Utjecaj mehaničkog miješanja, temperature i koncentracije citrata na taloženje kalcijeva oksalata

Šafranko, Silvija

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Department of Chemistry / Sveučilište Josipa Jurja Strossmayera u Osijeku, Odjel za kemiju

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:182:499408

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-28

Repository / Repozitorij:

Repository of the Department of Chemistry, Osijek
Utjecaj mehaničkog miješanja, temperature i koncentracije citrata na taloženje kalcijeva oksalata
(The Effect of Mechanical Mixing, Temperature and Citrate Concentration on the Calcium Oxalate Precipitation)
SAŽETAK

Kalcijevi oksalati su kalcijeve soli oksalne kiseline i sastavni su dio gotovo svih bubrežnih kamenaca. Bubrežni kamenci posljedica su rasta kristala u urinarnom traktu, a gotovo 10 % ljudi susreću se s tim problemom tijekom života. U medicinskom je vječniku proces nastajanja bubrežnih kamenaca poznatiji pod nazivom urolitijaza ili nefrolitijaza. Upravo se zbog te činjenice sve češće provode istraživanja kojima bi se u potpunosti objasnio mehanizam, uvjeti i moguća prevencija nastajanja bubrežnih kamenaca. Kalcijev oksalat kristalizira u tri hidratna oblika: termodinamički stabilan kalcijev oksalat monohidrat (vevelit, COM), metastabilan dihidrat (vedelit, COM) te trihidrat (kaoksit, COT) koji se rijetko pronalazi u kemijskom sastavu bubrežnih kamenaca.

Eksperimentalno je pokazano da promjena temperature i koncentracije citrata može utjecati na taloženje kalcijeva oksalata te na morfologiju i veličinu nastalih kristala. Rezultati su obrađeni FTIR spektroskopijom, TG analizom i optičkom mikroskopijom.

Ključne riječi: kalcijev oksalat dihidrat (COD), kalcijev oksalat monohidrat (COM), mehaničko miješanje, citrat, bubrežni kamenci, temperatura
ABSTRACT

Calcium oxalates are calcium salts of oxalic acid and they are the most common constituents of kidney stones. Kidney stones are the result of a crystal growth in the urinary tract and almost 10% of population experience such problems during their lifetime. Medical term of this process is known as the urolithiasis or nefrolithiasis. There have been many studies conducted with the aim to understand and explain the mechanism, precipitation conditions and possible prevention of the stone formation. Calcium oxalate crystallizes in three hydrate forms: thermodynamically stable monohydrate (whewellite, COM), the metastable modification, dihydrate (weddellite, COD) and trihydrate (caoxite, COT) which is rarely found in the kidney stones. The experimental results showed that a temperature changes and a concentration of citrate can influence morphology and size of precipitated crystals.

Calcium oxalate crystals were studied by the means of thermal analysis (TGA) and infrared (FT-IR) spectroscopy. The morphology of calcium oxalate crystals was studied using the optical microscope.

Keywords: calcium oxalate dihydrate (COD), calcium oxalate monohydrate (COM), mechanical stirring, citrate, kidney stones, temperature
SADRŽAJ

1. UVOD ...5

2. LITERATURNI DIO ...6
 2.1 Biominalizacija ...6
 2.2 Urolitijaza ..7
 2.3 Bubrežni kamenci ...9
 2.3.1 Kalcijevi oksalati ...14
 2.3.2 Stvaranje kalcijevih oksalata u ljudskom organizmu ..18
 2.4 Taložni procesi ...19
 2.5 Utjecaj aditiva ...22
 2.6 Metode identifikacije uzoraka ..23
 2.6.1 Infracrvena spektroskopija ..23
 2.6.2 Termogravimetrijska analiza ...25
 2.6.3 Optička mikroskopija ..26

3. EKSPERIMENTALNI DIO ..27
 3.1 Pribor i aparatura ..27
 3.2 Popis kemikalija ..28
 3.3 Priprema otopina ..28
 3.4 Standardizacija otopina ...32
 3.5 Sinteza kristalnog sjemenaka COD ...34
 3.6 Karakterizacija kristalnog sjemenaka ..36
 3.6.1 Infracrvena spektroskopija (FT-IR) ..36
 3.6.2 Termogravimetrijska analiza (TGA) ...36
 3.6.3 Optička mikroskopija ...37

4. REZULTATI I DISKUSIJA ..38
 4.1 Sinteza kalcijeva oksalata na 20 ⁰C ..38
 4.2 Sinteza kalcijeva oksalata na 25 ⁰C ..44
 4.3 Sinteza kalcijeva oksalata na 37 ⁰C ..50
 4.4 Sinteza kalcijeva oksalata na 45 ⁰C ..56

5. ZAKLJUČAK ..63

6. LITERATURA ..64

7. PRILOG ...66
1. UVOD

Nefrolitijaza ili urolitijaza je široko rasprostranjena pojava stvaranja čvrste kristalne tvari na unutrašnjim površinama bubrega koja zahvaća sve životne i spolne skupine u svijetu. Opće je poznato da je pojava bubrežnih kamenaca popraćena oštrom boli, hematurijom (pojava mase eritrocita u urinu) te u gotovo svim slučajevima uzrokuje infekciju mokraćnog sustava. Kemijski sastav bubrežnih kamenaca prvenstveno ovisi o sastavu i kemijskim svojstvima urina koji može sadržavati višak litogenih tvari i uzrokovati taložni proces u neuravnoteženom sustavu. Iako je analizom potvrđeno da su u najčešćem broju slučajeva bubrežni kamenci smjesa različitih soli, u najvećem se udjelu nalaze soli kalcija u obliku kalcijevih oksalata\(^1\).

Tijekom zadnjih nekoliko desetljeća, intenzivno se provode istraživanja u cilju objašnjavanja mehanizma, uvjeta i konačno, prevencije stvaranja bubrežnih kamenaca. Međutim, i dalje nije u potpunosti jasno zašto se patološka mineralizacija\(^2\) bubrežnih kamenaca stvara kod pojedinaca, odnosno koji čimbenici inhibiraju ili potiču taloženje.

Svrha ovog rada je ispitati utjecaj temperature kao i promjene koncentracije citrata na proces taloženja kalcijevih oksalata pri konstantnom \(\text{pH} 6,5\) i u uvjetima hiperkaliurije koji je jedan od čestih uzroka urolitijaze. Primjenom mehaničkog miješanja i dodatkom citratnog iona predviđeno je stvaranje COD.
2. LITERATURNI DIO

2.1 Biomineralizacija

Biomineralizacija je složeni biokemijski proces kojim nastaju čvrste anorgansko-organske strukture koje odgovaraju mineralima po kemijskom sastavu i kristalnoj strukturi, ali ih izgrađuju živi organizmi. Poznato je preko 60 biomineralala, najčešće u obliku soli, kalcijevih fosfata iliarbonata, koje se razlikuju po svojoj funkciji u pojedinom organizmu. Poznati su i biominerali barijevih, stroncijevih, silikatnih i željezovih soli. Važnu biološku primjenu biomineralal pronalazimo kako u ljudskom, tako i u životinjskom i biljnom svijetu. Ljudske i životinjske kosti građene su od kalcijeva fosfata (približnog masenog udjela 60 %) koje imaju potpornu i zaštitnu ulogu, no i u zubima te u različitim životinjskim oklopima pronalazimo biomineralne tvari. Izučavanje biomineralizacije uključuje temeljne poznaje iz područja kemije, biologije, geologije i znanosti o materijalima, a njezini rezultati imaju značajan utjecaj na medicinu, stomatologiju, paleontologiju, sedimentologiju te geokemiju.

Proces biomineralizacije omogućen je na određenim mjestima i prema tome se dijeli na[3]:

Epicellularni proces - na stijenkama stanice;
Intercellularni proces - u prostoru između gusto složenih stanica;
Intracellularni proces - u ograđenom prostoru, odjeljima, unutar stanice;
Ekstracellularni proces - izvan stanice, na površini ili unutar netopljive makromolekulske matrice.

Najčešće do biološki kontrolirane mineralizacije dolazi na intracellularnim i ekstracellularnim mjestima.

Organsku komponentu (matriks) biomineralal čine biopolimeri (različiti proteini, polisaharidi ili fosfolipidi) koji, iako čine manji udio uzorka, imaju presudnu ulogu u poboljšavanju svojstava i čvrstoće materijala. Upravo ti biopolimeri mogu utjecati na rast kristala, na njegove oblike, sastav, teksturu, orijentaciju i faze. Biomineralizacija je vrlo složen proces koji se temelji na interakcijama između anorganskih tvari (np. Ca^{2+} iona) i organskog matriksa. S obzirom na topljivost bioloških makromolekula koje čine organski matriks, razlikujemo: topljivi (proteini) i netopljivi (polisaharidi) organski matriks[4]. Predložen je mehanizam u kojem se smatra da postoje ionske interakcije između anorganske tvari i organskog matriksa. Ovisno o tome, radi li se o netopljivom ili topljivom matriksu, razlikujemo hidrofilne ili hidrofobne dijelove. Ti su dijelovi područje velikog lokalnog
naboja na kojima se mogu odvijati dipolne, vodikove ili elektrostatske vezne interakcije tijekom procesa nukleacije. Hidrofobni, netopljivi, organski matriks sudjeluje u izgradnji predloška za rast kristala, a zajedno s topljivim komponentama mogu regulirati rast biominerala. Hidrofilne skupine organskog, topljivog matriksa imaju velik negativan naboj koji omogućava interakcije s ionima prilikom čega nastaju čvrste strukture određene orijentacije.

Međutim, istim mehanizmom mogu nastati i „neželjeni“ biominerali procesom patološke biomineralizacije kao što su bubrežni kamenci, karijes i aterosklerotični plakovi\(^5\) (uzrokuju začepljenje krvnih žila). U nekim slučajevima taloženje može biti potaknuto pojedinim aminokiselinama, proteinima (organski promotori) koji se nalaze u urinu.
2.2 Urolitijaza

Urolitijaza je proces nakupljanja čvrstih, kristaličnih tvari u različitim dijelovima mokraćnog sustava, odnosno u bubrezima ili mokraćnom mjehuru, koji rezultira nastajanjem kamenaca.

Nastanak kristala procesom patološke biomineralizacije odvija se po istom principu kao i obična kalcifikacija. Postoji podatak da čak 12% muškaraca i 5% žena barem jednom iskusi bolest bubrežnih kamenaca u dobi do 70-te godine života, što bi značilo da je urolitijaza čak dva do tri puta češća kod muškaraca nego kod žena. Naime, u većini slučajeva radi se o recidivirajućoj bolesti te se kamenac ponovno stvara i pokreće u prosjeku svake četiri godine. Ponovno nastajanje kamenca ovisi o genetičkim, nutritivnim i ekološkim čimbenicima.

Često se pojava urolitijaze povezuje s prezasićenjem urina ili prisutnošću visoke koncentracije mokraćne kiseline. Visoka koncentracija mokraćne kiseline prvenstveno može biti uzrokovana prehranom koja je bogata purinom. Ova pojava se može objasniti biokemijskim procesom razgradnje purina (AMP i GMP nukleotida) čiji je konačni produkt razgradnje mokraćna kiselina, odnosno urati[6]. Prezasićenje otopine podrazumijeva veće količine otopljene tvari nego što to odgovara topljivosti tvari na danoj temperaturi. Stvaranje prezasićene otopine je nestabilno stanje i u kombinaciji s drugim faktorima može uzrokovati taloženje tih soli.

Vrlo je važan i omjer pojedinih iona u otopini pa stoga razlikujemo: hiperkalciju, hiperoksaluriju te hipocitraturiju. Koncentracije pojedinih iona (kalcija, magnezija, oksalata, citrata,...) ne mogu uzrokovati stvaranje kristala, već je taloženje omogućeno njihovom međusobnom interakcijom do nastanka soli.

Da bi došlo do stvaranja bubrežnih kamenaca, prvenstveno je bitna interakcija između kristala kalcijevih oksalata i bubrežnog tkiva. svakako je za stvaranja kamenaca povoljno oštećenje površnog sloja unutrašnjih bubrežnih zidova koje bi služilo kao vezno mjesto za agregaciju do određene veličine i oblika. Uslijed pokretanja bubrežnog kamenca i njegovog putovanja duž mokraćnog sustava dolazi do oštećenja tkiva koje može poslužiti kao podloga za recidiviranje, što i pokazuje podatak da se uglavnom kamenci stvaraju u jednom i uvijek u istom bubregu.

Taloženje kristala može biti potaknuto nedostatkom inhibitora kao što su pirofosfatni, magnezijevi ili citratni ioni i/ili prisutnost organskog matriksa (kao što je kolesterol) koji stvara predložak za rast kristala[7]. Međutim, mehanizam nastajanja kristala opisuje se kroz
tri međusobno povezana procesa: nukleacija od sastavnih jedinica, njihov rast te aglomeracija.

2.3 Bubrežni kamenci
Bubrežni kamenci zahvaćaju široki dio populacije. Postotak oboljelih varira ovisno o geografskom području[8].

Bubrežni kamenci nastaju unutar bubrega i u trenutku kada se uklone s vezne površine, putuju duž mokraćnog sustava oštećujući cijevi mokraćovoda i uzrokuju potpuni ili djelomični zastoj na pojedinom dijelu sustava. Još uvijek nije u potpunosti poznato što uzrokuje pokretanje kamenca s vezne površine. „Putovanje“ kamenaca različitih oblika i veličina, usputno oštećujući tkivo, uzrokuje oštru bol koja se širi sve do donjeg dijela abdomena.

Mjesto zastoja kamena varira od osobe do osobe ovisno o mnogim faktorima, kao što je širina i dužina mokraćovoda. Zastoj kamena može uzrokovati retenciju urina, odnosno blokiranje protoka urina koji dovodi do hidronefroze (Slika 1.). Hidronefroza je pojava dilatacija (proširenje) kanalnog sustava bubrega do kojeg dolazi uslijed nakupljanja mokraće kao posljedica povratnog pritiska na bubreg. Uobičajeno, mokraća iz bubrega otječe pod niskim tlakom. Ukoliko je kanalni sustav začepljen, mokraća se počinje nakupljati u tubulima (kanalićima) bubrega i središnjem dijelu, proširujući bubreg i pritišćući njegovo tkivo. Pritisak koji se vrši na bubreg može oštetiti organ i smanjiti njegovu funkcionalnost.

HIDRONEFROZA

Slika 1. Pojava hidronefroze uslijed pokretanja i retencije kamena
Kristali čiji je promjer manji od 5 mm mogu se izmokriti bez potrebe operativnih zahvata, za kristale promjera od 5-7 mm ta se vjerojatnost smanjuje i do 50 %, dok je u gotovo svim slučajevima za kamence promjera većih od 7 mm potrebna medicinska intervencija[7]. U 90 % slučajeva, kamenci bez poteškoća prolaze kroz urinarni trakt, a ostalih 10 % se uklanja uretroskopijom (endoskopska pretraga i uklanjanje kamenca), perkutanom nefrolitomijom (metoda razbijanja kamenca) te novijom tehnologijom kao što je šok valovima - litotripsija (razbijanje kamena).

Međutim, u prošlom su potpoglavlju spomenuti neki od uvjeta i čimbenika (Slika 3.) koji pogoduju stvaranju kamenaca kao što je visoka koncentracija soli i njihovo dugotrajnije zaostajanje u urinu, pH vrijednost urina te smanjenje koncentracije prirodnih inhibitora nastale uslijed ionske neravnoteže u organizmu (Slika 2.).

Slika 2. Mjesta nastajanja i putovanje kamena duž mokraćovoda[7]
Faktori koji utječu na stvaranje bubrežnih kamenaca

Slika 3. Faktori koji utječu na stvaranje bubrežnih kamenaca

Prezasićenost se u organizmu može postići na nekoliko načina. Primjerice, prezasićenost kalcijevim oksalatom u ljudskom organizmu može biti posljedica smanjenja volumena urina te povećano izlučivanje iona kalcija, oksalata ili pak kombinacija navedenih čimbenika. U prevenciji urolitijaze vrlo važnu ulogu ima prehrana i životni stil. Svakako se preporuča hidratacija koja potiče mokrjenje i na taj se način povećava volumen i smanjuje zasićenost urina. Preporuča se i smanjeni unos soli, natrijeva klorida, čiji prekomjerni unos može uzrokovati povećano izlučivanje kalcija, a smanjeno oksalata. Također, potrebno je limitirati unos hrane bogate purinom.

Analizom je potvrđeno da su bubrežni kamenci smjesa soli oksalata, fosfata i mokraće kiseline (Tablica 1). Najveći broj kamenača su kalcijeve soli u spoju ili s oksalatom ili fosfatom. Te su kemijske tvari dio čovjekove normalne prehrane esencijalne za kosti i mišiće. Rjeđi oblici su kamenaci mokraćne kiseline i cisteinski kamenac[7] (Slika 4.).
Tablica 1. Kemijski sastav bubrežnih kamenaca

<table>
<thead>
<tr>
<th>KEMIJSKI SPOJ</th>
<th>NAZIV MINERALA</th>
<th>KEMIJSKA FORMULA</th>
<th>SKRAĆENICA SPOJA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oksalati</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalcijev oksalat monohidrat</td>
<td>Vevelit</td>
<td>CaC₂O₄ • H₂O</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>Kalcijev oksalat dihidrat</td>
<td>Vedelit</td>
<td>CaC₂O₄ • 2H₂O</td>
<td>COD</td>
<td></td>
</tr>
<tr>
<td>Fosfati</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalcijev fosfat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalcijev hidrogenfosfat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnezijev amonijev fosfat heksahidrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidroksiapatit</td>
<td></td>
<td>Ca₅(PO₄)₃(OH)</td>
<td>HA</td>
<td></td>
</tr>
<tr>
<td>Brušit</td>
<td></td>
<td>CaHPO₄ • 2H₂O</td>
<td>BR</td>
<td></td>
</tr>
<tr>
<td>Struvit</td>
<td></td>
<td>(NH₄)Mg(PO₄) • 6H₂O</td>
<td>STR</td>
<td></td>
</tr>
<tr>
<td>Purini</td>
<td></td>
<td>C₃H₂Na₄O₃</td>
<td>UA</td>
<td></td>
</tr>
<tr>
<td>Mokračna kiselina</td>
<td></td>
<td>NaC₅H₃Na₄O₃ • H₂O</td>
<td>MSU</td>
<td></td>
</tr>
<tr>
<td>Mononatrijev urat monohidrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostali</td>
<td></td>
<td>C₆H₁₂N₂O₄S₂</td>
<td>CY</td>
<td></td>
</tr>
<tr>
<td>L-Cistein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slika 4. Mikroskopske snimke bubrežnih kamenaca različitog kemijskog sastava
Kalcijevi oksalati su sastavni dio gotovo svih bubrežnih kamenaca i njihovi se kristali razlikuju po morfološkim svojstvima. U bubrežnim se kamencima najčešće pronalazi COM i COD, dok COT rijetko[9]. Približno 70 % bubrežnih kamenaca sadrži kalcijeve oksalate gotovo u 100 %-tном udjelu ili u smjesi s kalcijevim fosfatima.

Kalcijevi fosfati se pronalaze u jednoj trećini kamenaca u obliku apatita ili brušita, obično u smjesi s kalcijevim oksalatom.

Struvit je na mikroskopu vrlo teško razlikovati od fosfatnih kamenaca jer ima slična svojstva kao i ostali kamenci iz porodice fosfata. Međutim, zbog neobično velikih kristala i koraljnog oblika, može se ipak prepoznati u smjesi.

Cisteinski kamenci se za razliku od struvita, vrlo lako prepoznaju po svojim karakterisitčnim okruglim oblicima i žutoj boji. Na SEM (eng. \textit{scanning electron microscope}) mikroskopiji se može prepoznati po heksagonalnom obliku.

Urati u bubrežnim kamencima su rijetka pojava. Oko 10 % svih bubrežnih kamenaca sastoje se od urata.
2.3.1 Kalcijevi oksalati

Oksalati su široko rasprostranjeni spojevi na Zemlji. U biljkama oksalate pronalazimo u obliku oksalne kiseline ili različitih soli natrija, kalija, magnezija ili kalcija. Dakle, osim patogene aktivnosti kalcijevih oksalata, radi se o netopljivom mineralu koji ima vrlo važnu ulogu u zaštitu biljaka od insekata i održavanje homeostaze kalcija.

U prirodi postoje tri hidratna oblika kalcijevih oksalata: termodinamički stabilan kalcijev oksalat monohidrat (COM, CaC₂O₄•H₂O, vevelit), metastabilan dihidrat (COD, CaC₂O₄•2H₂O vedelit) te također metastabilan trihidrat (COT, CaC₂O₄•3H₂O)⁹.

COM kristalizira u dvije monoklinske strukture:

1) osnovnoj, koja je stabilna iznad 45 °C (a = 9,978 Å, b = 7,295 Å, c = 6,292 Å, β = 107,07°, Z = 8, V = 876.228 Å³, prostorna grupa I2/m). Sastoji se od naslaganih planarnih slojeva iona kalcija i oksalata u omjeru 2:1, koji se izmjenjuju sa slojevima oksalata i molekula vode u položaju paralelnom s ravninom¹¹-¹³.

2) stabilnoj ispod 45 °C (a = 9,9763 Å, b = 14,5884 Å, c = 6,29134 Å, β = 107,05°, prostorna grupa P2₁/c). Oksalati u ravnini su pretrpjeli malu distorziju pa se duljina osi b podvostručila, a simetrija smanjila¹¹-¹².

Postoji i treća struktura, ortorombska koja isključivo nastaje dehidratacijom dihidrata (COD) u temperaturnom području od 118-130 °C¹³. Ima ortorombsku simetriju s parametrima: a = 12.088 Å, b = 10.112 Å, c = 14.634 Å, α = β = γ = 90°.

Koordinacija oksalata s kalcijem u poliedar Slika 5. (B) ekivalentna je jediničnoj čeliji COM na (A). U poliedarskoj strukturi, atom kalcija je koordiniran s osam atoma kisika od kojih sedam potječe od sveukupno pet oksalatnih iona (C₂O₄²⁻) te jedan od molekule vode.

![Slika 5. Kristalna struktura COM (A) i poliedar Ca²⁺ (B)](image-url)
(H₂O). Sva tri kraja poliedra oko kalcija vezani su na susjedna tri atoma kalcija. Prema tome, dobivamo paralelne slojeve.

U slučaju rasta COM (u uvjetima spontanog taloženja) na kristalnom sjemenu, utvrđeno je da je kontroliran površinskim procesima drugog reda[17-18]. To bi značilo da je brzina rasta proporcionalna i površini kristala raspoloživoj za rast, odnosno omjeru ukupne površine kristala i količine kristalnog sjemena. Vrlo je važno određivanje termodinamičkog produkta topljivosti, no prvenstveno je bitno kvantificiranje parametra agregacije, proces ključan za nastajanje kamenca.

Kalcijev oksalat dihidrat (COD) kristalizira u tetragonskom sustavu s parametrima jedinične ćelije: a = 12,371 Å, b = 14,583 Å, c = 10,116 Å, α = β = γ = 90°, Z = 8, V = 1125.937 Å³, prostorna grupa I₄/m[14-15]. Osam molekula vode je koordinirano s 4 atoma kalcija dihidratnog oblika formule CaC₂O₄•2H₂O.

Slika 6. Kristalna struktura COD[10] (A) i poliedar Ca²⁺ (B)

Ca²⁺ ion je koordiniran s osam atoma kisika koji potječu od četiri molekule vode i četiri oksalatna iona. U usporedbi s COM, ion kalcija je koordiniran s jednim oksalatom manje, ali jednom molekulom vode više. Veze koje se uspostavljaju koordinacijom dvije molekule vode na oksalatne kisike su vodikove veze. Oksalati tvore kanale koji prolaze kroz kristal i sadrže molekule vode. Dihidrat koji nastaje u vođenoj otopini stvara tetragonsku bipiramidu i tetragonske prizme.

Kinetika taloženja COD je slabo istražena zbog ograničenih eksperimentalnih uvjeta kod inicijalnog taloženja. Međutim, većinom se kinetika COD povezuje s transformacijom u
termodinamički stabilan COM. Brzina rasta COD je u usporedbi s brzinom rasta COM znatno manja.

Kalcijev oksalat trihidrat (COT) kristalizira u triklinskom sustavu s parametrima jedinične ćelije: $a = 12.371 \text{ Å}$, $b = 14.583 \text{ Å}$, $c = 10.116 \text{ Å}$, $Z = 8$, $\alpha = 76.5^\circ$, $\beta = 70.35^\circ$, $\gamma = 70.62^\circ$, $V = 325.9 \text{ Å}^3$, prostorna grupa $P\overline{1}$[16]. Tri od osam kisikovih atoma koordiniranih oko atoma kalcija potječu od molekule vode, četiri atoma od dva oksalatna iona, dok jedan potječe od trećeg oksalatnog iona. Što znači da sveukupno u poliedarskoj koordinaciji imamo tri oksalatna iona i tri molekule vode.

Slika 7. Kristalna struktura COT[10] (A) i poliedar Ca^{2+} (B)

Kinetika kristalnog rasta COT kontrolirana je površinским procesima, drugog, trećeg ili četvrtog reda. Transformacija trihidrata u monohidrat odvija se direktnim prijelazom, bez dobivanja dihidrata kao međuprodukta, a tijekom reakcije je pokazano da se brzina reakcije povećava povišenjem temperature.
2.3.1.1 Kalcijev oksalat dihidrat (COD)

Analizom sastava kamenača pokazalo se da su kalcijevi oksalati najčešći konstituenti bubrežnih kamenača kod ljudi. Kalcijevi oksalati se u bubrežnim kamencima pojavljuju u obliku monohidrata, dihidrata ili kao smjesa oba oblika. Metastabilan dihidrat u laboratorijskim uvjetima se teško dobije u čistom obliku, tako da se u najvećem broju slučajeva pojavljuje u smjesi s termodinamički stabilnim COM.

COD je jedan od termodinamičkih nestabilnih oblika, kao i COT. Struktura i kristalografija spomenuta je već u prošlom poglavlju. COD kristalizira u tetragonskom sustavu i u vodenoj otopini daje tetragonsku bipiramidu i tetragonske prizme. Ca^{2+} ion je koordiniran s osam atomi kisika koji potječu od četiri molekule vode i četiri oksalatna iona. Za razliku od monohidratnog iona, u poliedarskoj strukturi ima jedan oksalatni ion manje.

Za dobivanje COD favoriziran je uvjet hiperkalciurije, odnosno uvjet povišene koncentracije kalcija u odnosu na oksalat u otopini. U ljudskom organizmu, obično se povišena koncentracija kalcija povezuje s poremećajem kao što je hipertireoza.

Kod taloženja slabo topljivih soli presuduju kineticni čimbenici, dok se prijelaz iz jednog oblika u drugi može opisati i procijeniti s Ostwaldovim pravilom koraka. Princip kod mogućeg stvaranja više oblika objašnjava da će prvo nastati najtopljiviji oblik koji će se u određenom trenutku transformirati u termodinamički stabilan oblik. Ako se topljivost može opisati kao $\text{COT} > \text{COD} > \text{COM}$, jasno je da su COT i COD termodinamički nestabilni spojevi te da je COM termodinamički favoriziran pri taloženju. Također, smatra se da je COT kojeg se teško pronalazi u sastavu kamenača prekursor za stvaranje COD.
Postoje istraživanja koja pokazuju da se COM može dobiti dehidratacijom sintetičkog COT pri temperaturi od 116,5 °C bez usputnog stvaranja COD kao intermedijara.

Različitim analitičkim metodama, primjerice termogravimetrijskom analizom ili IR spektroskopijom, možemo razlikovati COD od ostalih oblika. Kod IR spektroskopije diferencijaciju je teže uočiti zbog poklapanja vibracijskih parametara, odnosno sličnih pikova. Međutim, COD ima karakterističan pik na približno 912 cm⁻¹ i po njemu se najbolje potvrđuje prisutnost COD.

2.3.2 Stvaranje kalcijevih oksalata u ljudskom organizmu

Funkcionalna jedinica u bubregu koja je odgovorna za stvaranje urina naziva se nefron. Tekućina koja nastaje na kraju nefrona filtracijom i reapsorpcijom vode i niskomolekularnih tvari predstavlja konačni urin. Zanimljivo je da urin sadrži više od 3000 spojeva, što od bakterija, lijekova, prehrane, što od spojeva koje tijelo samo proizvodi. Prisutnost značajnih količina anorganskih i organskih iona, uglavnom klorida, natrija, fosfata, magnezija, bikarbonata, kalcija, oksalata, citrata i urata daje prosječnu ionsku jakost urinu oko 0,33 mol/L, dok pH urina varira ovisno o sastavu unutar granica od 4,5 do 7,5. Pojedini ioni u urinu mogu u kombinaciji s oksalatnim, fosfatnim ili uratnim ionima stvarati slabo topljive spojeve u specifičnim uvjetima.

Ioni kalcija i oksalata uvijek su prisutni u koncentracijama koje su iznad produkta topljivosti COM. Urin je stoga uvijek prezasićen s obzirom na COM, ali uvjet prezasićenosti (koncentracije otopine su iznad produkta topljivosti) nije obično dovoljan da inducira homogenu nukleaciju kristala ovog spoja. Urin također sadrži prirodne inhibitorne supstance kao što su citrat, glikoproteini i glikozaminoglikani. Glikozaminoglikani imaju važnu ulogu u izgradnji zaštitnog sloja na unutarnjoj površini bubrega. Na taj način se sprječava prihvaćanje bakterija za stanice površinskog sloja te održava hidratizacija površine. Prezasićenost otopine pojedinim ionima i oštećenje te stanjenost zaštitnog sloja glikozaminoglikana dovoljan su prekursor za stvaranje kristala[19]. Bubrežni kamenci nastaju od produkata metabolizma koji su prisutni u glomerularnom filtratu.

Male promjene u karakteristikama urina mogu narušiti ionsku ravnotežu i dovesti do taloženja kristala. Koncentracija kalcijevih oksalata u normalnom urinu je četiri puta viša od njegove topljivosti[20]. Povećano izlučivanje iona kalcija i oksalata i mali volumen urina povećava prezasićenost kalcijevim oksalatom. Isto tako, promjena pH vrijednosti ima veliki utjecaj na ionski sastav urina. Vrijednost pH iznad 6,5 uzrokuje povećanje količine
dvovalentnih i trovalentnih fosfatnih iona i na taj način povećavaju prezasićenost kalcijevim fosfatima.

2.4 Taložni procesi
Taloženje podrazumijeva stvaranje čvrste faze koja se izdvaja iz vodenih, najčešće elektrolitnih otopina. Taloženje čvrste faze s kristalnom strukturom iz otopina nazivamo kristalizacija. Ti procesi su vrlo važni za sve grane znanosti i tehnologije počevši od kemije, farmacije, biologije, metalurgije do proizvodnje različitih bojila i polimernih materijala. Međutim, taloženje nije poželjno u svim slučajevima. Primjerice, stvaranje neželjenih međuprodukata u kemijskim reakcijama ili stvaranje bubrežnih kamenača u ljudskim i životinjskim organizmima kao primjer patološke mineralizacije.

Taložni procesi se zbivaju u nekoliko međufaza čiji se slijed može prikazati Nielsenovom shemom\[21\] taložnih procesa (Slika 9.). Proces je moguće inicirati kemijskom reakcijom, miješanjem otopine reaktanata, promjenom pH otopine ili temperature sustava.
Prema Nielsen-ovoj shemi taloženja, vidljivo je da taloženje započinje iz prezasićene (nestabilne) otopine izdvajanjem čvrste faze. Prvi korak u procesu kristalizacije je nukleacija koji je ujedno s obzirom na spontanost procesa, energetski najnestabilniji stupanj procesa. Razlikujemo heterogenu i homogenu nukleaciju. Ukoliko se nukleacija zbiva na nečistoćama koje se nalaze u otopini, nukleacija je heterogena, dok stvaranje ionskih, molekulskih asocijata, embrija ili nukleusa podrazumijeva homogenu nukleaciju. Homogena nukleacija se odvija u prezasićenoj otopini i to kod vrlo velikih prezasićenja.

Drugi stupanj u stvaranju kristala je njihov rast. Rast kristala uključuje niz procesa koji se odvijaju u otopini ili na površini kristala povećavajući veličinu samog kristala. Moguća je i prisutnost kristala različitih dimenzija uslijed odvijanja sekundarnih procesa nastajanja nukleusa zajedno s kristalnim rastom. Rast kristala opisuje se promjenom neke karakteristične dimenzije kristala s vremenom, a pošto se radi o slijednim procesima, najsporiji korak kontrolira ukupnu brzinu rasta. Brzinu rasta kristala kao vremenski ovisan proces, određuju dostupna površina za rast kristala te veličina čestica u ovisnosti o prezasićenosti otopine. Ako su manje čestice, manji je i stupanj prezasićenosti u odnosu koji
bi uzrokovao isti broj većih čestica. Za zaključiti je da manje čestice neće rasti jednakom brzinom kao veće.

Nastali talog je podložan sekundarnom procesu agregacije ili aglomeracije. Posljedica tog procesa je smanjenje broja manjih i nastajanje većih čestica.

Najvažniji čimbenici koji utječu na svojstva taloga i koji su ujedno i pokretačka sila procesa su prezasićenost otopine, temperatura, masena koncentracija te fizikalno-kemijska svojstva čestica, nečistoća i aditiva.

Za nastajanje nukleusa nove faze, potrebno je savladati energetsku barijeru – kritična prezasićenost. Prezasićenost je definirana omjerom:

\[S = \frac{\Delta \mu}{RT} \quad (1) \]

gdje je R opća plinska konstanta koja iznosi R = 8.314 J·K⁻¹·mol⁻¹, T termodinamička temperatura izražena u mjernoj jedinici kelvin [K], a \(\Delta \mu \) je promjena kemijskog potencijala.

Promjena kemijskog potencijala je definirana kao:

\[\Delta \mu = \mu_1 - \mu_2 \quad (2) \]

Dok je kemijski potencijal moguće izraziti jednadžbom:

\[\mu = \mu^\circ + RT \ln a \quad (3) \]

gdje je \(\mu^\circ \) standardni kemijski potencijal otopljene tvari te a aktivitet otopljene tvari. Kombiniranjem jednadžbi (1), (2) i (3) definiran je stupanj zasićenosti:

\[S = \frac{a}{a_s} \quad (4) \]

U jednadžbi a označava aktivitet otopljene tvari u prezasićenoj otopini, dok \(a_s \) aktivitet otopljene tvari u ravnoteži.

Aktivitet (a) je efektivna koncentracija neke tvari u otopinama elektrolita. U idealnoj otopini na čestice otopljene tvari djeluju samo molekule otapala, dok u realnim otopinama djeluju privlačne sile između iona u otopini. Te privlačne sile rastu povećanjem naboja iona i njihove koncentracije što uzrokuje smanjenje efektivne koncentracije nastale zbog smanjenja koeficijenta aktiviteta. Aktivitet je jednak umnošku koeficijenta aktiviteta i koncentracije:
$$a = \gamma \frac{c}{c^0} \tag{5}$$

gdje je γ koeficijent aktiviteta, c koncentracija otopljele tvari, a $c^0 = 1 \text{ mol dm}^{-3}$. Koeficijent aktiviteta, γ, označava odstupanje realne otopine od idealne. Vrijednost γ za idealnu otopinu iznosi 1.

2.5 Utjecaj aditiva

Nečistoće su tvari, ioni ili molekule, koje se nalaze u suspenziji, a nisu sastavni dio nastale čvrste faze. Teško je izbjeći nečistoće u otopini, stoga je i homogena nukleacija vrlo rijedak slučaj. Nečistoće djeluju na kemijski sastav čvrste faze, ali i na oblik i veličinu čestice kao i na samu kinetiku taloženja. Međutim, osim nečistoća koje se uobičajno mogu pronaći u otopini, ponekad se dodaju kemijske supstance u vrlo malim količinama koje poboljšavaju svojstva ili radi stabilizacije konačnog produkta. Te se tvari nazivaju aditivi.

Kod procesa kristalizacije aditivi mogu prvenstveno imati utjecaj na morfologiju kristala, odnosno na promjenu ravnotežnog oblika kristala. Također, promotori mogu poticati nukleaciju ili ju potisnuti ukoliko se dodaju inhibitorne tvari\[^{22}\]. Mogu utjecati na kristalni rast, transformacije metastabilnih faza, agregaciju itd. Konačni učinak ovisit će o dodanoj koncentraciji i o prirodi dodanog aditiva.

Aditivi imaju vrlo važan utjecaj i kod stvaranja bubrežnih kamenaca. Uspostavilo se da magnezij, citrat, pirofosfat te makromolekule kao što su glikoproteini i glikosaminoglikani mogu inhibitorno utjecati na proces stvaranja kamenca. Većina tih tvari se adsorbiraju na površinu kristala i na taj način inhibiraju rast kristala i sekundarnu nukleaciju. Češća je pojava stvaranja kompleksa između iona inhibitora i kalcija i/ili oksalata.

U eksperimentu je korišten trinatrijev citrat, sol trikarboksilne limunske kiseline. Uobičajno se citrat nalazi u krvi u obliku kompleksa kalcija/magnezija/natrija pri fiziološkom pH od 7,4. Citrat je jedan od najkorištenijih inhibitora kod istraživanja bubrežnih kamenaca kalcijevih oksalata i fosfata. Smatra se da utječe na kristalizaciju kalcijeva oksalata monohidrata i kalcijevih fosfata. Isto tako, u urinu stvara komplekse s kalcijem što rezultira smanjenjem koncentracije kalcijevih oksalata.
2.6 Metode identifikacije uzoraka

2.6.1 Infracrvena spektroskopija

Osnovna primjena infracrvene (IR) spektroskopije je identifikacija nepoznatog spoja pomoću infracrvenog zračenja. Infracrveno zračenje je elektromagnetsko zračenje u rasponu valnih duljina od 0,7 μm do 500 μm (Slika 10.).

Područje infracrvenog zračenja se nalazi između mikrovalnog zračenja i područja vidljive svjetlosti, odnosno ima veću energiju od mikrovalova, a manju od vidljive svjetlosti. Infracrveno zračenje se može podijeliti na tri područja:

Tablica 2. Infracrveno područje i pripadajuće valne duljine, odnosno valni brojevi

<table>
<thead>
<tr>
<th>PODRUČJE</th>
<th>VALNA DULJINA</th>
<th>VALNI BROJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BLISKO</td>
<td>0,7 μm – 2,8 μm</td>
<td>1400 cm⁻¹ – 3600 cm⁻¹</td>
</tr>
<tr>
<td>2. SREDNJE</td>
<td>2,8 μm – 50 μm</td>
<td>3600 cm⁻¹ – 200 cm⁻¹</td>
</tr>
<tr>
<td>3. DALEKO</td>
<td>50 μm – 500 μm</td>
<td>200 cm⁻¹ – 20 cm⁻¹</td>
</tr>
</tbody>
</table>

Apsorpcija IR zračenja uzrokuje promjene u vibracijskim energijskim razinama. U bliskom IR području odvijaju se elektronski prijelazi za koje je potrebna niža energija. U srednjem području se odvija promjena vibracijskih razina većine molekula, dok se u dalekom već opažaju promjene u rotacijskim razinama molekule. Obično se promatra apsorpcija zračenja u ovisnosti o valnoj duljini, odnosno njezinoj recipročnoj vrijednosti koja odgovara valnom broju.
Da bi molekula apsorbirala IR zračenje, mora postojati promjena dipolnog momenta. Takve su molekule aktivne u IR području. Ukoliko nema dipolnih oscilacija, poput atoma u metalu, takve su tvari neaktivne u infracrvenom području. Kada se IR zračenje apsorbira, amplitude oscilacije rastu, razmak između jezgara je veći, jače je i razdvajanje naboja što dovodi do veće promjene dipolnog momenta.

Molekulske vibracije se mogu podijeliti na vibracije istezanja i vibracije deformacije.

1) Vibracije istezanja

Istezanje može biti simetrično i antisimetrično i odvija se uzduž međunuklearne osi. Simetrično se istezanje događa kada se dvije jezgre istovremeno približavaju centru mase ili udaljavaju. Antisimetrično istezanje se odvija kada se jedna jezgra približava centru mase, a druga udaljava.

2) Vibracije deformacije

Uzrokuju promjenu kuta između dvije veze koje vibriraju. Za tu vrstu vibracije potrebno je najmanje tri atoma. Dijeli se na:

- Njihanje (eng. rocking)
- Uvijanje (eng. twisting)
- Mahanje (eng. wagging)
- Deformacija u ravnini (eng. scissoring)

![Slika 11. Vrste molekulskih vibracija](image-url)
2.6.2 Termogravimetrijska analiza

Termogravimetrijska analiza (TGA) jedna je od vrsta termičkih analiza koja omogućuje praćenje promjene mase uzorka kao funkcije temperature ili vremena u kontroliranoj atmosferi. Gubitkom ili dobivanjem mase, vrši se karakterizacija uzoraka. Termička analiza promjene kemijskih ili fizičkih svojstava ispitivane tvari u ovisnosti o porastu temperature (uz konstantnu brzinu porasta temperature) naziva se izotermna termogravimetrijska analiza. Neizotermna termogravimetrijska analiza se odvija u ovisnosti o vremenu (uz stalnu temperature). Moguć je gubitak mase u jednom ili u više koraka.

Fizikalne promjene mogu uključivati sublimaciju, isparavanje, informacije o apsorpciji, adsorpciji ili desorpciji, dok kemijske promjene uključuju kemisorpciju, dehidrataciju ili razgradnju nekog spoja.

Oblik krivulje ovisi o eksperimentalnim uvjetima: brzini grijanja, obliku i masi uzorka te o vrsti plina koji protječe kroz peć.

Termogravimetrijske metode se koriste za procjenu toplinske stabilnosti ili ispitivanje mehanizma raspada nekih tvari.

Instrument koji se koristi u termogravimetrijskoj analizi naziva termovaga, koja se sastoji od precizne vage, peći kontrolirane temperaturnim programerom. Instrument je spojen na računalo koje bilježi promjene koje se odvijaju prilikom zagrijavanja uzorka. Proces termogravimetrijske analize nije složen. Zdjelica u koju se stavlja uzorak uvlači se u peć gdje se uzorak kontrolirano zagrijava. Termovage su vrlo precizne i vrlo osjetljive (od 10 mg ili manje). Da bi se ta preciznost održala, vaga je zaštićena toplinskim štitovima i propuhivanjem inertnog plina kroz kučište, dok se konstantna temperatura održava regulacijom temperature.

Uz TGA smo određivali i diferencijalno pretražnu kalorimetriju (DSC). DSC mjeri količinu energije, odnosno topline koja se apsorbira ili oslobađa tijekom zagrijavanja ili hlađenjem uzorka pri konstantnoj temperaturi.

Rezultati termogravimetrijske analize se prikazuju termogramima, grafičkim prikazima koji su karakteristični i unikatni za svaki pojedini kemijski spoj. Svaki termogram sadrži karakteristične točke koje daju potrebne informacije za karakterizaciju uzoraka.
Najvažnije točke na termogramu su:

T° – temperatura početka razgradnje (engl. *onset*) – određuje se kao sjecište tangenti povučenih uz baznu liniju i uz silazni dio krivulje DTG u točki minimuma / °C

T max – temperatura pri maksimalnoj brzini razgradnje – određuje se kao temperatura minimuma krivulje DTG / °C

m f – konačna masa uzorka / g

R max – brzina gubitka mase uzorka / %

Δm – gubitak mase uzorka / g

2.6.3 Optička mikroskopija

Mikroskopija je vrlo važna tehnika kojom se vrlo sitni predmeti mogu učiniti vidljivim. Obično se mikroskopijom samo potvrđuju podaci dobiveni drugim metodama o fizikalno- kemijskim svojstvima ili za karakterizaciju kristalnog oblika pojedinog uzorka.

Svjetlosni mikroskop bez polariziranog svjetla ima mogućnost određivanja veličine, boje i oblika kristala, dok uz polariziranu svjetlost moć karakterizacije kristala je još i veća. Moderna tehnologija omogućila je snimanje uzoraka i povećanje do vrlo velikih veličina. Kod optičke mikroskopije maksimalno povećanje je i do 1000 puta, a moć razlučivanja
mikroskopa ne ovisi samo o broju i kvaliteti leća, već i o valnoj duljini svjetlosti koja se koristi za osvjetljivanje uzoraka.

3. EKSPERIMENTALNI DIO

3.1 Pribor i aparatura

Eksperimenti su izvođeni u staklenoj reakcijskoj posudi dvostrukih stjenki povezanoj s protočnim termostatom za održavanje odgovarajuće temperature. Namještanje i očitavanje pH vrijednosti izvršilo se kombiniranom staklenom pH elektrodom (HI1131) u kombinaciji s pH metrom HANNA HI 5522 spojenim na računalo. Prije svake promjene temperature izvršena je kalibracija elektrode. Mehaničko miješanje omogućeno je mehaničkom miješalicom sa staklenim propelerom (četiri okomite lopatice duljine 2 cm i širine 1,5 cm u međusobnom odnosu pod kutom od 30°). Suspenzija se filtrirala preko membranskog filtera (Milipore) veličine pora 0,22 μm.
3.2 Popis kemikalija
Otopine su priređene s kalcijevim kloridom dihidratom, c(CaCl$_2$·2H$_2$O) = 0,9750 mol dm$^{-3}$ (BDH Prolabo) te natrijev oksalatom, c(Na$_2$C$_2$O$_4$) = 0,5460 mol dm$^{-3}$ (BDH Prolabo). Ionska jakost podešena je otopinom natrijeva klorida, c(NaCl) = 4 mol dm$^{-3}$ (Sigma Aldrich). Priređena je i otopina trinatrijeva citrat dihidrata, c(Na$_3$C$_6$H$_5$O$_7$·2H$_2$O) = 1 mol dm$^{-3}$ (Sigma Aldrich). Točna koncentracija CaCl$_2$·2H$_2$O se odredila titracijom sa standardnom otopinom EDTA, c(EDTA) = 0,1000 mol dm$^{-3}$ (Kemika, Zagreb), a Na$_2$C$_2$O$_4$ s standardnom otopinom KMnO$_4$ koncentracije 0,0200 mol dm$^{-3}$ (Kemika, Zagreb). Optimalna pH vrijednost za taložni sustav podešavana je standardiziranim otopinama NaOH ili HCl koncentracija 0,01 i 1 mol dm$^{-3}$.

3.3 Priprema otopina

- Priprema otopine kalcijeva klorida, CaCl$_2$·2H$_2$O

Pripremljena je otopina kalcijeva klorida (CaCl$_2$·2H$_2$O) približne koncentracije 1 mol dm$^{-3}$ u odmjernoj tikvici od 500 mL.

c(CaCl$_2$·2H$_2$O) = 1 mol dm$^{-3}$

V(otopina) = 500 mL = 0,5 dm3

m(CaCl$_2$·2H$_2$O) = ?

n(CaCl$_2$·2H$_2$O) = V(otopina) \cdot c(CaCl$_2$·2H$_2$O) = 0,5 dm3 \cdot 1 mol dm$^{-3}$ = 0,5 mol

m(CaCl$_2$·2H$_2$O) = n(CaCl$_2$·2H$_2$O) \cdot M(CaCl$_2$·2H$_2$O) = 0,5 mol \cdot 147,02 g mol$^{-1}$ = 73,51 g

Izvagani je CaCl$_2$ stavljen u odmjernu tikvicu od 500 mL te je tikvica nadopunjena do oznake s deioniziranom vodom provodnosti manje od 0,055 μS cm$^{-1}$. Otapanje kalcijeva klorida je primjer egzotermne reakcije!

Otopina je profiltrirana na membranskom filteru (Milipore) veličine pora 0,22 μm radi uklanjanja dodatnih nečistoća.
- Priprema otopine **natrijeva oksalata, Na₂C₂O₄**

\[
c(Na₂C₂O₄) = 0,5 \text{ mol dm}^3
\]
\[
V(otopina) = 100 \text{ mL} = 0,1 \text{ dm}^3
\]
\[
m(Na₂C₂O₄) = ?
\]

\[
n(Na₂C₂O₄) = V(otopina) \cdot c(Na₂C₂O₄)
\]
\[
= 0,1 \text{ dm}^3 \cdot 0,5 \text{ mol dm}^3
\]
\[
= 0,05 \text{ mol}
\]

\[
m(Na₂C₂O₄) = n(Na₂C₂O₄) \cdot M(Na₂C₂O₄)
\]
\[
= 0,05 \text{ mol} \cdot 134 \text{ g mol}^{-1}
\]
\[
= 6,7 \text{ g}
\]

Izvagani natrijev oksalat prenesen je u odmjernu tikvicu od 100 mL te je tikvica nadopunjena do oznake deioniziranom vodom provodnosti manje od 0,055 μS cm⁻¹.

- Priprema otopine **natrijeva citrata, Na₃C₆H₅O₇**

\[
c(Na₃C₆H₅O₇\cdot2H₂O) = 1 \text{ mol dm}^3
\]
\[
V(otopina) = 100 \text{ mL} = 0,1 \text{ dm}^3
\]
\[
m(Na₃C₆H₅O₇\cdot2H₂O) = ?
\]

\[
n(Na₃C₆H₅O₇\cdot2H₂O) = V(otopina) \cdot c(Na₃C₆H₅O₇\cdot2H₂O)
\]
\[
= 0,1 \text{ dm}^3 \cdot 1 \text{ mol dm}^3
\]
\[
= 0,1 \text{ mol}
\]

\[
m(Na₃C₆H₅O₇\cdot2H₂O) = n(Na₃C₆H₅O₇\cdot2H₂O) \cdot M(Na₃C₆H₅O₇\cdot2H₂O)
\]
\[
= 0,1 \text{ mol} \cdot 294,10 \text{ g mol}^{-1}
\]
\[
= 29,41 \text{ g}
\]

Izvagani trinatrijev citrat dihidrat prenesen je u odmjernu tikvicu koja je nadopunjena do oznake s deioniziranom vodom provodnosti manje od 0,055 μS cm⁻¹

- Priprema otopine **natrijeva klorida, NaCl**

\[
c(NaCl) = 4 \text{ mol dm}^3
\]
\[
V(otopina) = 100 \text{ mL} = 0,1 \text{ dm}^3
\]
\[
m(NaCl) = ?
\]
\[n(\text{NaCl}) = V(\text{otopina}) \cdot c(\text{NaCl}) \]
\[= 0,1 \text{ dm}^3 \cdot 4 \text{ mol dm}^{-3} \]
\[= 0,4 \text{ mol} \]

\[m(\text{NaCl}) = n(\text{NaCl}) \cdot M(\text{NaCl}) \]
\[= 0,4 \text{ mol} \cdot 58,44 \text{ g mol}^{-1} \]
\[= 23,376 \text{ g} \]

Izvagani natrijev klorid prenesen je u odmjernu tikvicu koja je nadopunjena deioniziranim vodom provodnosti manje od 0,055 μS cm\(^{-1}\) do oznake.

Tablica 3. Izračuni volumena reagenasa za početni sustav

<table>
<thead>
<tr>
<th>Koncentracije po pokusima</th>
<th>(c_1) [mol/dm(^3)]</th>
<th>(V_2) [dm(^3)]</th>
<th>(c_2) [mol/dm(^3)]</th>
<th>(V_1) [dm(^3)]</th>
<th>(V_1) [mL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Otopina CaCl(_2)</td>
<td>0,9750</td>
<td>0,500</td>
<td>0,0390</td>
<td>0,020</td>
<td>20,00</td>
</tr>
<tr>
<td>2. Otopina NaC(_2)O(_4)</td>
<td>0,5464</td>
<td>0,500</td>
<td>0,0049</td>
<td>0,004484</td>
<td>4,484</td>
</tr>
<tr>
<td>3. Otopina NaCl</td>
<td>4,00</td>
<td>0,500</td>
<td>0,300</td>
<td>0,0375</td>
<td>37,500</td>
</tr>
</tbody>
</table>

Otopina CaCl\(_2\)

\[c_1(\text{CaCl}_2) \cdot V_1 = c_2(\text{CaCl}_2) \cdot V_2 \]
\[V_1 = \frac{0,0390 \text{ mol dm}^{-3} \cdot 500 \text{ mL}}{0,9750 \text{ mol dm}^{-3}} = 20,00 \text{ mL} \]

Otopina NaC\(_2\)O\(_4\)

\[c_1(\text{NaC}_2\text{O}_4) \cdot V_1 = c_2(\text{NaC}_2\text{O}_4) \cdot V_2 \]
\[V_1 = \frac{0,0049 \text{ mol dm}^{-3} \cdot 500 \text{ mL}}{0,5464 \text{ mol dm}^{-3}} = 4,484 \text{ mL} \]

Otopina NaCl

\[c_1(\text{NaCl}) \cdot V_1 = c_2(\text{NaCl}) \cdot V_2 \]
\[V_1 = \frac{0,300 \text{ mol dm}^{-3} \cdot 500 \text{ mL}}{4,00 \text{ mol dm}^{-3}} = 37,5 \text{ mL} \]
Tablica 4. Korištene koncentracije citrata po pokusima

<table>
<thead>
<tr>
<th>Koncentracije po pokusima</th>
<th>c_1 [mol/dm3]</th>
<th>V_2 dm3</th>
<th>c_2 [mol/dm3]</th>
<th>V_1 dm3</th>
<th>V_1 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bez citrata</td>
<td>1,00</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. 0,001 mol dm3 citrat</td>
<td>1,00</td>
<td>0,5</td>
<td>0,001</td>
<td>0,0005</td>
<td>0,500</td>
</tr>
<tr>
<td>3. 0,004 mol dm3 citrat</td>
<td>1,00</td>
<td>0,5</td>
<td>0,004</td>
<td>0,002</td>
<td>2,00</td>
</tr>
<tr>
<td>4. 0,008 mol dm3 citrat</td>
<td>1,00</td>
<td>0,5</td>
<td>0,008</td>
<td>0,004</td>
<td>4,00</td>
</tr>
<tr>
<td>5. 0,012 mol dm3 citrat</td>
<td>1,00</td>
<td>0,5</td>
<td>0,012</td>
<td>0,006</td>
<td>6,00</td>
</tr>
</tbody>
</table>

2. pokus - 0,001 mol dm3 citrata
c_1(citrat)$\cdot V_1 = c_2$(citrat)$\cdot V_2$

$V_1 = \frac{0,001 \text{ mol dm}^3 \cdot 500 \text{ mL}}{1 \text{ mol dm}^3} = 0,500 \text{ mL}$

3. pokus - 0,004 mol dm3 citrata
c_1(citrat)$\cdot V_1 = c_2$(citrat)$\cdot V_2$

$V_1 = \frac{0,004 \text{ mol dm}^3 \cdot 500 \text{ mL}}{1 \text{ mol dm}^3} = 2,00 \text{ mL}$

4. pokus - 0,008 mol dm3 citrata
c_1(citrat)$\cdot V_1 = c_2$(citrat)$\cdot V_2$

$V_1 = \frac{0,008 \text{ mol dm}^3 \cdot 500 \text{ mL}}{1 \text{ mol dm}^3} = 4,00 \text{ mL}$

5. pokus - 0,012 mol dm3 citrata
c_1(citrat)$\cdot V_1 = c_2$(citrat)$\cdot V_2$

$V_1 = \frac{0,012 \text{ mol dm}^3 \cdot 500 \text{ mL}}{1 \text{ mol dm}^3} = 6,00 \text{ mL}$
3.4 Standardizacija otopina

- Standardizacija otopine kalcijeva klorida

Postupak:

Nakon što je pripremljena otopina CaCl₂ približne koncentracije 1 mol dm⁻³ odpipetirano je 10 mL u odmjernu tikvicu od 100 mL i do oznake nadopunjeno deioniziranom vodom provodnosti manje od 0,055 μS cm⁻¹ kako bi se pripremila otopina koncentracije 0,1 mol dm⁻³.

Uzet je alikvot te otopine od 10 mL (po četiri puta za četiri titracije) i u svaku Erlenmeyerovu tikvicu dodano po 5 mL amonijačnog pufera te 8 kapi eriokrom crnilo T kao indikatora. Otopina je titrirana standardnom otopinom EDTA koncentracije 0,1000 mol dm⁻³. Završna točka titracije se prepoznaje promjenom boje iz ljubičaste u plavu.

\[V_1(EDTA) = 9,70 \text{ mL} \]
\[V_2(EDTA) = 9,80 \text{ mL} \]
\[V_3(EDTA) = 9,80 \text{ mL} \]
\[V_4(EDTA) = 9,70 \text{ mL} \]
\[V = 9,75 \text{ mL} \]

Jednadžba reakcije:

\[\text{Ca}^{2+} + \text{Y}^{4-} \rightarrow \text{CaY}^{2-} \quad 1 \text{ mol Ca} \sim 1 \text{ mol EDTA} \]

\[c_1(\text{EDTA}) \cdot V_1(\text{EDTA}) = c_2(\text{CaCl}_2) \cdot V_2(\text{CaCl}_2) \]

\[c_2(\text{CaCl}_2) = \frac{0,1 \text{ mol dm}^{-3} \cdot 9,75 \text{ mL}}{10 \text{ mL}} = 0,09750 \text{ mol dm}^{-3} \]

\[V_d(\text{CaCl}_2) = 10 \text{ mL} \quad V(\text{ukupno}) = 100 \text{ mL} \]

\[c(\text{CaCl}_2) = 10 \cdot 0,09750 \text{ mol dm}^{-3} = 0,9750 \text{ mol dm}^{-3} \]
- Standardizacija otopine natrijeva oksalata

Postupak:
Nakon što je priređena otopina NaC₂O₄ približne koncentracije 0,5 mol dm⁻³ odipetirano je 10 mL u odmjernu tikvicu od 100 mL i do oznake nadopunjen o deioniziranom vodom provodnosti manje od 0,055 μS cm⁻¹ kako bi se pripremila otopina koncentracije 0,05 mol dm⁻³.

U Erlenmeyerovu tikvicu je dodano 20 mL pripremljenog NaC₂O₄ te 10 mL 2 mol dm⁻³ H₂SO₄. Otopina je titrirana standardnom otopinom KMnO₄ koncentracije 0,0200 mol dm⁻³. Postupak je ponovljen 3 puta.

\[V_1(KMnO_4) = 21,8 \text{ mL} \]
\[V_2(KMnO_4) = 21,9 \text{ mL} \]
\[V_3(KMnO_4) = 21,9 \text{ mL} \]
\[V(KMnO_4) = 21,87 \text{ mL} \]

Jednadžba reakcije:
\[
8 \text{H}_2\text{SO}_4(aq) + 2 \text{KMnO}_4(aq) + 5\text{Na}_2\text{C}_2\text{O}_4(aq) \rightarrow 2 \text{MnSO}_4(aq) + 10 \text{CO}_2(g) + \text{K}_2\text{SO}_4(aq) + \text{Na}_2\text{SO}_4(aq) + 8\text{H}_2\text{O}(l)
\]

Redoks reakcija:
\[O: \text{C}_2\text{O}_4^{2-} - 2e^- \rightarrow 2\text{CO}_2 \]
\[R: \text{MnO}_4^- + 8\text{H}^+ + 5e^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \]

\[
n(\text{MnO}_4^-) : n(\text{C}_2\text{O}_4^{2-}) = 2 : 5
\]

\[
n(\text{C}_2\text{O}_4^{2-}) = \frac{5}{2} n(\text{MnO}_4^-) = \frac{5}{2} c(\text{KMnO}_4) \cdot V_{\text{utroseno}} = \frac{5}{2} \cdot 0,02 \text{ mol dm}^{-3} \cdot 21,87 \cdot 10^{-3} \text{ dm}^3 = 1,093 \cdot 10^{-3} \text{ mol}
\]

\[
c(\text{C}_2\text{O}_4^{2-}) = \frac{n(\text{C}_2\text{O}_4^{2-})}{V_{\text{s (otopina)}}} = \frac{1,093 \cdot 10^{-3} \text{ mol}}{20 \cdot 10^{-3} \text{ dm}^3} = 0,05460 \text{ mol dm}^{-3} \text{ u 10 mL}
\]

\[
c(\text{C}_2\text{O}_4^{2-})_{\text{100 mL}} = 0,0546 \text{ mol dm}^{-3} \cdot 10 = 0,5460 \text{ mol dm}^{-3}
\]
3.5 Sinteza kristalnog sjemena COD

Za pripremu taložnog sustava korištene su navedene kemikalije te deionizirana voda provodnosti manje od 0,055 μS cm⁻¹. Početne su koncentracije reaktanata kalcijeva klorida i natrijeva oksalata u svim sustavima spontanog taloženja jednake i iznose c(Ca²⁺) = 0,0390 mol dm⁻³ te c(C₂O₄²⁻) = 0,00490 mol dm⁻³. Početna pH vrijednost svih taložnih sustava podešena je na 6,5 s otopinama NaOH, odnosno HCl. Otopinom natrijeva klorida održavana je ionska jakost na fiziološku vrijednost od 0,3 mol dm⁻³. Uzorci se razlikuju po dodanim koncentracijama citrata od 0,001 mol dm⁻³ do 0,012 mol dm⁻³ u uvjetima hipercaliurije. U otopinu oksalata za prvi uzorak P1 nije dodana otopina natrijeva citrata niti pri jednoj temperaturi.

Staklena reakcijska posuda dvostrukih stjenki ([Slika 14.]) je upotrebljena u svim eksperimentima. Reakcijske otopine su termostatirane na temperature od 20, 25, 37 i 45 °C koje su kontrolirane i održavane preko protočnog termostata. Za svaku temperaturu napravljeno je po pet pokusa, tj. sintetizirano je pet uzoraka s različitim koncentracijama citrata u otopini oksalata ([Tablica 4.]). Sustavi su miješani mehaničkim miješanjem uz konstantan broj okretaja, odnosno brzinom miješanja od 240 o/min (broj okretaja u minutii). Prije početka eksperimenta, u otopinu natrijeva oksalata dodan je odgovarajući volumen citrata. Eksperimenti započinju dodatkom otopine natrijeva oksalata (Na₂C₂O₄) u otopinu kalcijeva klorida (CaCl₂). Prije reakcije, svakoj je otopini (i oksalata i kalcija) namješten početni pH na 6,5. Proces taloženja i napredak reakcije praćen je mjerenjem pH otopine kombiniranom staklenom pH elektrodom koja je povezana s pH-metrom. Uspostavljanjem
pričuo konstantne pH vrijednosti nastale suspenzije, eksperiment je prekinut (pričuo 20 minuta). Svaki je uzorak profiltriran preko membranskog filtera (Milipore) veličine pora 0,22 μm, a talog je ispiran malom količinom deionizirane vode. Uzorak je sušen jedan sat u vakuumu.

Prije svake promjene temperature izvršena je kalibracija pH elektroda kako bi se eksperiment izveo uz što preciznije mjerenje. Kalibracija je provedena u tri točke, odnosno s tri pufera pH 4,01, 7,01 te 10,01.

Tablica 5. Prikaz koncentracija reagenasa u početnom sustavu za pojedine eksperimente.

<table>
<thead>
<tr>
<th>Reagensi</th>
<th>Pokus 1</th>
<th>Pokus 2</th>
<th>Pokus 3</th>
<th>Pokus 4</th>
<th>Pokus 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otopina CaCl₂ (mol dm⁻³)</td>
<td>0,039</td>
<td>0,039</td>
<td>0,039</td>
<td>0,039</td>
<td>0,039</td>
</tr>
<tr>
<td>Otopina NaCl (mol dm⁻³)</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Otopina NaC₂O₄ (mol dm⁻³)</td>
<td>0,0049</td>
<td>0,0049</td>
<td>0,0049</td>
<td>0,0049</td>
<td>0,0049</td>
</tr>
<tr>
<td>Otopina citrata (mol dm⁻³)</td>
<td>0</td>
<td>0,001</td>
<td>0,004</td>
<td>0,008</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Tablica 5. s izračunima volumena i koncentracija reagenasa napravljena je prema izračunima iz **Tablica 3.** i **4.** Pri svakoj navedenoj temperaturi napravljeno je pet pokusa s različitim koncentracijama citrata.
3.6 Karakterizacija kristalnog sjemena

3.6.1 Infracrvena spektroskopija (FT-IR)

IR spektri priređenih spojeva snimljeni su pomoću Shimadzu FTIR 8400S spektrometra u valnom području od 400 do 4000 cm\(^{-1}\) (rezolucija: 4 cm\(^{-1}\)) DRS tehnikom. Analizirani su spojevi u krutom stanju. Kruti uzorci imaju više načina priprave, za snimanje na FT-IR spektrometru koristili smo DRIFT (eng. diffuse reflectance infrared Fourier transform) tehniku. Prije svakog snimanja potrebno je pripremiti uzorak. Kod DRIFT tehnike, uzorak se fino usitni (ahatni tarionik) te se homogeno pomiješa s tvari koja ne aposorbira u IR području, u ovom slučaju KBr. Homogena se smjesa prenosi na odgovarajući nosač koji se stavlja u mjerni uređaj. Za prikupljanje i obradu podataka korišten je računalni program IR Solution 1.30.

3.6.2 Termogravimetrijska analiza (TGA)

TGA-DSC analiza je izvršena instrumentom Mettler Toledo System 1. Uzorci su ispitivani u atmosferi kisika, uz brzinu protoka plina 200 mL/min, s korakom snimanja 5 °C/min u temperaturnom području od 30 do 300 °C. Rezultati su obrađeni pomoću računalnog programa STARe Software 10.0.

Izvagane su posudice od aluminijeva oksida. U svaku od njih je dodano približno 10 mg uzorka te je posudica s uzorkom ponovno izvagana. Točna dodana masa uzorka je izračunata iz razlike mase posudice s uzorkom i mase prazne posudice. Uzorak u posudici je stavljen u instrument na zagrijavanje tako da temperatura ravnomjerno raste zadanom brzinom, a promjena mase je bilježena instrumentom. Na temelju zabilježene promjene mase, moguće je odrediti postotni udio pojedinog hidratnog oblika u uzorku.
3.6.3 Optička mikroskopija
Morfološke promjene taloga promatrane su mikroskopom „Orphoplan“ (E.Leitz, Wetzlar) koji omogućuje slikanje u normalnom prolaznom i polariziranom svjetlu.
4. REZULTATI I DISKUSIJA

Rezultati su interpretirani po temperaturama pri kojima su provedeni pokusi. Na svakoj temperaturi (20, 25, 37 te 45 °C) napravljeno je pet pokusa, odnosno sakupljeno je sveukupno 20 uzoraka. Koncentracije kalcijeva klorida i natrijeva oksalata su držane konstantnim, u uvjetima hiperkaliurije dok je koncentracija citrata mijenjana. Prva reakcijska smjesa nije sadržavala citrat, a zadnjoj (petoj) je dodana najveća koncentracija od 0,012 mol dm⁻³. Uočene su razlike između uzoraka povezane s promjenom temperature i koncentracije citrata.

4.1 Sinteza kalcijeva oksalata na 20 °C

Reakcija je praćena pH krivuljom te je uočena nepravilnost i nestabilnost pH na kraju reakcije bez prisutnosti citrata. Pri ostalim koncentracijama aditiva, dobivene su pravilnije pH krivulje uz sniženje pH za jednu pH jedinicu na početku reakcije (Slika 18.).

![Slika 18. pH krivulje pri temperaturi od 20° C. Oznaka p označava pokus](image)

Završetkom sinteze, uzorci su ispitani i okarakterizirani TG analizom, FT-IR spektroskopijom te je veličina i morfologija taloga određena optičkom mikroskopijom.
Termogravimetrijskom analizom je uočeno da pri temperaturi od 20 °C u većem postotnom udjelu taloži COM. U 100 %-tnom udjelu COM taloži bez dodatka citrata u uzorku P1, a najveći se udio COD od 44,59 %, pojavljuje pri najvišim koncentracijama citrata, odnosno u uzorku P5 (Tablica 6.).

Tablica 6. Rezultati dobiveni termogravimetrijskom analizom pri temperaturi od 20 °C

<table>
<thead>
<tr>
<th>UZORAK</th>
<th>T₀/°C</th>
<th>T_midpoint/°C</th>
<th>T.f/°C</th>
<th>m/mg</th>
<th>Δm/mg</th>
<th>Δm/%</th>
<th>mf/mg</th>
<th>COM</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>66.16</td>
<td>147.22</td>
<td>199.96</td>
<td>10.1400</td>
<td>1.1630</td>
<td>11.4694</td>
<td>9.3360</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>P2</td>
<td>68.10</td>
<td>147.41</td>
<td>227.62</td>
<td>10.7400</td>
<td>1.6030</td>
<td>14.9253</td>
<td>8.7880</td>
<td>73.0498</td>
<td>26.9502</td>
</tr>
<tr>
<td>P3</td>
<td>56.71</td>
<td>147.47</td>
<td>241.69</td>
<td>10.6700</td>
<td>1.7242</td>
<td>16.1590</td>
<td>8.5840</td>
<td>60.2388</td>
<td>39.7612</td>
</tr>
<tr>
<td>P4</td>
<td>60.64</td>
<td>151.01</td>
<td>241.3</td>
<td>10.9000</td>
<td>1.7151</td>
<td>15.7351</td>
<td>9.4171</td>
<td>64.6407</td>
<td>35.3593</td>
</tr>
<tr>
<td>P5</td>
<td>58.76</td>
<td>150.44</td>
<td>241.57</td>
<td>10.6100</td>
<td>1.7638</td>
<td>16.6237</td>
<td>9.4100</td>
<td>55.4133</td>
<td>44.5867</td>
</tr>
</tbody>
</table>

Gubitak mase uzorka P1 iznosi 11.4694 %, odnosno 1,1630 mg, dok za P5 ta vrijednost iznosi 16,6237 % ili 1,7638 mg.

Rezultati koji se nalaze u Tablici 6. očitani su s grafičkog prikaza (Slika 19. i 20.) kao promjena mase tijekom termogravimetrijske analize. Radi jednostavnijeg prikaza rezultata, analizirani su termogrami s najmanjim i najvećim udjelom COD. COT nije prisutan niti u jednom uzorku. Na Slici 20. uočen je jedan skok na krivulji iako se u najvećem udjelu pronalazi COD. Ostali termogrami uzoraka (P2, P3 i P4) nalaze se u prilogu (Slika 21., 22. i 23.).
Slika 19. Grafički prikaz TGA za najmanji udio COD, odnosno najveći COM

Slika 20. Grafički prikaz TGA za najmanji udio COM, odnosno najveći COD
Iz promjene mase tijekom zagrijavanja uzoraka u instrumentu za TGA, moguće je izračunati i broj molekula vode u pojedinom uzorku. Teoretski udio COM iznosi 12,33 % dok za COD iznosi 21,96 % (Tablica 7.). Najveći broj molekula sadrži uzorak P5 i to 1,42, dok P1 sadrži točno jednu molekulu vode što je ujedno i dokaz postojanja 100%-tnog COM u uzorku.

Tablica 7. Prikaz računanja molekula vode u uzorku

<table>
<thead>
<tr>
<th>Uđio mase (X)</th>
<th>M(H₂O)</th>
<th>M(CaOₓ)</th>
<th>Uđio·M(CaOₓ)</th>
<th>Uđio·M(H₂O)ₓ</th>
<th>M(H₂O)ₓ</th>
<th>Broj voda</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.1147</td>
<td>18.015</td>
<td>14.69</td>
<td>15.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>0.1493</td>
<td>18.015</td>
<td>19.12</td>
<td>15.33</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>0.1616</td>
<td>18.015</td>
<td>20.70</td>
<td>15.10</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>0.1574</td>
<td>18.015</td>
<td>20.15</td>
<td>15.18</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>0.1662</td>
<td>18.015</td>
<td>21.29</td>
<td>15.02</td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>

Slika 24. IR spektar kristala iz pokusa (P) 1 te pokusa 5 pri 20 °C
Tablica 8. Prikaz karakterističnih vrpca i njihov intenzitet (zeleno) u IR spektru uzoraka P1

<table>
<thead>
<tr>
<th>Literaturni podaci</th>
<th>Vibracijske vrpce za P1</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>3481,63-3061,13 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1612,54 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1487,17-1323,21 cm⁻¹</td>
<td>1385 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>947,08-885,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>785,06 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>653,89 cm⁻¹</td>
<td>665 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>513,50 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
<tr>
<td>420,50 cm⁻¹</td>
<td>418 cm⁻¹</td>
<td>O-C-O asimetrično mahanje</td>
</tr>
</tbody>
</table>

Tablica 9. Prikaz karakterističnih vrpca i njihov intenzitet (crveno) u IR spektru uzoraka P5

<table>
<thead>
<tr>
<th>Literaturni podaci</th>
<th>Vibracijske vrpce za P5</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>1645,33 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1319,35 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>914,29 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>781,20 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>511,15 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Iz očitanih podataka s grafa5,23-25, uočeno je da je uzorak P1 COM, dok se u uzorku P5 pojavljuje smjesa COM i COD. Za uzorak P1 (Slika 24. i Tablica 8.) karakterističan pik je na 1612,54 cm⁻¹. Pikovi na približno 3500 cm⁻¹ odgovaraju OH skupini, 780 cm⁻¹ i 520 cm⁻¹ O-C-O vibracijama koje se razlikuju po intenzitetu i obliku pika za COM i COD. U uzorku P5 (Slika 24. i Tablica 9.) karakterističan pik za COD nalazi se na približno 914,29 cm⁻¹. Oštar pik na 781,20 cm⁻¹ ukazuje na prisutnost COM.

U uzorcima P2, P3 i P4 taloži smjesa COM i COD. Prikaz FT-IR rezultata za uzorke P2, P3 i P4 nalazi se u prilogu (Slike 54., 55. i 56. te Tablice 25., 29. i 33.).
Ispitivanje veličine i morfologije uzoraka je provedeno optičkom mikroskopijom (Slika 25.)

Slika 25. Karakteristične mikroskopske snimke kristala u uzorcima P1 (lijevo) i P5 (desno)

Iz mikroskopskih snimki teško je uočljiva morfologija za oba uzorka (P1 i P5) zbog vrlo malih veličina kristala i agregacije istih. Veličina kristala puno je manja od 20 μm.

Prikaz morfologije i veličine kristala za uzorke P2, P3 i P4 nalazi se u prilogu (Slika 26.)
4.2 Sinteza kalcijeva oksalata na 25 °C
Reakcija je praćena pH krivuljom. Na početku reakcije uočen je nagli pad pH vrijednosti za približno jednu jedinicu uslijed taloženja produkta. Primjećeno je odstupanje od takvog ponašanja kod P1 koji ne sadrži citrat u otopini oksalata. Krivulja pokazuje nepravilnost i nestabilnost pH vrijednosti na početku i na kraju reakcije (Slika 27.).

TGA i FT-IR spektroskopijom pokazano je da su uzorci smjese dvaju hidratnih oblika, COM i COD, s različitim udjelima u svakom uzorku.

Termogravimetrijska analiza je pokazala da se u uzorku P1, gotovo u 100 %-tnom udjelu nalazi COM (Tablica 10.) Nakon zagrijavanja uzorka P1, promjena mase iznosila je 1,2443 mg, odnosno izgubljeno je 12,3438 % od početne mase. Analiza je također pokazala da se COD u najvećem udjelu pojavljuje u uzorku P5 s najvećom koncentracijom citrata u otopini (Slika 29.). Gubitak mase u uzorku P5 iznosio je 1,8953 mg.

Ostali TGA prikazi rezultata uzoraka P2, P3 i P4 nalaze se u prilogu (Slika 30., 31. i 32.).
Tablica 10. Rezultati dobiveni termogravimetrijskom analizom pri temperaturi od 25 °C

<table>
<thead>
<tr>
<th>UZORAK</th>
<th>T₀/°C</th>
<th>T<midpoint>/°C</th>
<th>Tₐ/°C</th>
<th>mᵢ/mg</th>
<th>Δm/mg</th>
<th>Δm/%</th>
<th>mᵢ'/mg</th>
<th>COM</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>60.93</td>
<td>148.29</td>
<td>235.74</td>
<td>10.0800</td>
<td>1.2443</td>
<td>12.3438</td>
<td>8.8357</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>P2</td>
<td>57.90</td>
<td>148.30</td>
<td>236.45</td>
<td>10.3400</td>
<td>1.5478</td>
<td>14.9639</td>
<td>8.7922</td>
<td>72.5919</td>
<td>27.4081</td>
</tr>
<tr>
<td>P3</td>
<td>55.71</td>
<td>148.24</td>
<td>239.79</td>
<td>10.6600</td>
<td>1.7949</td>
<td>16.8380</td>
<td>8.6870</td>
<td>53.188</td>
<td>46.812</td>
</tr>
<tr>
<td>P4</td>
<td>56.59</td>
<td>147.24</td>
<td>240.33</td>
<td>10.2400</td>
<td>1.6598</td>
<td>16.2087</td>
<td>8.4884</td>
<td>59.7227</td>
<td>40.2773</td>
</tr>
<tr>
<td>P5</td>
<td>54.62</td>
<td>150.05</td>
<td>241.63</td>
<td>10.4300</td>
<td>1.8953</td>
<td>18.1720</td>
<td>8.5347</td>
<td>39.3354</td>
<td>60.6646</td>
</tr>
</tbody>
</table>

Slika 28. Grafički prikaz TGA za najmanji udio COD, odnosno najveći COM
Iz Tablice 10. se uočava da COT nije prisutan niti u jednom od uzoraka. Iz dobivenih rezultata moguće je izračunati i broj molekula vode u uzorku (Tablica 11.). Rezultati su pokazali da najveći broj molekula sadrži uzorak P5 i t o 1,58, dok P1 sadrži točno jednu molekulu vode što je i dokaz postojanja 100 %-tnog COM u uzorku.

Tablica 11. Prikaz računanja molekula vode u uzorku

<table>
<thead>
<tr>
<th>Udio mase (X)</th>
<th>M(H₂O)</th>
<th>M(CaOₓ)</th>
<th>Udio·M(CaOₓ)</th>
<th>Udio·M(H₂O)ₓ</th>
<th>M(H₂O)-X</th>
<th>Broj voda</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.1234</td>
<td>18.015</td>
<td>128.078</td>
<td>15.81</td>
<td>2.22</td>
<td>15.79</td>
</tr>
<tr>
<td>P2</td>
<td>0.1497</td>
<td>18.015</td>
<td>128.078</td>
<td>19.17</td>
<td>2.70</td>
<td>15.32</td>
</tr>
<tr>
<td>P3</td>
<td>0.1684</td>
<td>18.015</td>
<td>128.078</td>
<td>21.57</td>
<td>3.03</td>
<td>14.98</td>
</tr>
<tr>
<td>P4</td>
<td>0.1621</td>
<td>18.015</td>
<td>128.078</td>
<td>20.76</td>
<td>2.92</td>
<td>15.10</td>
</tr>
<tr>
<td>P5</td>
<td>0.1817</td>
<td>18.015</td>
<td>128.078</td>
<td>23.27</td>
<td>3.27</td>
<td>14.74</td>
</tr>
</tbody>
</table>

Tablica 12. Prikaz karakterističnih vrpci i njihov intenzitet (zeleno) u IR spektru uzoraka P1

![IR spektar kristala iz pokusa (P) 1 te pokusa 5 pri 25 °C](image)

Literaturni podaci

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P1</th>
<th>COM</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>3473,91-3057,27 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1604,83 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1487,17-1363,72 cm⁻¹</td>
<td>1385 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>947,08-885,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>786,98 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>655,82 cm⁻¹</td>
<td>665 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>513,08 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
<tr>
<td>418,57 cm⁻¹</td>
<td>418 cm⁻¹</td>
<td>O-C-O asimetrično mahanje</td>
</tr>
</tbody>
</table>
Tablica 13. Prikaz karakterističnih vrpca i njihov intenzitet (crveno) u IR spektru uzoraka P5

<table>
<thead>
<tr>
<th>Literaturni podaci</th>
<th>Literaturni podaci</th>
<th>Literaturni podaci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibracijske vrpce za P5</td>
<td>COM</td>
<td>COD</td>
</tr>
<tr>
<td>~ 3500 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
</tr>
<tr>
<td>~ 3220 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>3240 cm⁻¹</td>
</tr>
<tr>
<td>1649,19-1620,26 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
</tr>
<tr>
<td>1471,74-1319,35 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
</tr>
<tr>
<td>914,29 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
</tr>
<tr>
<td>781,20 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
</tr>
<tr>
<td>516,94 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
</tr>
</tbody>
</table>

Karakterističan pik za COM (uzorak P1) nalazi se na 1620 cm⁻¹ (u ovom primjeru 1604,83 cm⁻¹) (Slika 33. i Tablica 12.), dok je taj pik kod COD (uzorak P5) pomaknut prema 1640 cm⁻¹ (u ovom primjeru 1649,19-1620,26 cm⁻¹). Na uzorku P5 (Tablica 13.) uočen je pik na 914,29 cm⁻¹ što indicira na prisutnost COD čiji se karakteristični pik nalazi na 912 cm⁻¹. Pikovi na približno 3500 cm⁻¹ upućuju na prisutnost OH skupine, dok se O-C-O istezanja razlikuju i po intenzitetu i obliku pika kod oba oblika koja se nalaze u smjesi.

Iz dobivenih rezultata, uočena je prisutnost smjese COM i COD u svim uzorcima, osim u P1 gdje je prisutan COM u gotovo 100 % udjelu. U uzorku P5 veći je udio COD (60,66 %) na temperaturi od 25 ⁰C. U uzorcima P2, P3 i P4 taloži smjesa COM i COD. Prikaz FT-IR rezultata za uzorke P2, P3 i P4 nalazi se u prilogu (Slike 54., 55. i 56. te Tablice 26., 30. i 34.).
Optičkom mikroskopijom ispitivana je veličina i morfologija pojedinih uzoraka (Slika 34.)

Na uzorku P1 nešto je teže odrediti morfologiju i veličinu kristala u odnosu na P5. Na uzorku P5 uočeni su veći pojedinačni kristali koji su, iako manji od 20 μm, poprimili karakterističan bipiramidalni oblik COD.

Prikaz morfologije i veličine kristala za uzorke P2, P3 i P4 nalazi se u prilogu (Slika 35.).
4.3 Sinteza kalcijeva oksalata na 37 °C
Na početku reakcije (dodatkom otopine oksalata) primjećen je nagli pad pH vrijednosti za približno jednu pH jedinicu. Kod pH krivulje za P1 (Slika 36.) uočena je nepravilnost i nestabilnost, odnosno odstupanje od ostalih krivulja koje su karakteristične za taložne reakcije.

Termogravimetrijska analiza (TGA) je pokazala da su uzorci smjese pojedinih hidratnih oblika, COM i COD, osim P1 u kojem nije prisutna otopina citrata. Uzorak P1 gotovo je 100%-tni COM s gubitkom mase od 12,1081 % što čini 1,31 mg. Najveći udio COD uočen je u uzorku P3 s gubitkom mase od 18,4519 %, odnosno 2,00 mg (Tablica 14.). U uzorku P3 dodana je otopina citrata koncentracije 0,004 mol/dm³. Niti u jednom uzorku pri temperaturi od 37 °C nije prisutan COT.

Tablica 14. Rezultati dobiveni termogravimetrijskom analizom pri temperaturi od 37 °C

<table>
<thead>
<tr>
<th>UZORAK</th>
<th>T_0/°C</th>
<th>T_midpoint/°C</th>
<th>T_f/°C</th>
<th>mi/mg</th>
<th>Δm/mg</th>
<th>Δm/%</th>
<th>m_f/mg</th>
<th>udomo %</th>
<th>COM</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>64.37</td>
<td>152.27</td>
<td>241.34</td>
<td>10.8200</td>
<td>1.3101</td>
<td>12.1081</td>
<td>9.5760</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>53.10</td>
<td>147.59</td>
<td>240.88</td>
<td>10.6900</td>
<td>1.6820</td>
<td>15.7342</td>
<td>9.1450</td>
<td>64.6501</td>
<td>35.3499</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>55.39</td>
<td>149.44</td>
<td>241.48</td>
<td>10.8600</td>
<td>1.3039</td>
<td>12.1081</td>
<td>8.7120</td>
<td>36.4289</td>
<td>63.5711</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>53.12</td>
<td>147.7</td>
<td>240.95</td>
<td>10.3400</td>
<td>1.9016</td>
<td>18.3908</td>
<td>9.0530</td>
<td>37.0633</td>
<td>62.9367</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>56.08</td>
<td>152.43</td>
<td>241.73</td>
<td>10.2500</td>
<td>1.7698</td>
<td>17.2668</td>
<td>8.2570</td>
<td>48.7352</td>
<td>51.2648</td>
<td></td>
</tr>
</tbody>
</table>

Slika 36. pH krivulje pri temperaturi od 37 °C. Oznaka P označava pokus 50
Slika 37. Grafički prikaz TGA za najmanji udio COD, odnosno najveći COM

Slika 38. Grafički prikaz TGA za najmanji udio COM, odnosno najveći COD
Ostali TGA prikazi rezultata uzoraka P2, P4 i P5 nalaze se u prilogu (Slika 39., 40. i 41.).

Analizom podataka iz Tablice 14. moguće je odrediti broj molekula vode čime se još jednom potvrdila prisutnost pojedinog hidratnog oblika kalcijevih oksalata u uzorcima. Iako su uzorci smjese oblika COM i COD, P1 sadrži u najvećem udjelu COM što je dokazano gubitkom jedne molekule vode prilikom zagrijavanja termogravimetrijskom analizom. Za P3 uočen je gubitak od 1,61 molekula vode, što pokazuje prisutnost COD u uzorku (Tablica 15.).

Tablica 15. Prikaz računanja molekula vode u uzorku

<table>
<thead>
<tr>
<th>Udio mase (X)</th>
<th>M(H₂O) [g/mol]</th>
<th>M(CaOx) [g/mol]</th>
<th>Udio·M(CaOx) [g/mol]</th>
<th>Udio·M(H₂O)X [g/mol]</th>
<th>M(H₂O)-X [g/mol]</th>
<th>Broj voda</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.1211</td>
<td>18.015</td>
<td>128.078</td>
<td>15.51</td>
<td>2.18</td>
<td>15.83</td>
</tr>
<tr>
<td>P2</td>
<td>0.1573</td>
<td>18.015</td>
<td>128.078</td>
<td>20.15</td>
<td>2.83</td>
<td>15.18</td>
</tr>
<tr>
<td>P3</td>
<td>0.1845</td>
<td>18.015</td>
<td>128.078</td>
<td>23.63</td>
<td>3.32</td>
<td>14.69</td>
</tr>
<tr>
<td>P4</td>
<td>0.1839</td>
<td>18.015</td>
<td>128.078</td>
<td>23.55</td>
<td>3.31</td>
<td>14.70</td>
</tr>
<tr>
<td>P5</td>
<td>0.1727</td>
<td>18.015</td>
<td>128.078</td>
<td>22.11</td>
<td>3.11</td>
<td>14.90</td>
</tr>
</tbody>
</table>

FT-IR spektroskopijom je također potvrđena prisutnost smjese COM i COD u uzorcima. Radi bolje interpretacije rezultata, uspoređeno je tri uzorka - uzorak P1, P3 i P5.
Na grafičkom prikazu za uzorak P1 uočeni su karakteristični pikovi na približno 1620 cm$^{-1}$ (u ovom primjeru 1616,40 cm$^{-1}$). Prisutnost pika poput 1322 cm$^{-1}$ i oštrog pika na 780 cm$^{-1}$ upućuje na prisutnost COM (Tablica 16.).

Tablica 16. Prikaz karakterističnih vrpči i njihov intenzitet (zeleno) u IR spektru uzoraka P1

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P1</th>
<th>COM</th>
<th>Vrsta vibracije</th>
</tr>
</thead>
<tbody>
<tr>
<td>3481,63-3064,99 cm$^{-1}$</td>
<td>3490 cm$^{-1}$</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1616,40 cm$^{-1}$</td>
<td>1622 cm$^{-1}$</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1361,79-1319,35 cm$^{-1}$</td>
<td>1385 cm$^{-1}$</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>945,15-883,43 cm$^{-1}$</td>
<td>947 cm$^{-1}$</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>783,13 cm$^{-1}$</td>
<td>782 cm$^{-1}$</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>659,68 cm$^{-1}$</td>
<td>665 cm$^{-1}$</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>516,94 cm$^{-1}$</td>
<td>517 cm$^{-1}$</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
<tr>
<td>468,72-451,36 cm$^{-1}$</td>
<td>418 cm$^{-1}$</td>
<td>O-C-O asimetrično mahanje</td>
</tr>
</tbody>
</table>

Na grafičkim prikazima za uzorak P3 i P5 uočen je karakterističan pik za COD na približno 912 cm$^{-1}$ (na grafu približno 914 cm$^{-1}$). Na trećem grafičkom prikazu uočeno je pomicanje pika na 1649,19 cm$^{-1}$ što je također karakteristično za COD (Tablica 17. i 18.).
Tablica 17. Prikaz karakterističnih vrpći i njihov intenzitet (crveno) u IR spektru uzoraka P3

<table>
<thead>
<tr>
<th>Vibracijske vrpče za P3</th>
<th>Literaturni podaci</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 1600 cm⁻¹</td>
<td>1622 cm⁻¹ 1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1320 cm⁻¹</td>
<td>1316 cm⁻¹ 1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 914 cm⁻¹</td>
<td>947 cm⁻¹ 912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 770 cm⁻¹</td>
<td>782 cm⁻¹ 782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 515 cm⁻¹</td>
<td>517 cm⁻¹ 500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 18. Prikaz karakterističnih vrpći i njihov intenzitet (plavo) u IR spektru uzoraka P5

<table>
<thead>
<tr>
<th>Vibracijske vrpče za P5</th>
<th>Literaturni podaci</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>1649,19 cm⁻¹</td>
<td>1622 cm⁻¹ 1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1323,21 cm⁻¹</td>
<td>1316 cm⁻¹ 1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>914,29 cm⁻¹</td>
<td>947 cm⁻¹ 912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>777,34 cm⁻¹</td>
<td>782 cm⁻¹ 782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>607,60 cm⁻¹</td>
<td>660 cm⁻¹ 610 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>515,01 cm⁻¹</td>
<td>517 cm⁻¹ 500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Iz priloženih podataka moguće je odrediti pojedini oblik u uzorku. Stoga, u P1 je prisutan gotovo 100%-tni COM dok su uzorci P3 i P5 smjese COM i COD u različitim udjelima što i pokazuje Tablica 14. s rezultatima termogravimetrijske analize.

U uzorcima P2 i P4 taloži smjesa COM i COD. Prikaz FT-IR rezultata za uzorke P2 i P4 nalazi se u prilogu (Slike 54. i 56. te Tablice 27. i 35.).
Optičkom se mikroskopijom uzorcima ispitivala morfologija te veličina kristala (Slika 43.).

Kristali u uzorku P1 znatno se razlikuju po veličini od kristala u uzorku P3. U uzorku P3 uočavaju se veliki, pojedinačni kristali s mogućim prepoznavanjem morfologije, bipiramidalni oblik što karakterizira COD. Kristali u P1 manji su od 20 μm te je prisutan veći broj kristalnih agregata u odnosu na uzorak P3.

Prikaz morfologije i veličine kristala za uzorke P2, P4 i P5 nalazi se u prilogu (Slika 44.).
4.4 Sinteza kalcijeva oksalata na 45 °C

Reakcija je praćena pH-metrom te se pri kraju reakcije za uzorak P1 uočava nepravilnost i nestabilnost na pH krivulji bez prisutnosti citrata. Za ostale koncentracije aditiva dobivene su pravilnije pH krivulje karakteristične za taložne reakcije, iako se za uzorak P3 utvrdila nestabilnost pH otopine pri višoj temperaturi od 45 °C. Dodatkom otopine oksalata, snižava se pH reakcijske otopine za jednu pH jedinu na početku reakcije (Slika 45.).

![Slika 45. pH krivulje pri temperaturi od 45° C. Oznaka P označava pokus](image)

Završetkom sinteze, uzorci su ispitani i okarakterizirani termogravimetrijskom analizom, FT-IR spektroskopijom, dok je veličina i morfologija određena optičkom mikroskopijom.

Termogravimetrijskom analizom je uočeno da se pri temperaturi od 45 °C u svim uzorcima pojavljuje COM, iako je većina uzoraka smjesa COM i COD. U 100 %-tnom se udjelu COM dobije bez dodatka aditiva u uzorku P1, a najveći se udio COD od 89,51 % pojavljuje pri koncentraciji citrata od 0,001 mol/dm³, odnosno u uzorku P2 (Tablica 19). Gubitak mase kod uzorka P1 iznosi 12.3923 %, odnosno 1,3185 mg dok gubitak mase za uzorak P2 iznosi 20,9493 % ili 2,2688 mg.
Tablica 19. Rezultati dobiveni termogravimetrijskom analizom pri temperaturi od 45 °C

<table>
<thead>
<tr>
<th>UZORAK</th>
<th>T₀/°C</th>
<th>T₁max/°C</th>
<th>T₂max/°C</th>
<th>Tₚ/°C</th>
<th>mi/mg</th>
<th>Δm/mg</th>
<th>Δm/%</th>
<th>mf/mg</th>
<th>COM</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>63.17</td>
<td>161.49</td>
<td>/</td>
<td>233.12</td>
<td>10.6400</td>
<td>1.3185</td>
<td>12.3923</td>
<td>9.4100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>P2</td>
<td>55.57</td>
<td>89.30</td>
<td>148.96</td>
<td>241.17</td>
<td>10.8300</td>
<td>2.2688</td>
<td>20.9493</td>
<td>8.3939</td>
<td>10.4953</td>
<td>89.5047</td>
</tr>
<tr>
<td>P3</td>
<td>69.57</td>
<td>146.96</td>
<td>/</td>
<td>234.2</td>
<td>10.5300</td>
<td>1.7180</td>
<td>16.3152</td>
<td>8.6710</td>
<td>58.6168</td>
<td>41.3832</td>
</tr>
<tr>
<td>P4</td>
<td>55.01</td>
<td>149.36</td>
<td>/</td>
<td>240.46</td>
<td>10.7400</td>
<td>1.9133</td>
<td>17.8143</td>
<td>9.3538</td>
<td>43.0498</td>
<td>56.9502</td>
</tr>
<tr>
<td>P5</td>
<td>54.72</td>
<td>155.46</td>
<td>/</td>
<td>241.41</td>
<td>10.5500</td>
<td>1.8434</td>
<td>17.4733</td>
<td>9.5600</td>
<td>46.5909</td>
<td>53.4091</td>
</tr>
</tbody>
</table>

Slika 46. Grafički prikaz TGA za najmanji udio COD, odnosno najveći COM
COT nije prisutan pri temperaturi od 45 °C niti pri jednoj koncentraciji aditiva. Na Slici 47. uočena su dva skoka na TGA krivulji, za razliku od ostalih primjera na različitim temperaturama. Dva skoka na krivulji upućuju na prisutnost velikog udjela COD u uzorku što se i računski utvrdilo.

Iz dobivenih rezultata termogravimetrijske analize moguće je izračunati broj molekula vode koje se nalaze u pojedinom uzorku. Za uzorak P1 broj molekula vode iznosi 1 što upućuje na 100 %-tni COM, dok za P2 (iako je smjesa COM i COD) broj molekula vode u uzorku iznosi 1,88 što upućuje na prisutnost COD velikog udjela u uzorku (Tablica 20.).

Ostali TGA prikazi rezultata uzoraka P3, P4 i P5 nalaze se u prilogu (Slika 48., 49. i 50.).

Tablica 20. Prikaz računanja molekula vode u uzorku

<table>
<thead>
<tr>
<th>Udio mase (X)</th>
<th>M(H2O)</th>
<th>M(CaOx)</th>
<th>Udio·M(CaOx)</th>
<th>Udio·M(H2O)X</th>
<th>M(H2O)-X</th>
<th>Broj voda</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 0.1239</td>
<td>18.015</td>
<td>128.078</td>
<td>13.87</td>
<td>1.23</td>
<td>15.78</td>
<td>1</td>
</tr>
<tr>
<td>P2 0.2095</td>
<td>18.015</td>
<td>128.078</td>
<td>26.83</td>
<td>3.77</td>
<td>14.24</td>
<td>1.88</td>
</tr>
<tr>
<td>P3 0.1632</td>
<td>18.015</td>
<td>128.078</td>
<td>20.90</td>
<td>2.94</td>
<td>15.08</td>
<td>1.39</td>
</tr>
<tr>
<td>P4 0.1781</td>
<td>18.015</td>
<td>128.078</td>
<td>22.82</td>
<td>3.21</td>
<td>14.81</td>
<td>1.54</td>
</tr>
<tr>
<td>P5 0.1747</td>
<td>18.015</td>
<td>128.078</td>
<td>22.38</td>
<td>3.18</td>
<td>14.87</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Prisutnost oba hidratna oblika COM i COD pri 45 °C potvrđeno je i FT-IR spektroskopijom\(^{[5,23-25]}\) (\textbf{Slika 51. i Tablica 21. i 22..}). U svrhu bolje interpretacije rezultata, obrađeni su i podaci za uzorak P5 kao i kod temperature od 37 °C (\textbf{Tablica 23.}).

Na grafu za uzorak P1 uočen je karakterističan pik za COM na 1620 cm\(^{-1}\) (u ovom primjeru 1626,05 cm\(^{-1}\)). Uočeni su i karakteristični pikovi na 1322,948 cm\(^{-1}\) te oštar pik pri 780 cm\(^{-1}\) koji upućuju na prisutnost COM u vrlo čistom obliku ili u smjesi COM i COD. Pikovi na približno 3500 cm\(^{-1}\) za OH skupinu, 780 cm\(^{-1}\) i 520 cm\(^{-1}\) za O-C-O vibracije razlikuju se po intenzitetu i obliku pika za COM i COD. Pik na 520 cm\(^{-1}\) oštriji je kod COM. Karakterističan pik za COD nalazi se na približno 912 cm\(^{-1}\) na grafu za P2 i P5 i upravo se po njemu identificira prisutnost COD oblika. Ako su prisutni 1322, 948 i oštar pik od 780 cm\(^{-1}\), primjećuje se prisutnost COM (ili u smjesi).
Tablica 21. Prikaz karakterističnih vrpca i njihov intenzitet (zeleno) u IR spektru uzoraka P1

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P1</th>
<th>COM</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>3481,63-3063,08 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1626,05 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1489,10-1319,35 cm⁻¹</td>
<td>1385 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>947,08-885,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>781,20 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>651,96-599,88 cm⁻¹</td>
<td>665 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>516,94 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>O-C-O asimetrično nijahanje</td>
</tr>
<tr>
<td>451,36-418,57 cm⁻¹</td>
<td>418 cm⁻¹</td>
<td>O-C-O asimetrično mahanje</td>
</tr>
</tbody>
</table>

Tablica 22. Prikaz karakterističnih vrpca i njihov intenzitet (crveno) u IR spektru uzoraka P2

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P2</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3495 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1605 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1320 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 913 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 780 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 515 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično nijahanje</td>
</tr>
</tbody>
</table>

Tablica 23. Prikaz karakterističnih vrpca i njihov intenzitet (plavо) u IR spektru uzoraka P5

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P5</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3530 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1666,55-1606,76 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1325 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 781 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 650 cm⁻¹</td>
<td>660 cm⁻¹</td>
<td>610 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 515 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično nijahanje</td>
</tr>
</tbody>
</table>

Iz priloženih podataka moguće je uočiti da je uzorak P1 COM, dok je P2 COD (89,50 %). Uzorak P5 je također smjesa COM i COD s nešto manjim udjelom COD (53,41 %) u uzorku u odnosu na P2.

U uzorcima P3 i P4 taloži smjesa COM i COD. Prikaz FT-IR rezultata za navedene nalazi se u prilogu (Slike 55. i 56. te Tablice 32. i 36.).
Ispitivanje veličine i morfologije uzoraka odradio se optičkom mikroskopijom.

Slika 52. Karakteristične mikroskopske snimke kristala u uzorcima P1 (lijevo) te P2 (desno)

Iz mikroskopskih snimki (*Slika 52.*) kod uzorka P1 teško je uočljiva morfologija zbog vrlo malih veličina kristala i zbog agregacije istih. Veličina kristala puno je manja od 20 μm. Za uzorak P2 uočen je bipiramidalni oblik karakterističan za COD, a kristali su znatno veći u odnosu na kristale u uzorku P1.

Prikaz morfologije i veličine kristala za uzorke P3, P4 i P5 nalazi se u prilogu (*Slika 53.*).
Iz svih dobivenih podataka primjećeno je da mehaničko miješanje favorizira nastajanje COD pri određenim koncentracijama dodanog inhibitora - citrata. Naime, pri najmanjoj temperaturi od 20 °C, COD se pojavljuje u smjesi s COM, dok se najveći udio COD pojavljuje u uzorku P5 s najvećom koncentracijom citrata u otopini. Slična situacija je i pri 25 °C gdje uzorak P1 sadrži 100 % COM, dok P5 sadrži najviši udio COD (60,67 %) u smjesi.

Pri većim temperaturama dolazi do odstupanja od takvog ponašanja. COD se u najvećom udjelu pojavljuje kod manjih koncentracija citrata, kao primjerice pri temperaturama od 37 °C i 45 °C. Pri temperaturi od 37 °C, koja je namještena kako bi se dobili uvjeti fiziološke temperature, najveći se udio COD pojavljuje u uzorku P3 s koncentracijom citrata od 0,004 mol dm⁻³ te se s povećanjem koncentracije citrata smanjuje i udio COD u uzorku. Na temperaturi od 45 °C, najveći se udio COD pojavljuje u uzorku P2 s koncentracijom citrata od 0,001 mol dm⁻³ te se s povećanjem koncentracije smanjuje udio COD kao i u prethodnom primjeru. Moguće je zaključiti da citrat kao inhibitor kalcijevih oksalata potiče nastajanje COD, ali je njegov utjecaj limitirajući pri višim temperaturama i višim koncentracijama citrata. Nisu uočene značajne promjene u masi uzoraka variranjem koncentracije citrata (Tablica 24.).

Tablica 24. Prikaz masa uzoraka dobivenih sintezom pri svim temperaturama

<table>
<thead>
<tr>
<th>Temperature</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [°C]</td>
<td>m [g]</td>
<td>m [g]</td>
<td>m [g]</td>
<td>m [g]</td>
<td>m [g]</td>
</tr>
<tr>
<td>20</td>
<td>0.143</td>
<td>0.116</td>
<td>0.091</td>
<td>0.112</td>
<td>0.127</td>
</tr>
<tr>
<td>25</td>
<td>0.136</td>
<td>0.120</td>
<td>0.139</td>
<td>0.098</td>
<td>0.080</td>
</tr>
<tr>
<td>37</td>
<td>0.084</td>
<td>0.102</td>
<td>0.096</td>
<td>0.110</td>
<td>0.074</td>
</tr>
<tr>
<td>45</td>
<td>0.077</td>
<td>0.139</td>
<td>0.122</td>
<td>0.110</td>
<td>0.111</td>
</tr>
</tbody>
</table>
5. ZAKLJUČAK

U ovom završnom radu je ispitivan utjecaj mehaničkog miješanja, promjene temperature i koncentracije citrata na taloženje kalcijeva oksalata. Kalcijevi oksalati su sastavni dio gotovo svih bubrežnih kamenaca koji nastaju kao posljedica patološke biomineralizacije, procesa koji se odvija u odgovarajućim uvjetima kod većine životnjkih i ljudskih organizama.

U prirodi postoje tri hidratna oblika kalcijevih oksalata: termodinamički stabilan kalcijev oksalat monohidrat (COM, CaC\textsubscript{2}O\textsubscript{4}•H\textsubscript{2}O, vevelit), metastabilan dihidrat (COD, CaC\textsubscript{2}O\textsubscript{4}•2H\textsubscript{2}O vedelit) te metastabilan trihidrat (COT, CaC\textsubscript{2}O\textsubscript{4}•3H\textsubscript{2}O). U bubrežnim se kamencima najčešće pronalazi COM i COD, dok COT rijetko. Približno 70 % bubrežnih kamenaca sadrži kalcijeva oksalate gotovo u 100 %-tnom udjelu ili u smjesi s kalcijevim fosfatima.

Za eksperimentalni dio su pripremljene otopine kalcijeva klorida i natrijeva oksalata čije su se koncentracije održavale konstantnim u uvjetima hiperkaliurijske. Eksperiment je temeljen na promjeni temperature i koncentracije dodanog citrata, tj. otopine trinatrijeva citrata (potencijalnog inhibitora taloženja COM) u otopinu oksalata. U svim je eksperimentima primijenjeno mehaničko miješanje. Rezultati su pokazali da mehaničko miješanje favorizira nastajanje COD uz prisutnost odgovarajuće koncentracije citrata. Međutim, pokazalo se da citrat ima limitirajući utjecaj u ovisnosti o temperaturi. Pri višim koncentracijama citrata i višim temperaturama kao što su 37 °C i 45 °C, utjecaj citrata se smanjuje, a time se smanjuje i udio nastalog COD. Svi uzorci kojima nije dodana otopine citrata taložili su COM u gotovo 100 %-tnom udjelu. Značajne promjene u masi uzoraka nisu uočene usporedbom uzoraka i pri istoj i pri različitim temperaturama što upućuje da citrat nema utjecaj na promjenu mase dobivenog uzorka sintezom (Tablica 24.).

Na primjeru ovog rada može se uočiti složenost taložnih procesa, odnosno u ovom slučaju nastajanja kalcijeva oksalata. Čisti COD vrlo je teško dobiti laboratorijskom sintezom (većinom se dobiva u smjesi s COM). COT nije bio prisutan niti u jednom od uzoraka. Istraživanja na ovom području sve su popularnija s obzirom na podatak da će se svaka deseta osoba za života suočiti s pojavom bubrežnih kamenaca. Stoga, svako istraživanje koje bi pripomoglo otkrivanju čimbenika za sprječavanje i kontroliranje recidiviranja bubrežnih kamenaca od velike je važnosti za znanost i za čovjeka.
6. LITERATURA

7. PRILOG

TERMOGRAVIMETRIJSKA ANALIZA I OPTIČKA MIKROSKOPIJA

1. Prilog za sintezu pri temperaturi od 20 °C

\[Slika\ 21.\ Grafički\ prikaz\ TGA\ za\ uzorak\ P2 \]

\[Slika\ 22.\ Grafički\ prikaz\ TGA\ za\ uzorak\ P3 \]
Slika 23. Grafički prikaz TGA za uzorak P4

Slika 26. Karakteristične mikroskopske snimke kristala za uzorke P2, P3 i P4
2. Прilog за синтезу при температури од 25 °C

Слика 30. Графички приказ TGA за узорак P2

Слика 31. Графички приказ TGA за узорак P3
Slika 32. Grafički prikaz TGA za uzorak P4

Slika 35. Karakteristične mikroskopske snimke kristala za uzorke P2, P3 i P4
3. Prilog za sintezu pri temperaturi od 37 °C

Slika 39. Grafički prikaz TGA za uzorak P2

Slika 40. Grafički prikaz TGA za uzorak P4
Slika 41. Grafički prikaz TGA za uzorak P5

Slika 44. Karakteristične mikroskopske snimke kristala za uzorke P2, P4 i P5
4. Prilog za sintezu pri temperaturi od 45 °C

Slika 48. Grafički prikaz TGA za uzorak P3

Slika 49. Grafički prikaz TGA za uzorak P4
Slika 50. Grafički prikaz TGA za uzorak P5

Slika 53. Karakteristične mikroskopske snimke kristala za uzorke P3, P4 i P5
FT-IR SPEKTROSKOPIJA

![Image of FT-IR spectrum for sample P2 at various experimental temperatures](image)

Slika 54. IR spektar za uzorke P2 pri svim eksperimentalnim temperaturama

Tablica 25. Prikaz karakterističnih vrpci i njihov intenzitet (crno) u IR spektru uzoraka P2 pri temperaturi od 20 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P2</th>
<th>Literature podaci</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3460-3320 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 3240 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>H-O-H savijanje</td>
</tr>
<tr>
<td>~ 1610 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1315 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>912,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 781 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 520 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>
Tablica 26. Prikaz karakterističnih vrpci i njihov intenzitet (crveno) u IR spektru uzoraka P2 pri temperaturi od 25 °C

<table>
<thead>
<tr>
<th>Literaturni podaci</th>
<th>Vibracijske vrpcse za P2</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3473,91 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td></td>
<td>3240,52 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>3240 cm⁻¹</td>
<td>H-O-H savijanje</td>
</tr>
<tr>
<td></td>
<td>1608,09 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td></td>
<td>1323,21 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td></td>
<td>912,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td></td>
<td>781,20 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td></td>
<td>516,94 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 27. Prikaz karakterističnih vrpci i njihov intenzitet (zeleno) u IR spektru uzoraka P2 pri temperaturi od 37 °C

<table>
<thead>
<tr>
<th>Literaturni podaci</th>
<th>Vibracijske vrpcse za P2</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>~ 3470 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td></td>
<td>~ 3230 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>3240 cm⁻¹</td>
<td>H-O-H savijanje</td>
</tr>
<tr>
<td></td>
<td>~ 1610 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td></td>
<td>~ 1320 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td></td>
<td>~ 911 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td></td>
<td>~ 781 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td></td>
<td>~ 516 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 28. Prikaz karakterističnih vrpci i njihov intenzitet (plavo) u IR spektru uzoraka P2 pri temperaturi od 45 °C

<table>
<thead>
<tr>
<th>Literaturni podaci</th>
<th>Vibracijske vrpcse za P2</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>~ 3525 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td></td>
<td>~ 3140 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>3240 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td></td>
<td>1666,55-1616,76 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td></td>
<td>~ 1325 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td></td>
<td>912,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td></td>
<td>~ 782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td></td>
<td>~ 505 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>
Tablica 29. Prikaz karakterističnih vrpci i njihov intenzitet (crno) u IR spektru uzoraka P3 pri temperaturi od 20 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P3</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3450 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 3220 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>3240 cm⁻¹</td>
<td>H-O-H savijanje</td>
</tr>
<tr>
<td>~ 1605 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1320 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 781 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 515 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Slika 55. IR spektar za uzorke P3 pri svim eksperimentalnim temperaturama
Tablica 30. Prikaz karakterističnih vrpči i njihov intenzitet (crveno) u IR spektru uzoraka P3 pri temperaturi od 25 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P3</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>3479,70 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>3228,95 cm⁻¹</td>
<td>3260 cm⁻¹</td>
<td>3240 cm⁻¹</td>
<td>H-O-H savijanje</td>
</tr>
<tr>
<td>1649,29 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1321,28 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>912,36 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>781,20 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>516,94 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 31. Prikaz karakterističnih vrpči i njihov intenzitet (plavo) u IR spektru uzoraka P3 pri temperaturi od 37 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P3</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3485 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1605 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1325 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 517 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 32. Prikaz karakterističnih vrpči i njihov intenzitet (zeleno) u IR spektru uzoraka P3 pri temperaturi od 45 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P3</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3510 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1600 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1320 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 510 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>
Tablica 33. Prikaz karakterističnih vrpci i njihov intenzitet (crno) u IR spektru uzoraka P4 pri temperaturi od 20 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P4</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3490-3225 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1610 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1318 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 785 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 517 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 34. Prikaz karakterističnih vrpci i njihov intenzitet (crveno) u IR spektru uzoraka P4 pri temperaturi od 25 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P4</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>3487,06-3232,80 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1647,26-1616,40 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1361,79-1317,43 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>914,29 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>783,13 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>516,94 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>
Tablica 35. Prikaz karakterističnih vrpcii i njihov intenzitet (zeleno) u IR spektru uzoraka P4 pri temperaturi od 37 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P4</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3495 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1603 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1318 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 784 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 517 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 36. Prikaz karakterističnih vrpcii i njihov intenzitet (plavo) u IR spektru uzoraka P4 pri temperaturi od 45 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P4</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3495 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1602 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1318 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 912 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 785 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
</tbody>
</table>
Tablica 37. Prikaz karakterističnih vrpca i njihov intenzitet (crno) u IR spektru uzoraka P5 pri temperaturi od 20 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P5</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>3479,70 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>1645,33 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>1359,86-1391,35 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>914,29 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>781,29 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>511,15 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 38. Prikaz karakterističnih vrpca i njihov intenzitet (crveno) u IR spektru uzoraka P5 pri temperaturi od 25 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P5</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>∼ 3510 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>∼ 1635 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>∼ 1320 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>∼ 914 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>∼ 781 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>∼ 512 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>
Tablica 39. Prikaz karakterističnih vrpči i njihov intenzitet (zeleno) u IR spektru uzoraka P5 pri temperaturi od 37 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P5</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracije</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3500 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1325 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 914 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 785 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 513 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>

Tablica 40. Prikaz karakterističnih vrpči i njihov intenzitet (plavo) u IR spektru uzoraka P5 pri temperaturi od 45 °C

<table>
<thead>
<tr>
<th>Vibracijske vrpce za P5</th>
<th>COM</th>
<th>COD</th>
<th>Vrsta vibracije</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 3490 cm⁻¹</td>
<td>3490 cm⁻¹</td>
<td>3560 cm⁻¹</td>
<td>OH skupina</td>
</tr>
<tr>
<td>~ 1610 cm⁻¹</td>
<td>1622 cm⁻¹</td>
<td>1636 cm⁻¹</td>
<td>C-O asimetrično istezanje</td>
</tr>
<tr>
<td>~ 1320 cm⁻¹</td>
<td>1316 cm⁻¹</td>
<td>1324 cm⁻¹</td>
<td>C-O simetrično istezanje</td>
</tr>
<tr>
<td>~ 914 cm⁻¹</td>
<td>947 cm⁻¹</td>
<td>912 cm⁻¹</td>
<td>H-O-H vibracija</td>
</tr>
<tr>
<td>~ 781 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>782 cm⁻¹</td>
<td>O-C-O asimetrično savijanje</td>
</tr>
<tr>
<td>~ 512 cm⁻¹</td>
<td>517 cm⁻¹</td>
<td>500 cm⁻¹</td>
<td>O-C-O asimetrično njihanje</td>
</tr>
</tbody>
</table>