgentnom programu potresne obnove [11].

7.10. Rekapitulacija mehanizama otkazivanja

Prikazani su rezultati proračuna provedeni za lokalne mehanizme otkazivanja zidova postojeće zgrade u Rijeci s ciljem utvrđivanja kritičnih mehanizama. Uvjeti zadovoljenja prikazani su za zahtjev graničnog stanja SLV. Mehanizmi su prikazani prema mogućnosti nastanka tako da je najkritičniji mehanizam na prvom mjestu.

TIP MEHANIZMA (BROJ PRIMJERA)	PRIKAZ MEHANIZMA	α0	UVJET $\alpha^*_0 \ge \alpha^*_{0,min}$
TIP E (PRIMJER 1)		0,033	NIJE ZADOVOLJEN
TIP E (PRIMJER 2)		0,038	NIJE ZADOVOLJEN
TIP E (PRIMJER 3)		0,059	NIJE ZADOVOLJEN
TIP D		0,072	NIJE ZADOVOLJEN
TIP B1 (PRIMJER 1)		0,074	NIJE ZADOVOLJEN

Tablica 70. Rekapitulacija mehanizama otkazivanja zidova izvan ravnine

TIP A (PRIMJER 4)	0,077	NIJE ZADOVOLJEN
TIP B2	0,087	NIJE ZADOVOLJEN
TIP C (PRIMJER 3)	0,099	NIJE ZADOVOLJEN
TIP A (PRIMJER 1)	0,105	NIJE ZADOVOLJEN
TIP B1 (PRIMJER 2)	0,105	NIJE ZADOVOLJEN
TIP A (PRIMJER 2)	0,146	NIJE ZADOVOLJEN

TIP A (PRIMJER 3)	0,146	NIJE ZADOVOLJEN
TIP C (PRIMJER 2)	0,168	NIJE ZADOVOLJEN
TIP F (PRIMJER 2)	0,172	ZADOVOLJEN
TIP L (PRIMJER 1)	0,241	NIJE ZADOVOLJEN
TIP C (PRIMJER 1)	0,299	NIJE ZADOVOLJEN
TIP L (PRIMJER 2)	0,323	NIJE ZADOVOLJEN

TIP F (PRIMJER 3)	0,338	ZADOVOLJEN
TIP F (PRIMJER 4)	0,342	NIJE ZADOVOLJEN
TIP F (PRIMJER 1)	0,356	NIJE ZADOVOLJEN
TIP F (PRIMJER 6)	0,366	ZADOVOLJEN
TIP F (PRIMJER 5)	0,480	ZADOVOLJEN
TIP F (PRIMJER 12)	0,658	ZADOVOLJEN

_

TIP F (PRIMJER 10)	0,712	ZADOVOLJEN
TIP F (PRIMJER 8)	0,755	ZADOVOLJEN
TIP F (PRIMJER 7)	0,914	ZADOVOLJEN
TIP F (PRIMJER 9)	1,315	ZADOVOLJEN
TIP F (PRIMJER 11)	2,852	ZADOVOLJEN

Na postojećoj konstrukciji je proveden veliki broj mehanizama različitih geometrija blokova i uvjeta ograničenja. Pretpostavlja se da ne postoji prikladna veza između zidova i stropne konstrukcije te između unutarnjih i vanjskih nosivih zidova.

Zbog postojanja središnjeg uzdužnog zida u zgradi i uslijed pretpostavke da je dobro povezan sa zabatnim zidom, neki se mehanizmi ne bi aktivirali (poput B1-1, B2, F-2, F-4, A-1), ali su svejedno ispitani kako bi se dobila šira slika o ponašanju ovakvih geometrija.
8. ZAKLJUČAK

Otkazivanje zidova uslijed potresnog opterećenja može biti u ravnini ili izvan ravnine. Kada se horizontalne sile pojavljuju u smjeru okomitom na smjer ravnine zida može se pojaviti otkazivanje zidova izvan ravnine. Koliko će zgrada biti oštećena ovisi o pravilnosti i simetričnosti zgradi te o dobrim vezama između zidova odnosno obliku kutije koji je poželjan. Važnu ulogu ima broj i veličina otvora u zidovima. Otvori oslabljuju zidove te predstavljaju mjesta "otvaranja" pukotina. Potrebno je da zgrada ima dovoljnu horizontalnu krutost u oba smjera koja je po visini ujednačena te dobro povezana s ostatkom konstrukcije.

Proračun lokalnih mehanizama otkazivanja proveden je na dva načina – pomoću programa za tablično računanje Excel i proračunom pomoću programskog paketa za proračun zidanih konstrukcija 3 Muri. Prikazan je primjer aktivacije mehanizama otkazivanja tipa A, B1 i G gdje je detaljno objašnjena parametarska analiza dana u teorijskom pregledu. Provedeno je nekoliko slučajeva dobivanja faktora aktivacije gdje je zaključeno da na faktor aktivacije veliku ulogu ima vitkost čijim se povećanjem smanjuje vrijednost faktora aktivacije što rezultira aktivacijom mehanizma. Osim vitkosti, bitan čimbenik ima geometrija zida kao i odnos debljine zida te prisutnost zatega. Mala vrijednost sile u zatezi može povoljno djelovati na mehanizam te osigurati pridržanje zida.

Pomoću programskog paketa 3 Muri provedena je analiza postojeće stambene zgrade u Rijeci. Na temelju provedenih analiza zaključeno je da programski paket 3 Muri u obzir uzima vlastitu težinu zidnih elemenata te opterećenje od stropne konstrukcije neposredno iznad bloka. Ukoliko se iznad bloka nalaze etaže sa stropnim konstrukcijama, program ih neće uzeti u obzir nego je vlastitu težinu blokova i opterećenje stropne konstrukcije potrebno dodatno zadati u obliku opterećenja. U proračunu zida pročelja nije uzet u obzir utjecaj uzdužnog unutarnjeg nosivog zida koji je spojen s vanjskim nosivim zidom. Pretpostavka je da će unutarnji zid pridržavati zid pročelja od prevrtanja. S obzirom da program ne uzima u obzir povezanost s unutarnjim nosivim zidovima, može se zaključiti da se parametri koji utječu na proračun poput geometrije i iznosa sila mogu lako definirati te da se vrlo jednostavnim proračunom faktor aktivacije može proračunati "na ruke" ili korištenjem dijagrama koji su prikazani u poglavlju 4.

Provedbom analize lokalnih mehanizama otkazivanja vidljivo je da većina mehanizama ne zadovoljava proračun te da je potrebno provesti mjere ojačanja. Ako zidovi nisu prikladno povezani, pretpostavlja se da apsorpcija horizontalnih sila nije jednaka. Kako bi se spriječilo pojavljivanje određenog tipa mehanizma, potrebno je djelovati na uzroke koji ga izazivaju.

Osiguravanjem bolje povezanosti pročelja s međukatnom konstrukcijom i bočnim zidovima smanjit će se vjerojatnost pojave mehanizma tipa A. Veliki broj nearmiranih zidanih zgrada ima slabe spojeve između zidova pročelja. Bolja povezanost susjednih zidova dobiva se postavljanjem kutnog kamenja, odnosno postavljanjem čeličnih ploča na spoju dva zida. Osim pojačanja zidova potrebno je izvesti polu ili krute horizontalne dijafragme te osigurati njihovu povezanost sa zidovima. Osiguravanjem dovoljno kvalitetne i pouzdane veze zida i stropne konstrukcije mehanizam tipa B se neće razviti. Povezanost pročelja i stropne konstrukcije može se ostvariti postavljanjem čeličnih zatega u razini stropne konstrukcije. Zatege se trebaju protezati preko cijelog raspona te se na krajevima pridržavati pločom ili križnim elementom [3].

Vrlo bitan čimbenik koji negativno utječe na mehanizam tipa C je kvaliteta ziđa. Problem loše kvalitete materijala moguće je učinkovito riješiti injektiranjem ziđa ili dodavanjem dodatnog sloja na zid. Jedna od metoda je dodavanje sloja armiranog betona, odnosno torkreta minimalne debljine 5 cm. Najprije se postavlja armaturna mreža koju je potrebno učinkovito povezati sa zidom uz pomoć L-kuka te se na nju nanosi torkret. Torkretiranjem je moguće povećati nosivost za do 50 % u odnosu na nosivost samog ziđa [3]. Novije metode se očituju postavljanjem tankog sloja žbuke koji u sebi sadrži vlakna npr. TRM (tekstilom armirani mortovi). Za teže oštećene zidove sanacija se rješava prezidavanjem [3]. Ovaj problem u novim građevinama riješen je uporabom armiranobetonskih serklaža koji konstrukciju povezuju u cijelinu. Mehanizam otkazivanja tipa D učinkovito se može riješiti primjenom spomenutih načina povezivanja pročelja s bočnim zidom te poboljšanjem loše kvalitete materijala. Za sanaciju E tipa otkazivanja preporuka je provesti pojačanja veznih

greda i time povećati njihovu duktilnost uz korištenje FRP tkanine, ugradnjom spiralnih sidara ili injektiranjem pukotina [3]. Većina mehanizama tipa F je zadovoljila proračun što dokazuje da mjere ojačanja nisu potrebne za navedeni tip otkazivanja. Otkazivanje tipa L odnosno prevrtanje lastavice zabatnog zida moguće je riješiti uporabom armiranobetonskih serklaža s krutom horizontalnom dijafragmom.

Parametarskom analizom je utvrđen utjecaj zatega koje značajno povećavaju stabilnost konstrukcije. Na provedenim primjerima sa zategama dobiveni su značajno veći iznosi faktora aktivacije i spektralnog ubrzanja.

Uglavnom za analizu mehanizama otkazivanja osnovni parametar je vanjska geometrija zgrade pod pretpostavkom da ne postoji prikladna veza elemenata. Unutarnji tanki pregradni zidovi ne utječu na proračun kao ni mehaničke karakteristike materijala. Najbitnija stavka je odabrati oblik blokova i prikladni mehanizam otkazivanja, za što je ipak potrebno inženjersko iskustvo. Osim navedenog, bitna je procjena veze između zidova te zidova i stropne konstrukcije.

Nužno je uzeti u obzir povezanost promatranog zida s ostalim zidovima te utjecaj trenja između kamenih blokova na spoju. Program 3 Muri još ne nudi tu mogućnost u proračunu te promatra blokove kao zasebne dijelove bez utjecaja ostatka konstrukcije.

9. LITERATURA

[1] Repertorio dei meccanismi di danno, delle tecniche di intervento e dei relativi costi negli edifici in muratura, Sisma Marche 1997., Regione Marche, 2007.

[2] D. D'Dayala, E. Speranza, An Integrated Procedure for the Assessment of Seismic Vulnerability of Historic Buildings, 12th European Conference on Earthquake Engineering Paper 561, 2002.

[3] Uroš M., Todorić M., Crnogorac M., Atalić J., Šavor Novak M., Lakušić S.: Potresno inženjerstvo – Obnova zidanih zgrada, Građevinski fakultet Sveučilišta u Zagrebu, Zagreb 2021.

[4] Markušić S., Stanko D., Penava D., Ivančić I., Bjelotomić Orušlić O., Korbar T., Sarhosis V.

: Destructive M6.2 Petrinja Earthquake Croatia) in 2020—Preliminary Multidisciplinary, https://www.mdpi.com/2072-4292/13/6/1095, pristup 15.7.2023.

[5] Objavljen Program cjelovite obnove kulturno-povijesne cjeline Grada Petrinje nakon potresa,<u>https://min-kulture.gov.hr/vijesti-8/objavljen-program-cjelovite-obnove-</u>

kulturno-povijesne-cjeline-grada-petrinje-nakon-potresa-2020/21590, pristup 8.7.2023.

[6] Večernji list – Galerija: Potres napravio veliku štetu u Petrinji, Sisku i okolnim mjestima, https://www.vecernji.hr/galleries/gallery-452467/?page=57, pristup 8.7.2023.

[7] Radnić J., Grgić N., Buzov A., Banović I., Smilović Zulim M., Baloević G., Sunara M.: Mw 6.4 Petrinja earthquake in Croatia: Main earthquake parameters, impact on buildings and recommendation for their structural strengthening, <u>http://www.casopis-gradjevinar.hr/assets/Uploads/JCE-73-2021-11-3-3243-EN.pdf</u>, pristup 8.7.2023.

[8] Držaj I., Potresi u Petrinji 28. i 29. prosinca 2020., <u>https://zagrebmojgrad.hr/petrinja-potres/</u>, pristup 8.7.2023.

[9] Večernji list – Galerija: Potres napravio veliku štetu u Petrinji, Sisku i okolnim mjestima, https://www.vecernji.hr/galleries/gallery-452467/?page=14, pristup 8.7.2023.

[10] Giordano A., Pixabay, <u>https://pixabay.com/de/users/angelo_giordano-753934/</u>, pristup 16.7.2023.

[11] Priručnik: Urgentni program potresne obnove – UPPO, Građevinski fakultet Sveučilišta u Zagrebu i Hrvatska komora inženjera građevinarstva, Zagreb, 2020. [12] Prijava oštećenja i šteta uzrokovanih razornim petrinjskim potresima, <u>https://hr-nekretnine.hr/prijava-ostecenja-i-steta-uzrokovanih-razornim-petrinjskim-potresima/</u>, pristup 15.7.2023.

[13] Tomažević M., Earthquake-Resistant Design of Masonry Buildings (Series on Innovations in Structures and Construction, Vol 1), Imperial College Press, 1999.

[14] Brzev S.: Seizmička nosivost i ojačanje konstrukcija zgrada od nearmirane

zidarije,<u>https://www.hcpi.hr/sites/default/files/inlinefiles/Svetlana%20Brzev%20Lecture</u> <u>%2022.10.2020..pdf</u>, pristup 16.7.2023.

[15] Kirchgaessner S.: Italy earthquakes rattle buildings and residents two months afterdisaster,https://www.theguardian.com/world/2016/oct/27/italy-earthquakes-aftershocks-residents, pristup 16.7.2023.

[16] D'Ambra C.: Vulnerabilità e miglioramento sismico di edifici in aggregato: il caso studio di piazza della prefettura a l'Aquila, Napoli, 2011.

[17] NTC 2018 – Circolare 21, 11-2-2019, Ministero delle infrastructure e dei transporti, Roma. Italia.

[18] Državni arhiv u Rijeci, <u>https://dar.topoteka.net/</u>, pristup 17.8.2023.

[19] HRN EN 1998-1:2011. Eurokod 8: Projektiranje potresne otpornosti konstrukcija - 1.

dio: Opća pravila, potresna djelovanja i pravila za zgrade (EN 1998-1:2004 + AC:2009)

[20] 3 Muri User Manual 12.6.9, S.T.A. DATA, Torino.

[21] M., Uranjek, R., Žarnić, V., Bokan-Bosiljkov, V. Bosiljkov: Seizmička otpornost zidanih kamenih građevina i utjecaj injektiranja; Građevinar 8 (2014)

[22] HRN EN 1998-3. Eurokod 8: Projektiranje potresne otpornosti konstrukcija – 3. dio:Ocjenjivanje i obnova zgrada, Hrvatski zavod za norme, Zagreb, 2011.

[23] Circolare 2 febbraio 2009, n.617: Istruzioni per l'applicazione delle "Norme techniche per le costuzioni" di cui al D.M. 14 gennaio 2008, Consiglio superiore dei Lavori Pubblici.

10.NACRTI

1.	Tlocrt prizemlja (M 1:100)	1/5
2.	Tlocrt 1. kata (M 1:100)	2/5
3.	Tlocrt 2. kata (M 1:100)	3/5
4.	Tlocrt 3. kata (M 1:100)	4/5
5.	Poprečni presjek 1-1 (M 1:100)	5/5

TLOCRT PRIZEMLJA MJ 1:100

TLOCRT 1.KATA MJ 1:100

TLOCRT 2.KATA MJ 1:100

TLOCRT 3.KATA MJ 1:100

POPREČNI PRESJEK 1-1 MJ 1:100

POPREČNI PRESJEK STOPNE KONSTRUKCIJE

G GRAĐEVINSKI FAKULTET, SVEUČILIŠTE U RIJECI				
Diplomski rad ANALIZA MEHANIZAMA OTKAZIVANJA ZIDOVA IZVAN RAVNINE NA VIŠEKATNOJ ZGRADI	Sadržaj nacrta: POPREČNI PRESJEK KONSTRUKCIJE 1-1			
Studentica:	Kolegij:			
Ena Škreblin	BETONSKE I ZIDANE KONSTRUKCIJE I			
Mentor:	Datum:	Mjerilo:	List:	
doc. dr. sc. Paulo Šćulac	XI 2023.	1:100; 1:20	5	