SVEUČILIŠTE U SPLITU

MEDICINSKI FAKULTET

Suzana Babić

UTJECAJ LIJEČNIKA OBITELJSKE MEDICINE NA PREVENCIJU BAKTERIJSKE REZISTENCIJE

Diplomski rad

Akademska godina 2017./2018.

Mentor:

Prof. dr..sc. Rosanda Mulić

Split, srpanj 2018.
SVEUČILIŠTE U SPLITU

MEDICINSKI FAKULTET

Suzana Babić

UTJECAJ LIJEČNIKA OBITELEJSKE MEDICINE NA PREVENCIJU BAKTERIJSKE REZISTENCIJE

Diplomski rad

Akademska godina 2017./2018.

Mentor:

Prof. dr. sc. Rosanda Mulić

Split, srpanj 2018.
SADRŽAJ

1. **UVOD** .. 1
 1.1. Povijest antibiotika ... 2
 1.2. Podjela antibiotika ... 3
 1.2.1. Antibiotici koji inhibiraju sintezu stanične stijenke 4
 1.2.2. Antibiotici koji inhibiraju sintezu proteina .. 9
 1.2.3. Antibiotici koji djeluju na metabolizam folne kiseline 10
 1.2.4. Inhibitori DNA giraze .. 10
 1.2.5. Inhibitori DNA ovisne RNA polimeraze ... 10
 1.3. Rezistencija bakterija na antibiotike ... 10
 1.3.1. Mehanizmi bakterijske rezistencije ... 12
 1.3.2. Rezistentne bakterije ... 13
 1.3.3. Prekomjerna uporaba antibiotika ... 16
 1.3.4. Novi pristupi u rješavanju problema bakterijske rezistencije 19

2. **CILJ ISTRAŽIVANJA** .. 21

3. **MATERIJALI I METODE** .. 23
 3.1. Ustroj i protokol istraživanja ... 24
 3.2. Uzorak varijabli .. 24
 3.3. Uzorak ispitanika ... 24
 3.4. Metode obrade podataka ... 24

4. **REZULTATI** ... 25

5. **RASPRAVA** ... 38

6. **ZAKLJUČCI** ... 42

7. **POPIS CITIRANE LITERATURE** ... 44

8. **SAŽETAK** ... 50

9. **SUMMARY** .. 52

10. **ŽIVOTOPIS** .. 54

11. **PRILOZI** ... 56
1. UVOD
1.1. Povijest antibiotika

1.2. Podjela antibiotika

Djelujući na osnovne metaboličke procese u stanici, antibiotici onemogućuju bakteriji normalan životni ciklus (7).

Ciljna mjesta djelovanja antibiotika mogu biti (Slika 1.):

a) sinteza stanične stijenke;

b) sinteza proteina;

c) metabolizam folne kiseline;

d) DNA giraza;

e) DNA ovisna RNA polimeraza (7).
Slika 1. Ciljna mjesta djelovanja antibiotika u bakterijskoj stanici (7)

1.2.1. Antibiotici koji inhibiraju sintezu stanične stijenke

potpunosti poznat mehanizam bakterijske stanične smrti, ali posve je sigurno da taj proces uključuje autolitičke enzime i prekid bakterijskog rasta (5).

Peniciline možemo podijeliti u tri glavne skupine: prirodni penicilini, antistafilokokni penicilini i penicilini širokog spektra (Tablica 1.). Potonji se dalje dijele na aminopeniciline, karboksipeniciline i ureidopeniciline (5).
Tablica 1. Klasifikacija penicilina (16)

<table>
<thead>
<tr>
<th>Penicilini</th>
<th>Najvažniji predstavnici</th>
<th>Antimikrobnii spektar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prirodni penicilini</td>
<td>Benzilpenicilin (penicilin G)</td>
<td></td>
</tr>
<tr>
<td>Polusintetički penicilini otporni na beta-laktamazu</td>
<td>Meticilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oksacilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kloksacilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flukloksacilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nafcilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stafilokoki (S. aureus i S. epidermidis), osim MRSA, streptokoki, pneumokoki, gonokoki, Bacteroides spp. (osim B. fragilis)</td>
<td></td>
</tr>
<tr>
<td>Penicilini širokog spektra</td>
<td>Ampicilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoksacilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Streptokoki, enterokoki, H. influenzae, N. meningitidis, M. catarrhalis (β-laktamaza neg. spojevi), E. coli, P. mirabilis, salmonele, šigele, Listeria, Clostridium spp.</td>
<td></td>
</tr>
<tr>
<td>Karboksipenicilini</td>
<td>Karbenicilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Karfenicilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tikarcilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enterobacteriaceae, P. aeruginosa</td>
<td></td>
</tr>
<tr>
<td>Ureidopenicilini</td>
<td>Mezlocilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Azlocilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piperacilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa, E. coli, P.mirabilis, salmonele, šigele, N. meningitidis, N. gonorrhoeae, streptokoki, pneumokoki, enterokoki, osim E. faecium</td>
<td></td>
</tr>
<tr>
<td>Kombinacije beta-laktama i inhibitora beta-laktamaza</td>
<td>Amoksicilin/klavulanska kiselina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ampicilin/sulbaktam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piperacilin/tazobaktam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na β-laktamazu pozitivni sojevi stafilokoka, H. influenzae, M. catarrhalis, N. gonorrhoeae, E. Coli, K. pneumoniae e P. mirabilis koji proizvode ESBL*</td>
<td></td>
</tr>
</tbody>
</table>
Cefalosporini duguju svoj širok spektar djelovanja rezistenciji na beta-laktamaze, većoj no što je imaju penicilini. Doduše, nedavna pojava sojeva *Klebsiella* i *E. Coli* koji stvaraju beta-laktamaze proširenog spektra djelovanja umanjuje učinkovitost ovih lijekova. Prema spektru antimikrobne aktivnosti, cefalosporini se mogu podijeliti u četiri skupine (Tablica 2.). Ne djeluju na soj *Listeria monocytogenes* ni na enterokoke (5).

Tablica 2. Klasifikacija cefalosporina (16)

<table>
<thead>
<tr>
<th>Generacije cefalosporina</th>
<th>Najvažniji predstavnici</th>
<th>Antimikrobn spektar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. generacija</td>
<td>cefalotid</td>
<td>S. pneumoniae, stafilokoki, streptokoki, N. meningitidis, N. gonorrhoeae, M. catarrhalis</td>
</tr>
<tr>
<td></td>
<td>cefaloridin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cefaleksin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cefaklor</td>
<td></td>
</tr>
<tr>
<td>2. generacija</td>
<td>cefuroksim</td>
<td>S. pneumoniae, stafilokoki, streptokoki, N. meningitidis, N. gonorrhoeae, M. catarrhalis, H. influenzae, E. coli, Klebsiella spp., P. mirabilis, salmonele, šigele</td>
</tr>
<tr>
<td></td>
<td>cefamandol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cefotiam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cefamicini: cefoksitin i cefotetan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oralni: cefituben, cefiksim, cefetamet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cefpirom</td>
<td></td>
</tr>
<tr>
<td>Cefalosporini aktivni prema MRSA</td>
<td>ceftobirpol</td>
<td>S. aureus, MRSA, enterokoki, Enterobacteriaceae</td>
</tr>
<tr>
<td></td>
<td>ceftarolin</td>
<td></td>
</tr>
</tbody>
</table>
Karbapenemi su izrazito učinkoviti lijekovi koji se najčešće čuvaju kao posljednja linija terapije u liječenju infekcija uzrokovanih multirezistentnim bakterijama (17). Djeluju na širok spektar Gram-positivnih i još širi spektar Gram-negativnih bakterija. Važni su u liječenju infekcija uzrokovanih sojevima *Klebsiella pneumoniae* i *E. Coli* koji proizvode beta-laktamaze proširenog spektra djelovanja i zbog toga su rezistentni na cefalosporine (18). U tu skupinu ubrajamo imipenem, meropenem, ertapenem i doripenem. Imipenem se u praksi primjenjuje s inhibitorom bubrežne dehidropeptidaze, cilastatinom. Uzrok je tome inaktivacija imipenema dehidropeptidazama u bubrežnim tubulima i posljedično niska koncentracija u mokraći (5). Nažalost, bakterijska rezistencija nije zaobišla ni karbapeneme te pojedine bakterije, kao što su neki sojevi *Pseudomonas aeruginosa* i *Enterobacteriaceae*, dovode do smrtnih slučajeva jer su rezistentne na sve postojeće antibiotike (19).

Monobaktami su jedina skupina beta-laktama čiji je spektar ograničen samo na Gram-negativne bakterije. Jedini monobaktam dostupan na tržištu je aztreonam (5). Djelotvorn je u liječenju infekcija uzrokovanih bakterijom *Pseudomonas aeruginosa* (20).

Među inhibitore beta-laktamaze ubrajaju se klavulanska kiselina, sulbaktam i tazobaktam. Iako imaju jako slab antibakterijski učinak, ovi spojevi imaju sposobnost inhibicije brojnih bakterijskih beta-laktamaza i na taj način sprječavaju da inaktiviraju razne penicilinske spojeve (5). Na tržištu su dostupni samo u kombinaciji s beta-laktamskim spojevima sličnog poluvremena života (21). Najvažniju ulogu imaju u liječenju infekcija uzrokovanih Gram-negativnim patogenima jer upravo ti patogeni stječu rezistenciju produkcijom beta-laktamaza (22).

1.2.2. Antibiotici koji inhibiraju sintezu proteina

Bakterijski ribosomi nastaju spajanjem manje podjedinice 30S, koja veže mRNA, i veće 50S podjedinice. Nastali 70S ribosom vrši translaciju mRNA u proteine (27). Aminoglikozidi i tetraciklini vežu se za 30S, a klindamicin, kloramfenikol i makrolidi za 50S podjedinicu ribosoma (28). Na taj način inhibiraju različite faze translacije (29).

U skupinu aminoglikozida ubrajaju se amikacin, gentamicin, neomicin, netilmicin, streptomycin i dr (5). To su baktericidni lijekovi koji djeluju na Gram-negativne bakterije (30), primjerice na Acinetobacter i Pseudomonas. Upravo je streptomycin poznat kao prvi djelotvorni antituberkulotski lijek (31). Zbog izrazite ototoksičnosti i nefrotoksičnosti ovih lijekova (32), a i rastućeg problema rezistencije Gram-negativnih bakterija (33), liječnici ih često oklijevaju propisati (32).

U skupinu tetraciklina spadaju doksiciklin, minociklin, tigeciklin i dr. Ovi antibiotici djeluju bakteriostatski na širok spektar Gram-požitivnih i Gram-negativnih bakterija (5). Prvenstveno se koriste u liječenju dišnih, crijevnih i mokraćnih infekcija, ali im uporaba nije više toliko raširena kao prije zbog porasta bakterijske rezistencije (34). Danas se većinom koriste kao zamjenski lijekovi u bolesnika koji imaju alergijsku reakciju na beta-laktame i makrolide (34,35).

Klindamicin spada u skupinu linkozamida (36). Uvršten je u listu lijekova esencijalnih za ljudsko zdravlje koju je izradila Svjetska zdravstvena organizacija (37). Djeluje i na Gram-negativne i na Gram-požitivne bakterije, a nerijetko je učinkovit u liječenju meticilin-rezententnih sojeva S. aureusa (5). Primjena klindamicina značajno povisiva rizik za kolitis uzrokovana bakterijom Clostridium difficile (38).

Kloramfenikol je snažan bakteriostatski antibiotik učinkovit u liječenju širokog spektra bakterijskih uzročnika (5). Zbog izrazite toksičnosti na koštanoj srži, izbjegava se njegova primjena, osim u slučaju nedostatka sigurnijih učinkovitih antibiotika (39).

Među makrolide ubrajaju se azitromicin, eritromicin, klaritromicin i dr. Imaju samo blago širi antimikrobijski spektar od penicilina i zato često služe kao zamjenska terapija u bolesnika alergičnih na penicilin (40). Rastuća rezistencija soja Streptococcus pneumoniae na makrolide i česti klinički neuspjedi dovode se u vezu s prekomjernom uporabom ovih antibioticika u liječenju infekcija dišnih puteva (41).
1.2.3. Antibiotici koji djeluju na metabolizam folne kiseline

Sulfonamidi su bakteriostatski antibiotici koji djeluju i na Gram- pozitivne i na Gram- negativne bakterije. Najčešće se upotrebljavaju u kombinaciji s drugim antibioticima. Primjerice, sulfametoksazol se koristi u kombinaciji s trimetopririmom. Dok pojedinačno djeluju bakteriostatski, u sinergizmu djeluju baktericidno (5).

1.2.4. Inhibitori DNA-giraze

DNA giraza bakterijski je enzim koji spada u skupinu topoi zomeraza, a vrši relaksaciju dvolančane DNA tijekom odmatanja helikom (42).

Najpoznatiji inhibitori DNA-giraze su kinoloni. Skoro svi postojeći kinoloni u svojoj kemijskoj strukturi sadržavaju atom fluora te se zbog toga nazivaju fluorokinoloni. Djeluju i na Gram-pozitivne i na Gram- negativne bakterije, a zasigurno jedan od najpoznatijih i najkorištenijih antibiotika iz ove skupine jest ciprofloksacin (43). Od drugih kinolona, poznati su levo floksacin, moksifloksacin, norfloksacin i dr (5). Fluorokinoloni su djelotvorni u liječenju bolničkih mokraćnih infekcija (44), čak i kad su uzročnici multirezistentne bakterije (5). S druge strane, izvanbolnička im je primjena ograničena zbog rastućeg problema antibiotike rezistencije (44).

1.2.5. Inhibitori DNA ovisne RNA polimeraze

Rifampicin se u kliničkoj praksi primjenjuje uglavnom u liječenju mikobakterijskih infekcija, osobito tuberkuloze (5).

1.3. Rezistencija bakterija na antibiotike

Nadalje, istraživanje novih antibiotika nije financijski mudro (19), zato su mnoge farmaceutske kompanije odustale ili smanjile istraživanja na minimum (7). Antibiotici su izrazito jeftini lijekovi, razdoblje do pojave rezistencije na njih jako je kratko, a čak i kad su izvršni, obično se čuvaju kao posljednja linija terapije, a propisuju se postojeći lijekovi (19). Farmaceutska industrija zato radije ulaže u razvoj skupih lijekova za ublažavanje neizlječivih kroničnih bolesti (14,19).

Neiscrpnog mogućnosti bakterijske prilagodbe na nove antibiotike i stalni porast rezistencije, umanjili su nadu u mogućnost da se rezistencija nadvlada (1,14). Doduše, iako je rezistencija bakterija na antibiotike postala jedan od vodećih problema 21. stoljeća i prijeti nam povratak u preantibiotsko doba (26), postoji način na koji bismo taj problem mogli staviti pod kontrolu, a to je korištenje postojećih antibiotika s puno više opreza nego dosad (14). Borba protiv te globalne zdravstvene prijetnje postala je zadaća svih nas (1,45), a i jedan od prioriteta Svjetske zdravstvene organizacije (26).
1.3.1. Mehanizmi bakterijske rezistencije

Živeći već tri milijarde godina na Zemlji, bakterije su se još davno susrele s brojnim prirodno nastalim antibioticima koje su stvorili drugi mikroorganizmi, primjerice prethodno spomenuta plijesan Penicillium notatum. S obzirom na nepresušan izvor mehanizama rezistencije koje su morale razviti da bi preživjele (7), nije čudno da zadnjih 20 godina svjedočimo silnom porastu bakterijske rezistencije diljem svijeta (14). Najjednostavnije rečeno, rezistencija može nastati manjim ili većim promjenama u genomu te unosom izvanjske DNA. Novonastali rezistentni gen može biti smješten na kromosomu i na plazmidu. Geni smješteni na kromosomu većinom se šire vertikalno, a oni na plazmidu horizontalno. Vertikalno ili klonalno širenje nastaje dijeljenjem bakterija, a horizontalno prijenosom
izvanjske DNA s jedne bakterije na drugu (46). Podlogu za križnu reaktivnost tvori horizontalni prijenos koji omogućuje širenje rezistentnih gena između različitih vrsta bakterija (19,46). Bakterije ne poštuju granice ekoloških odjeljaka: jednom kada rezistentni geni dospiju u bakterije koje čine mikrobiom ljudskog ili životinjskog organizma, te bakterije vrlo lako mogu dospjeti u okoliš, početi se umnažati i tako širiti gene odgovorne za rezistenciju (1). Nadalje, antibiotici mogu prispjeti u okoliš mokraćom i stolicom životinja koje su tretirane potonjima. Na taj se način okolišne nepatogene i oportunističke bakterije izlažu antibioticima i mogu postati izvor rezistentnih gena (3). Stanje je tim gore što antibiotici ne razlikuju patogene od nepatogenih bakterija i tijekom liječenja rezistenciju mogu razviti i bakterije normalne flore (46). Poseban problem predstavljaju Gram-negativne bakterije koje posjeduju vanjsku lipopolisaharidnu membranu koja čini prirodnu zapreku prodoru antibiotika (14).

1.3.2. Rezistentne bakterije

Dramatični porast apsolutnog broja multirezistentnih bakterija donio je visoke troškove svakako već financijski preopterećenom zdravstvenom sustavu (19,45). U Europskoj uniji svake se godine za liječenje infekcija uzrokovanih multirezistentnim bakterijama izdvaja prosječno 1,5 milijardi eura (1,45). Prethodno spomenute infekcije najčešće ne odgovaraju na terapiju uobičajenim antibioticima pa su liječnici često primorani koristiti skuplje antibiotike zadnje linije. Bolesnici koji boluju od takvih infekcija često dulje borave u bolnici i oporavak je sporiji, a to, dakako, utječe na troškove liječenja (19,45). Iako je danas gotovo svaka bakterija otporna na barem jedan antibiotik, postoji nekoliko problematičnih bakterija, a to su: *Staphylococcus aureus*, *Enterococcus faecium*, *Streptococcus pneumoniae*, *Klebsiella species*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa* i *Escherichia coli* (4).

bolnici koriste antibiotike, a nakon otpusta iz bolnice ostanu kliničke MRSA (26). Danas se u liječenju infekcija uzrokovanih MRSA sojevima najčešće koriste glikopeptidi (vankomicin, teikoplanin) i linezolid (19). Zbog povećane uporabe vankomicina (26), danas su već poznati sojevi *S. aureusa* koji pokazuju rezistenciju na vankomicin (VRSA) (7,26). U Hrvatskoj još nije zabilježen nijedan slučaj VRSA (26, Slika 3.).

Staphylococcus aureus / MRSA

rezistencija na antibiotike u razdoblju od 1.10. - 31.12. 2016.,

zbornik prikaza izolata iz 38 centara u RH /

antibiotic resistance for the period 1.10. - 31.12. 2016,

summary results for the isolates from 38 centers in Croatia

<table>
<thead>
<tr>
<th>ANTIBIOTIK / ANTIBIOTIC</th>
<th>Broj izolata / No. of isolates</th>
<th>% rezistentnih (% of resistant) izolata / % of resistant isolates</th>
<th>Raspon lokalnih rezultata / Range of local results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefoxitin/</td>
<td>712</td>
<td>100 (0)</td>
<td>100 (0) - 100 (0)</td>
</tr>
<tr>
<td>Methicillin</td>
<td>706</td>
<td>90 (0)</td>
<td>85 (0) - 100 (0)</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>706</td>
<td>10 (0)</td>
<td>0 (0) - 100 (0)</td>
</tr>
<tr>
<td>Ce-trimoxazol</td>
<td>706</td>
<td>83 (0)</td>
<td>85 (0) - 100 (0)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>706</td>
<td>55</td>
<td>5 - 85</td>
</tr>
<tr>
<td>Ceftriaxidine inductible</td>
<td>28</td>
<td></td>
<td>0 - 97</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>702</td>
<td>82 (0)</td>
<td>26 (0) - 100 (0)</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>702</td>
<td>81 (0)</td>
<td>0 (0) - 100 (0)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>706</td>
<td>32 (0)</td>
<td>2 (0) - 75 (0)</td>
</tr>
<tr>
<td>Linezolid</td>
<td>708</td>
<td>0 (0)</td>
<td>0 (0) - 0 (0)</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>575</td>
<td>16 (4)</td>
<td>0 (0) - 55 (0)</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>552</td>
<td>0 (0)</td>
<td>0 (0) - 0 (0)</td>
</tr>
<tr>
<td>Vankomicin</td>
<td>617</td>
<td>0 (0)</td>
<td>0 (0) - 0 (0)</td>
</tr>
</tbody>
</table>

Vančekl, autori s sličnim brojem izolata (<20) nisu isporučeni u video

results from the counties with small number of isolates (<20) were not taken into consideration

![slika 3](http://iskra.bfm.hr)

Slika 3. Rezistencija MRSA na antibiotike u Hrvatskoj 2016. g. (preuzeto s: http://iskra.bfm.hr)

Streptococcus pneumoniae (pneumokok) glavni je uzročnik bakterijskih upala pluća, upala moždanih ovojnicu i sinus te upala uha u djece. Neke od tih upala mogu biti ozbiljne i životno ugrozavajuće (19). Najugroženije su osobe mlađe od 4 godine i starije od 65 godina.

Klebsiella species i Escherichia coli posjeduju beta-laktamaze proširenog spektra (engl. extended spectrum beta lactamases, ESBL) koje uzrokuju rezistenciju na sve peniciline i cefalosporine. Geni koji kodiraju ESBL nalaze se na plazmidima i lako se šire između sojeva iste i različitih vrsta (26). Rezistencija E. Coli na cefalosporine proširenog spektra postaje problem širokih razmjera jer su ti antibiotici inače jako korisni u liječenju infekcija probavnog trakta (14). Posljednjih godina stanje postaje tim gore što su se pojavili neki sojevi E. coli koji izlučuju karbapenemaze i tako bivaju otporni na karbapeneme koji se inače čuvaju kao posljednja linija terapije u liječenju infekcija uzrokovanih rezistentnim bakterijama (19). Prema podacima iz 2016. godine, u Hrvatskoj je manje od 10% izoliranih sojeva E. Coli bilo rezistentno na cefalosporine, a karbapenem-rezistentnih sojeva nije bilo (51).

Acinetobacter baumannii važan je bolnički patogen koji se povezuje s upalama pluća u teško bolesnih na mehaničkoj ventilaciji (19). Rezistencija te Gram-negativne bakterije na antibiotike prvi je put praćena 1999. godine. Već su tada sojevi u 50 do 89% slučajeva bili rezistentni na sve antibiotike, osim na netilmicin, amikacin i imipenem. Dok je rezistencija na imipenem tada iznosila svega 1% (46), danas se susrećemo s nekim vrstama koje su postale rezistentne na gotovo sve antibiotike pa tako i karbapeneme (19). Prema podacima iz 2016. godine, u Hrvatskoj je 85% izoliranih sojeva bilo rezistentno na imipenem, a 86% na meropenem (51, Slika 4.).

1.3.3. Prekomjerna uporaba antibiotika

Više je istraživanja dokazalo da povećana uporaba antibiotika povišuje stupanj antibiotičke rezistencije (1,3). Primjerice, povećana uporaba cefalosporina dovodi se u vezu s povećanjem rezistencije roda Enterobacteriaceae na iste (14). Nadalje, povećano korištenje antibiotika u južnim i istočnim zemljama Europe (npr. Francuska, Slovenija) izravno utječe na povećanje rezistencije na pojedine antibiotike, što osobito vrijedi za Streptococcus pneumoniae (3). Unatoč upozorenjima, antibiotici se i dalje prekomjerno propisuju diljem svijeta (19). Od ukupne potrošnje antibiotika, 90% ih se koristi izvanbolnički, a 10% bolnički (26). Istraživanje provedeno u SAD-u analiziralo je podatke o propisanim antibioticima u
razdoblju od 2010. do 2011. godine. Rezultati su pokazali da je čak 30% propisanih oralnih antibiotika u tom jednogodišnjem razdoblju potpuno nepotrebno (3). Glavni je izvor neopravdane potrošnje antibiotika u bolničkoj sredini kirurška antibiotiska profilaksa koja obično traje predugo i provodi se neprimjerenim antibioticima (26).

Antibiotici se često pogrešno propisuju za stanja koja uopće ne zahtijevaju njihovu uporabu (7). Najčešće su to samoogranicavajuće virusne infekcije dišnih puteva ili prvi napad infekcije srednjeg uha u djece mlađe od 2 godine (7,26). Neprimjereno propisani antibiotici izlažu bolesnika mogućim komplikacijama, a često im je učinkovitost upitna (19). U praksi se nerijetko događa da liječnici popuštaju pod pritiskom bolesnika koji zahtijevaju propisivanje antibiotika, najčešće zbog virusnih infekcija. Tim bi bolesnicima liječnici trebali objasniti da za antibiotikom u takvim stanjima uistinu nema potrebe (1). Nadalje, u mnogim su zemljama diljem svijeta antibiotici lako dostupni bez recepta (19). Veliki problem predstavlja i loša suradljivost bolesnika koji često na svoju ruku prijevremeno prestanu s antibiotskim liječenjem jer se osjećaju bolje. To obično dovodi do reinfekcije i selekcije rezistentnih sojeva bakterija (49).

Slika 5. Broj izdanih pakiranja antibiotika na recept iz PZZ u hrvatskim ljekarnama
(preuzeto s: http://www.hdod.net)

Iznenađuje podatak da se čak 50% antimikrobnih lijekova koristi u granama koje ne pripadaju ljudskoj medicini, posebice u agrikulturi i veterini (7). Sve do početka 21. stoljeća, antibiotici su se dodavali u životinjsku hranu kao promotori rasta (1). Najčešće su to bile niske doze antibiotika tijekom duljeg razdoblja, a upravo je takav način korištenja antibiotika osobito opasan. Naime, 1976. godine prvi je put ustanovljena izravna veza između subdoziranja antibiotika i povećanja rezistencije bakterija na antibiotike. Nadalje, antibiotici koji se koriste u veterini obično pripadaju istom razredu kao i antibiotici koji se koriste u humanoj medicini (14), a takva praksa vrlo brzo dovodi do križne reaktivnosti (45). Posve je sigurno da rezistentni sojevi bakterija mogu izravno prijeći sa životinja na ljude putem hranidbenog lanca (3, Slika 6.). Taj je prijenos prvi put zamijećen prije više od 35 godina kada je u crijevnoj flori farmera i životinja na farmama pronađen visok stupanj rezistencije (19). Iz tog je razloga Svjetska zdravstvena organizacija odredila koji su antibiotici ključni za ljudsko zdravlje i upravo bi te antibiotike trebalo ograničiti samo na ljudsku vrstu (45). Primjer su takvih antibiotika karbapenemi i vankomicin (14). Široka uporaba antibiotika u veterini nedvojbeno je jedan od važnih izvora rezistencije i zato bi se trebali organizirati edukacijski programi za sve veterinare, farmere i ljude koji rukuju hranom (45). Kad bi se uporaba antibiotika u veterini i agrikulturi uspjela smanjiti te kad bi se postojeći antibiotici
koristili ispravno, pojava rezistencije bakterija na antibiotike koji su nam preostali mogla bi se značajno odgoditi (7,14).

1.3.4. Novi pristupi u rješavanju problema bakterijske rezistencije

S obzirom na činjenicu da bakterije vrlo brzo razviju rezistenciju na antibiotike nastale preinakom postojećih antibiotika (1), vodeći pristup u rješavanju problema rezistencije je potraga za potpuno novim antibioticima (7). Problem s većinom trenutnih antibiotika je taj što gotovo svi djeluju na iste stanične procese kao i njihovi prethodnici (1). Postojeći antibiotici djeluju uglavnom na bakterije u fazi umnažanja, a bakterije koje se nalaze u klinički latentnom stanju prežive i nerijetko su uzrok povratka bolesti. Takve bakterije obično produljuju trajanje terapije i zahtijevaju jako dobru suradljivost bolesnika. Primjer za to je Mycobacterium tuberculosis. U zaraženom ljudskom organizmu, ta se bakterija nalazi u oba oblika: brzo umnažajućem i latentnom. Dok antibiotici brzo ubiju bakterije u fazi umnažanja,
latentne prežive. Zato se antibiotici u slučaju tuberkuloze trebaju koristiti 6 mjeseci što za sobom često povlači lošu suradljivost, povratak bolesti i širenje rezistencije na druge ljude. Kad bi se pronašao način da se novi antibiotici usmjere na bakterije u latentnom stanju, moglo bi se skratiti trajanje liječenja i znatno poboljšati suradljivost bolesnika (7).

2. CILJ ISTRAŽIVANJA
Cilj je ovog istraživanja ispitati znanje opće populacije Splitsko-dalmatinske županije o antibioticima te svjesnost o problemu bakterijske rezistencije. Ključan aspekt istraživanja upravo je odnos liječnik - pacijent. Promatajući taj odnos ustanovit će se razina povjerenja pacijenata u liječnike primarne zdravstvene zaštite prilikom odluke o propisivanju antibiotika i naglasiti bitna uloga liječnika u sprječavanju zlouporabe antibiotika i podizanju svijesti o problemu bakterijske rezistencije.
3. MATERIJALI I METODE
3.1. Ustroj i protokol istraživanja

Istraživanje je podijeljeno u tri faze. U prvoj su fazi anonimnim upitnikom "Ispitivanje javnosti o svjesnosti o antibioticima" prikupljeni podaci o znanju i stavovima opće populacije Splitsko-dalmatinske županije te je prikupljena odgovarajuća literatura. U drugoj su fazi podaci obrađeni odgovarajućim statističkim metodama. Konačno, treća faza obuhvaća analizu prethodno navedenih podataka te korištenje istih u izradi diplomskoga rada.

3.2. Uzorak varijabli

Istraživanje se temelji na anonimnom upitniku pod nazivom "Ispitivanje javnosti o svjesnosti o antibioticima". Ovo je upitnik zatvorenog tipa (ponuđeni odgovori na Likertovoj ljestvici od 3 stupnja: 0 - ne slažem se; 1 - nisam siguran/a; 2 - slažem se), a sastoji se od 54 pitanja. Upitnik je sastavljen za istraživanje provedeno u Švedskoj 2010. godine (56).

3.2. Uzorak ispitanika

Prikupljanje upitnika provedeno je elektronički (putem društvenih mreža) i u ambulantama obiteljske medicine. Od 300 osoba kojima je upitnik poslan, njih 247 odazvalo se na poziv (82,3%). Svi ispitanici nisu zdravstveni radnici (kriterij isključenja) te imaju više od 21 godinu (kriterij uključenja).

3.4. Metode obrade podataka

Metode obrade podataka uključivale su izračun deskriptivnih parametara svih varijabli korištenog upitnika te zbirnih varijabli dimenzija Opće znanje o antibioticima, Znanje i svjesnost o problemu rezistencije na antibiotike te Odnos liječnik - pacijent. U izračun su uključene apsolutne i relativne učestalosti odgovora. Kompletna statistička obrada izvršena je računarnim paketom STATISTICA, Ver.13.00 (2015. g., Dell Software, Round Rock, Texas). Rezultati su interpretirani na razini značajnosti P<0,05.
Subjekt istraživanja predstavlja slučajni uzorak od 247 ispitanika opće populacije Splitsko-dalmatinske županije podijeljen prema spolu, dobi i stupnju obrazovanja. Sve navedeno vidljivo je u Tablici 3., 4. i 5. te na Slikama 7., 8. i 9. Stopa odgovora iznosi 82,3%.

Tablica 3. Apsolutne i relativne učestalosti varijable spol, N=247

<table>
<thead>
<tr>
<th>Odgovori</th>
<th>Učestalost</th>
<th>Relativna učestalost</th>
<th>Kumulativna relativna učestalost</th>
</tr>
</thead>
<tbody>
<tr>
<td>žensko</td>
<td>173</td>
<td>70,04</td>
<td>70,04</td>
</tr>
<tr>
<td>muško</td>
<td>74</td>
<td>29,96</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukupno</td>
<td>247</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Slika 7. Uzorak ispitanika podijeljen prema spolu
Tablica 4. Apsolutne i relativne učestalosti varijable dob, N=247

<table>
<thead>
<tr>
<th>Odgovori</th>
<th>Učastalost</th>
<th>Relativna učestalost</th>
<th>Kumulativna relativna učestalost</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30</td>
<td>80</td>
<td>32,39</td>
<td>32,39</td>
</tr>
<tr>
<td>31-40</td>
<td>44</td>
<td>17,81</td>
<td>50,20</td>
</tr>
<tr>
<td>41-50</td>
<td>62</td>
<td>25,10</td>
<td>75,30</td>
</tr>
<tr>
<td>51-60</td>
<td>41</td>
<td>16,60</td>
<td>91,90</td>
</tr>
<tr>
<td>> 60</td>
<td>20</td>
<td>8,10</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukupno</td>
<td>247</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Slika 8. Uzorak ispitanika podijeljen prema kronološkoj dobi
Tablica 5. Apsolutne i relativne učestalosti varijable stupanj obrazovanja, N=247

<table>
<thead>
<tr>
<th>Odgovori</th>
<th>Učestalost</th>
<th>Relativna učestalost</th>
<th>Kumulativna relativna učestalost</th>
</tr>
</thead>
<tbody>
<tr>
<td>NKV</td>
<td>7</td>
<td>2,83</td>
<td>2,83</td>
</tr>
<tr>
<td>KV</td>
<td>17</td>
<td>6,88</td>
<td>9,72</td>
</tr>
<tr>
<td>SSS</td>
<td>120</td>
<td>48,58</td>
<td>58,30</td>
</tr>
<tr>
<td>VŠS</td>
<td>45</td>
<td>18,22</td>
<td>76,52</td>
</tr>
<tr>
<td>VSS</td>
<td>58</td>
<td>23,48</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukupno</td>
<td>247</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

![Stupanj obrazovanja]

Slika 9. Uzorak ispitanika podijeljen prema stupnju obrazovanja
U Tablici 6. te pomoću Slike 10. prikazane su apsolutne i relativne učestalosti korištenja antibiotika dosad u životu kod ukupnog uzorka ispitanika.

Tablica 6. Apsolutne i relativne učestalosti varijable korištenje antibiotika, N=247

<table>
<thead>
<tr>
<th>Odgovori</th>
<th>Učestalost</th>
<th>Relativna učestalost</th>
<th>Kumulativna relativna učestalost</th>
</tr>
</thead>
<tbody>
<tr>
<td>jednom</td>
<td>7</td>
<td>2,83</td>
<td>2,83</td>
</tr>
<tr>
<td>< 10 puta</td>
<td>91</td>
<td>36,84</td>
<td>39,68</td>
</tr>
<tr>
<td>> 10 puta</td>
<td>149</td>
<td>60,32</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukupno</td>
<td>247</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Slika 10. Učestalost korištenja antibiotika ukupnog uzoraka ispitanika

Iz Tablice 6. i Slike 10. vidljivo je da je 60,32% ispitanika koristilo antibiotike više od 10 puta dosad.
Kvantitativna obrada matrice entiteta i varijabli temelji se na dobivenim odgovorima na kvalitativno definirane tvrdnje upitnika.

Prva tvrdnja glasi: *Dobro je sačuvati preostale antibiotike kod kuće ako zatreba za idući put*. Ispitanici su iznjeli svoj stav na definirani navod te su ponudili sljedeće odgovore koji su vidljivi u Tablici 7. i na Slici 11.

Tablica 7. Apsolutne i relativne učestalosti varijable *Dobro je sačuvati preostale antibiotike kod kuće ako zatreba za idući put*, N=247

<table>
<thead>
<tr>
<th>Odgovori</th>
<th>Učestalost</th>
<th>Relativna učestalost</th>
<th>Kumulativna relativna učestalost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne slažem se</td>
<td>180</td>
<td>72,88</td>
<td>72,88</td>
</tr>
<tr>
<td>Nisam siguran</td>
<td>29</td>
<td>11,74</td>
<td>84,62</td>
</tr>
<tr>
<td>Slažem se</td>
<td>38</td>
<td>15,38</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukupno</td>
<td>247</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Analizom Tablice 7. vidljivo je da se 180 ispitanika ne slaže s prethodnim navodom, odnosno 27,12% ispitanika se slaže ili nije sigurno je li dobro sačuvati preostale antibiotike kod kuće ako zatreba za idući put.

Slika 11. Učestalost varijable *Dobro je sačuvati preostale antibiotike kod kuće ako zatreba za idući put*, N=247
U Tablici 8. te na Slici 12. prikazane su apsolutne i relativne učestalosti varijable *Dobro je posuditi antibiotike od rodbine da ne moram ići liječniku.*

Tablica 8. Apsolutne i relativne učestalosti varijable *Dobro je posuditi antibiotike od rodbine da ne moram ići liječniku, N=247*

<table>
<thead>
<tr>
<th>Odgovori</th>
<th>Učestalost</th>
<th>Relativna učestalost</th>
<th>Kumulativna relativna učestalost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne slažem se</td>
<td>223</td>
<td>90,28</td>
<td>90,28</td>
</tr>
<tr>
<td>Nisam siguran</td>
<td>13</td>
<td>5,26</td>
<td>95,54</td>
</tr>
<tr>
<td>Slažem se</td>
<td>11</td>
<td>4,46</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukupno</td>
<td>247</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Analizom Tablice 8. vidljivo je da se 9,72% ispitanika slažu ili nisu sigurni u vezi tvrdnje *Dobro je posuditi antibiotike od rodbine da ne moram ići liječniku*, a 223 ispitanika (90,28%), od ukupno njih 247, svjesni su važnosti i uloge liječnika pri korištenju antibiotika.

Slika 12. Učestalost varijable *Dobro je posuditi antibiotike od rodbine da ne moram ići liječniku, N=247*
U Tablici 9. prikazane su apsolutne i relativne učestalosti varijabli koje definiraju dimenziju Opće znanje o antibioticima koja uključuje 7 tvrdnji upitnika na ukupnom uzorku od 247 ispitanika (N=247).

Tablica 9. Apsolutne i relativne učestalosti dimenzije Opće znanje o antibioticima, N=247

<table>
<thead>
<tr>
<th>Tvrdnje</th>
<th>Ne slažem se Učestalost (%)</th>
<th>Nisam siguran Učestalost (%)</th>
<th>Slažem se Učestalost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotici su korisni u liječenju bakterijskih infekcija.</td>
<td>16 (6,48%)</td>
<td>44 (17,81%)</td>
<td>187 (75,71%)</td>
</tr>
<tr>
<td>Antibiotici su korisni protiv virusa.</td>
<td>147 (59,51%)</td>
<td>53 (21,46%)</td>
<td>47 (19,03%)</td>
</tr>
<tr>
<td>Prehladu uzrokuju bakterije.</td>
<td>122 (49,39%)</td>
<td>70 (28,34%)</td>
<td>55 (22,28%)</td>
</tr>
<tr>
<td>Prehladu uzrokuju virusi.</td>
<td>25 (10,12%)</td>
<td>53 (21,46%)</td>
<td>169 (68,42%)</td>
</tr>
<tr>
<td>Antibiotici ubrzavaju oporavak kod prehlade.</td>
<td>147 (59,51%)</td>
<td>44 (17,81%)</td>
<td>56 (22,68%)</td>
</tr>
<tr>
<td>Antibiotici mogu poremetiti normalnu bakterijsku floru kod čovjeka.</td>
<td>12 (4,85%)</td>
<td>49 (19,84%)</td>
<td>186 (75,31%)</td>
</tr>
<tr>
<td>Ako se osjećamo bolje već nakon uzimanja pola antibiotika, možemo prestati uzimati antibiotike.</td>
<td>224 (90,69%)</td>
<td>14 (5,67%)</td>
<td>9 (3,64%)</td>
</tr>
</tbody>
</table>

Analizom Tablice 9. vidljivo je da u ispitanika Splitsko-dalmatinske županije postoji osrednja razina Općeg znanja o antibioticima koja je kvantitativno određena s 68,37%. Ispitanici su iskazali najviše znanja pri tvrdnji Ako se osjećamo bolje već nakon uzimanja pola antibiotika, možemo prestati uzimati antibiotike na koju je više od 90% ispitanika odgovorilo ispravno. Više od 75% ispitanika dalo je točne odgovore na tvrdnje: Antibiotici su korisni u liječenju bakterijskih infekcija i Antibiotici mogu poremetiti normalnu bakterijsku floru kod čovjeka. Najmanja sigurnost i znanje iskazani su pri netočnoj tvrdnji Prehladu uzrokuju bakterije na koju je manje od 50% ispitanika dalo ispravan odgovor.
U Tablici 10. prikazane su apsolutne i relativne učestalosti manifesnih varijabli koje definiraju dimenziju Znanje i svjesnost o problemu rezistencije na antibiotike koja uključuje 10 tvrdnji upitnika na ukupnom uzorku od 247 ispitanika (N=247).

Tablica 10. Apsolutne i relativne učestalosti dimenzije Znanje i svjesnost o problemu rezistencije na antibiotike, N=247

<table>
<thead>
<tr>
<th>Tvrđnje</th>
<th>Ne slažem se Učestalost (%)</th>
<th>Nisam siguran Učestalost (%)</th>
<th>Slažem se Učestalost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ljudi mogu steći otpornost na antibiotike.</td>
<td>12 (4,86%)</td>
<td>34 (13,77%)</td>
<td>201 (81,37%)</td>
</tr>
<tr>
<td>Uporaba antibiotika može povećati otpornost bakterija na antibiotike.</td>
<td>18 (7,30%)</td>
<td>52 (21,05%)</td>
<td>180 (71,65%)</td>
</tr>
<tr>
<td>Bakterije mogu biti otporene na antibiotike.</td>
<td>12 (4,86%)</td>
<td>45 (18,22%)</td>
<td>190 (76,92%)</td>
</tr>
<tr>
<td>Uporaba antibiotika može povećati otpornost virusa na antibiotike.</td>
<td>71 (28,75%)</td>
<td>104 (42,11%)</td>
<td>72 (29,15%)</td>
</tr>
<tr>
<td>Virusi mogu biti otporni na antibiotike.</td>
<td>39 (15,79%)</td>
<td>74 (29,96%)</td>
<td>134 (54,25%)</td>
</tr>
<tr>
<td>Uporaba antibiotika kod životinja može smanjiti učinak antibiotika kod ljudi.</td>
<td>64 (25,91%)</td>
<td>126 (51,02%)</td>
<td>57 (23,07%)</td>
</tr>
<tr>
<td>Otpornost bakterija na antibiotike može se prenijeti sa životinja na ljude.</td>
<td>78 (31,58%)</td>
<td>124 (50,20%)</td>
<td>45 (18,22%)</td>
</tr>
<tr>
<td>Otpornost bakterija na antibiotike može se prenijeti s čovjeka na čovjeka.</td>
<td>108 (43,73%)</td>
<td>97 (39,27%)</td>
<td>42 (17,00%)</td>
</tr>
<tr>
<td>Otpornost bakterija na antibiotike veliki je problem u Hrvatskoj.</td>
<td>40 (16,19%)</td>
<td>134 (54,25%)</td>
<td>73 (29,56%)</td>
</tr>
<tr>
<td>Otpornost bakterija na antibiotike veliki je problem u cijelom svijetu.</td>
<td>25 (10,12%)</td>
<td>102 (41,30%)</td>
<td>120(48,58%)</td>
</tr>
</tbody>
</table>
Analizom Tablice 10. vidljivo je da u ispitanika opće populacije Splitsko-dalmatinske županije postoji niska razina Znanja i svjesnosti o problemu rezistencije na antibiotike jer je kvantitativno određena s 41,21%. Ispitanci su iskazali najviše Znanja i svjesnosti o problemu rezistencije na antibiotike pri tvrdnji Ljudi mogu steći otpornost na antibiotike na koju je više od 80% ispitanika dalo ispravan odgovor. Više od 75% ispitanika složilo se s ispravnom tvrdnjom da Bakterije mogu biti otporne na antibiotike. U čak tri navoda dimenzije Znanje i svjesnost o problemu rezistencije na antibiotike vidljiva je izrazita nesigurnost u odgovorima. Više od 50% ispitanika odgovorilo je "Nisam siguran" na tvrdnje: Otpornost bakterija na antibiotike veliki je problem u Hrvatskij (54,25%) (Slika 14.), Uporaba antibiotika kod životinja može smanjiti učinak antibiotika kod ljudi (51,02%) te Otpornost bakterija na antibiotike može se prenijeti sa životinja na ljuđe (50,20%). Manje od 50% ispitanika složilo se s tvrdnjom Otpornost bakterija na antibiotike veliki je problem u cijelom svijetu (Slika 13.). Izrazito niska razina znanja utvrđena je kod tvrdnje Otpornost bakterija na antibiotike može se prenijeti s čovjeka na čovjeka. Samo 17% ispitanika je novo potvrdila tvrdnja o otpornosti bakterija na antibiotike u cijelom svijetu (Slika 15.)

Slika 13. Učestalost varijable *Otpornost bakterija na antibiotike veliki je problem u cijelome svijetu*, N=247
Slika 14. Učestalost varijable *Otpornost bakterija na antibiotike veliki je problem u Hrvatskoj*, N=247

Slika 15. Učestalost varijable *Otpornost bakterija na antibiotike može se prenijeti s čovjeka na čovjeka*, N=247
U Tablici 11. prikazane su apsolutne i relativne učestalosti manifesnih varijabli koje definiraju dimenziju *Odnos liječnik - pacijent* koja uključuje 8 tvrdnji upitnika na ukupnom uzorku od 247 ispitanika (N=247).

Tablica 11. Apsolutne i relativne učestalosti dimenzije *Odnos liječnik - pacijent*, N=247

<table>
<thead>
<tr>
<th>Tvrdnje</th>
<th>Ne slažem se Učestalost (%)</th>
<th>Nisam siguran Učestalost (%)</th>
<th>Slažem se Učestalost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prije propisivanja antibiotika, liječnik uzme dovoljno vremena da razmotri propisati li ga ili ne.</td>
<td>80 (32,39%)</td>
<td>51 (20,65%)</td>
<td>116 (46,96%)</td>
</tr>
<tr>
<td>Liječnici često propisuju antibiotike jer pacijenti to očekuju.</td>
<td>78 (31,58%)</td>
<td>40 (16,19%)</td>
<td>129 (52,23%)</td>
</tr>
<tr>
<td>Vjerujem liječniku kada mi prepiše antibiotike jer je to potrebno.</td>
<td>39 (14,17%)</td>
<td>44 (17,81%)</td>
<td>168 (68,02%)</td>
</tr>
<tr>
<td>Liječnik često izdvaia vrijeme kako bi mi objasnio kako pravilno koristiti antibiotike.</td>
<td>78 (31,58%)</td>
<td>30 (12,15%)</td>
<td>139 (56,27%)</td>
</tr>
<tr>
<td>Ljekarnik mi objašnjava kako pravilno koristiti antibiotike.</td>
<td>31 (12,56%)</td>
<td>22 (8,90%)</td>
<td>194 (78,54%)</td>
</tr>
<tr>
<td>Bez obzira na objašnjenje kako uzimati antibiotik, znam kako se pravilno uzima.</td>
<td>98 (39,68%)</td>
<td>55 (22,27%)</td>
<td>94 (38,05%)</td>
</tr>
<tr>
<td>Često i sam znam jesu li mi potrebni antibiotici i prije nego odem kod liječnika.</td>
<td>118 (47,77%)</td>
<td>57 (23,08%)</td>
<td>72 (29,15%)</td>
</tr>
<tr>
<td>Vjerujem liječniku kada odluči da mi antibiotici nisu potrebni.</td>
<td>17 (6,88%)</td>
<td>27 (10,93%)</td>
<td>203 (82,19%)</td>
</tr>
</tbody>
</table>

Analizom Tablice 11. vidljiva je prosječna razina dimenzije *Odnos liječnik - pacijent* u ispitanika opće populacije Splitsko-dalmatinske županije. Međutim, ispitanici su isказали visoko povjerenje u liječnika prilikom njegove odluke o potrebi korištenja antibiotika. Čak njih 203 (82,19%) dalo je potvrđan odgovor na tvrdnju *Vjerujem liječniku kada odluči da mi antibiotici nisu potrebni*. Ispitanici su ujedno isказали pozitivan stav prema ljekarniku (78,54%). Više od polovice ispitanika smatra da liječnici često propisuju antibiotike jer
pacijenti to očekuju, a njih 38,05% vjeruje u ispravnost vlastitog korištenja antibiotika bez prethodnog stručnog pojašnjenja. Manje od 50% ispitanika se slaže s tvrdnjom Prije propisivanja antibiotika, liječnik uzme dovoljno vremena da razmotri propisati li ga ili ne, a čak njih 43,73% nije sigurno ili se ne slaže s tvrdnjom da liječnik izdvaja vrijeme kako bi pacijentu objasnio pravilnu uporabu antibiotika (Slika 16.).

Slika 16. Učestalost varijable Liječnik često izdvaja vrijeme kako bi mi objasnio kako pravilno koristiti antibiotike, N=247
5. RASPRAVA
Ovo je istraživanje utvrdilo osrednju razinu općeg znanja populacije Splitsko-dalmatinske županije o antibioticima. Pokazano je nepotpuno razumijevanje i znanje o predmetu istraživanja. Primjerice, dok je oko 40% ljudi dalo odgovor "Slažem se" ili "Nisam siguran" na pitanje o djelotvornosti antibiotika na virusu, čak 60% njih nije bilo sigurno ili su se složili s pretpostavkom da uporaba antibiotika može povećati otpornost virusa na iste. Suradljivost osoba starijih od 60 godina bila je izrazito niska iz razloga što mnogi od njih nisu bili upoznati s pojmovima "antibiotik" i "otpornost na antibiotike".

Nadalje, svjesnost i znanje o problemu antibiotičke rezistencije na zabrinjavajuće je niskoj razini. Naime, manje od polovice ispitanika smatra da je rezistencija bakterija na antibiotike globalni javnozdravstveni problem, a samo 17,2% ispitanika zna da je čovjek važan čimbenik u širenju antibiotičke rezistencije te da se potonja može prenositi među ljudima. Čak i kad prepoznaju problem, ne razumiju u potpunosti što ga uzrokuje i što kao pojedinci mogu učiniti po tom pitanju.

Istraživanje je pokazalo se da je potrebno uložiti još mnogo truda u jačanje odnosa liječnik - pacijent. Više od polovice ispitanika smatra da liječnik često propisuje antibiotike sukladno pacijentovim zahtjevima i očekivanjima, a ne po vlastitom naхоđenju, a čak 44% njih se ne slaže ili nije sigurno izdvaja li liječnik dovoljno vremena da bi ih uputio kako pravilno koristiti propisane antibiotike.

Iako opće znanje o antibioticima u SDŽ nije loše, edukacijskim bi se programima moglo dodatno usavršiti. Potrebno je i neumorno raditi na podizanju svijesti stanovništva o ovom globalnom problemu te poticati u ljudima osjećaj odgovornosti i brige za buduće generacije.

S obzirom na to da je antibiotička rezistencija jedan od najvećih problema današnjice, provode se brojna istraživanja sličnog karaktera koja pokušavaju utvrditi povezanost nedovoljnog znanja i prekomjerne uporabe antibiotika s porastom stupnja rezistencije. Jedno takvo istraživanje provela je Svjetska zdravstvena organizacija 2015. godine. U istraživanju su sudjelovala 9 772 ispitanika iz 12 zemalja diljem svijeta: Nigerija, Južnoafrička Republika, Barbados, Meksiko, Indija, Indonezija, Rusija, Srbija, Egipat, Sudan, Kina i Vijetnam. Istraživanje je pokazalo značajnu povezanost stupnja obrazovanja i razine svijesti o problemu antibiotičke rezistencije. S činjenicom da je antibiotička rezistencija jedan od najvećih globalnih problema složilo se 64% ispitanika. Postojale su, duđuše, velike geografske razlike u odgovoru na prethodno pitanje. Najbolje su rezultate postigle zemlje istočne Azije gdje je
više od 70% ispitanika bilo svjesno problema s kojim se svijet suočava. U Srbiji i Barbadosu se s ovom činjenicom složilo manje od 35% ljudi. Čak 64% njih vjerovalo je da se prehlada može liječiti antibioticima. Samo 44% ispitanika znalo je da se rezistentne bakterije mogu širiti s osobe na osobu i da antibiotika rezistencija nije prijetnja samo onim pojedincima koji često koriste antibiotike. Zabrinjava činjenica da je čak 57% ispitanika smatralo da pojedinci ne mogu ništa učiniti po pitanju problema rezistencije (57).

U Švedskoj postoji trend kontinuiranog pada antibiotske rezistencije zahvaljujući dugogodišnjem programu za racionalno korištenje antimikrobnih lijekova i praćenje antibiotske rezistencije. Istraživanje provedeno u Švedskoj 2010. godine ukazalo je na visok stupanj znanja stanovništva o antibioticima i problemu rezistencije bakterija na iste. Više od 80% ispitanika iskazalo je povjerenje u liječnike, a čak 95,5% njih znalo je da se antibiotska terapija ne smije prekidati prije kraja (56).

Iako antibiotska rezistencija kontinuirano raste, razvoj novih antibiotika u drastičnom je padu. Da bi se spriječio povratak u preantibiotičko doba, postojeći se antibiotici moraju koristiti s puno više opreza nego dosad. Jedan od ključnih posrednika između antibiotika i rezistentnih bakterija su liječnici, osobito oni u primarnoj zdravstvenoj zaštiti. Oni se često nalaze između dvije vatre. S jedne strane, žele pružiti najbolju zdravstvenu skrb svojim pacijentima i često im preventivno propisuju antibiotike onda kada to uopće nije potrebno. S druge strane, liječnička ih odgovornost poziva na brigu o budućim generacijama i svjesni su opasnosti neprimjerenog propisivanja antibiotika (14), kao što su povećanje pobola i pomora stanovništva od infekcija uzrokovanih multirezistentnih bakterijama. Doduše, premalo je liječnika svjesno problema sporog razvoja novih antibiotika. Čak 70% svih antibiotika propisanih u ordinacijama obiteljske medicine služi za liječenje samoograničavajućih i bezazlenih akutnih respiratornih infekcija (50). Najčešći razlog neprimjerenog propisivanja antibiotika širokog spektra jest nedovoljno znanje liječnika (14), ali i nedostatak vremena. Zato se svakoj zemlji, pa tako i Hrvatskoj, nameće potreba kvalitetnije edukacije liječnika (50), kao i izrada nacionalnih smjernica za propisivanje antibiotika. U Hrvatskoj od 2006. godine postoje smjernice koje je izradila Interdisciplinarna sekcija za kontrolu rezistencije na antibiotike (ISKRA) (26). Najvažnije smjernice u obiteljskoj medicini zasigurno su one za liječenje grlobolje i mokraćnih infekcija. Nažalost, još se uvijek premalo liječnika služi nacionalnim smjernicama, kako u Hrvatskoj, tako i u ostatku svijeta (50). Primjerice, u Francuskoj samo 21% liječnika opće medicine slijedi smjernice kada propisuje antibiotike za infekcije mokraćnog sustava (14). Korisno bi bilo usavršiti računalne i mobilne aplikacije
kojima bi se liječnicima neprestano osiguravali najnoviji podatci o promjenama trenda regionalne bakterijske rezistencije te novostima u smjernicama za liječenje raznih bolesti (45,50).

Od iznimne je važnosti i edukacija pacijenata koji često zbog nedostupnosti točnih informacija vrše pritisak na liječnike, osobito prestrašenih roditelja koji pod svaku cijenu traže antibiotike za svoju djecu (50), obično nesvjesni golemog problema rezistencije koji prijeti našoj vrsti (45). Najčešće je u pozadini straha nepovjerenje u liječnike i zdravstveni sustav, zato je također potrebno jačati odnos liječnik - pacijent. Skandinavske zemlje imaju najmanju potrošnju antibiotika u Europi, a taj status dijelom duguju i usmjerenosti medija promociji zdravlja i promjeni percepcije o antibioticima te širokoj dostupnosti informacija o štetnosti prekomjerne uporabe antibiotika. Važno je naglasiti ulogu osiguravajućih društava i resorsnog ministarstva. Dok osiguravajuća društva sudjeluju u podizanju kvalitete rada u ordinacijama obiteljske medicine, osiguravajući liječnicima dijagnostičku opremu i dovoljno vremena za kvalitetan rad, resorsno ministarstvo prati trend porasta/pada bakterijske rezistencije i na temelju rezultata organizira edukaciju liječnika i pacijenata. Republika Hrvatska u budućnosti mora još poprilično poraditi na edukaciji liječnika (50), te još važnije, na podizanju svijesti o problemu antibiotičke rezistencije među građanima koja je u potpunosti zapostavljena (26).
6. ZAKLJUČCI
U ovom su istraživanju dobiveni sljedeći zaključci:

1. Među stanovništvom Splitsko-dalmatinske županije utvrđena je osrednja razina općeg znanja o antibioticima (68,37%).

2. Znanje i svijest stanovništva Splitsko-dalmatinske županije o problemu bakterijske rezistencije u svijetu i u Hrvatskoj na izrazito je niskoj razini (41,21%).

3. U Splitsko-dalmatinskoj županiji vlada visoko povjerenje u liječnike prilikom odluke o propisivanju antibiotika (82,19%).

4. Prema mišljenju opće populacije Splitsko-dalmatinske županije, liječnici bi trebali izdvajati više vremena kako bi pacijentu objasnili pravilnu uporabu antibiotika.

5. Prema mišljenju opće populacije Splitsko-dalmatinske županije, liječnici često propisuju antibiotike jer pacijenti to očekuju (52,23%).

6. U Splitsko-dalmatinskoj županiji vlada nepotpuno razumijevanje predmeta istraživanja i konfuzija kada su u pitanju pojmovi "bakterije" i "virusi".

Rezistencija bakterija na antibiotike jedan je od najvećih javnozdravstvenih problema i prioritet Svjetske zdravstvene organizacije. Da bi se spriječio povratak u preantibiotsko doba, iznimno je važno neprestano i neumorno raditi na edukaciji liječnika i javnosti te na podizanju odgovornosti i svijesti o ovom globalnom problemu.
7. POPIS CITIRANE LITERATURE

Cilj istraživanja: Cilj istraživanja bio je ispitati znanje i stavove opće populacije Splitsko-dalmatinske županije o antibioticima i problemu bakterijske rezistencije te ustanoviti razinu povjerenja pacijenata u liječnike prilikom propisivanja antibiotika.

Materijali i metode: Ovo kvantitativno, presječno istraživanje temelji se na anonimnom upitniku zatvorenog tipa pod nazivom "Ispitivanje javnosti o svjesnosti o antibioticima". Subjekt istraživanja predstavlja slučajni uzorak od 247 ispitanika opće populacije Splitsko-dalmatinske županije. Upitnikom su prikupljeni podaci o znanju i stavovima o uporabi antibiotika i rastućoj rezistenciji na iste.

Rezultati: Stopa odgovora iznosila je 82,3%. U populaciji Splitsko-dalmatinske županije utvrđena je osrednja razina općeg znanja o antibioticima koja je kvantitativno određena s 68,37%. Ispitanici su najviše znanja iskazali pri tvrdnji da se antibiotska terapije ne smije prekidati prije kraja (90,69%). Samo 49,39% ispitanika znalo je da prehladu ne uzrokuju bakterije. Svijest i znanje o problemu rezistencije na antibiotike bili su na izrazito niskoj razini (41,21%). Samo 17% ispitanika dalo je ispravan odgovor na tvrdnju da se bakterijska rezistencija može prenijeti s jedne na drugu osobu. Ispitanici su iskazali visoko povjerenje u liječnika prilikom njegove odluke o potrebi korištenja antibiotika (82,19%). Prema mišljenju ispitanika, liječnici često propisuju antibiotike jer pacijenti to očekuju (52,23%) i trebali bi izdvajati više vremena kako bi pacijentima objasnili pravilnu uporabu antibiotika.

Zaključak: Potrebno je uložiti još puno truda u edukaciju liječnika i javnosti i u podizanje svijesti o globalnom problemu antibiotičke rezistencije te poticati u ljudima osjećaj odgovornosti i brige za buduće generacije.
9. SUMMARY
Thesis Title: The role of family medicine physicians in prevention of antibiotic resistance

Objectives: To examine the level of knowledge and views about antibiotic treatment and awareness of antibiotic resistance as well as level of trust in doctors among the general public in Split-Dalmatia County.

Materials and methods: A quantitative, cross-sectional interview study based on a structured questionnaire "Examination of antibiotic awareness among the public". The sample comprised 247 randomly selected individuals in Split-Dalmatia County. Data about knowledge and views regarding antibiotic use and resistance were provided by the respondents.

Results: The response rate was 82.3%. The population of Split-Dalmatia County showed average level of general antibiotic knowledge (68.37%). A high proportion, 90.69%, agreed that the antibiotic therapy must not be interrupted. Only 49.39% of the respondents knew that bacteria do not cause common colds. Antibiotic resistance awareness was on a low level (41.21%). Only 17% of the respondents agreed that the antibiotic resistance could be spread among people. Trust in doctor's prescribing decision was high (82.19%). According to respondents opinion, doctors often prescribe antibiotics because patients expect them to (52.23%) and should take more time for antibiotic usage explanations.

Conclusion: It is necessary to invest much more effort in education and raisement of awareness about antibiotic resistance problem as well as stimulate people's feelings of responsibility and care for future generations.
10. ŽIVOTOPIS
OSOBNI PODACI:

Ime i prezime: Suzana Babić

Datum i mjesto rođenja: 10. travnja 1994. godine, Split, Republika Hrvatska

Državljanstvo: hrvatsko

Adresa: Sv. Mihovila 6, 21000 Split

Broj telefona: +385 99 850 1305

E-mail adresa: suzanababic104@gmail.com

OBRAZOVANJE:

2008. - 2012. g. Opća gimnazija "Marko Marulić", Split

2012. - 2018. g. Medicinski fakultet Sveučilišta u Splitu, studij medicine

STRANI JEZICI:

Engleski jezik (aktivno)

Njemački jezik (aktivno)

Španjolski jezik (aktivno)
11. PRILOZI
Prilog 1. Upitnik

Ispitivanje javnosti o svjesnosti o antibioticima

1. Spol
 __ muški __ ženski

2. Koji ste stupanj obrazovanja završili?
 __ NKV __ KV __ SSS __ VŠS __ VSS

NKV - nekvalificirani radnik (sa ili bez završene osnovne škole)
KV - kvalificirani radnik (3-godišnja srednja škola)
SSS - srednja stručna sprema (4-godišnja srednja škola)
VŠS - viša stručna sprema (završena viša škola)
VSS - visoka stručna sprema (završen fakultet)

3. Jeste li ikada čuli za penicilin?
 __ Da __ Ne __ Ne znam

4. Jeste li ikada koristili antibiotike?
 __ Da __ Ne __ Ne znam

5. Koliko ste puta do sada koristili antibiotike?
 __ Jednom __ Manje od 10 puta __ Više od 10 puta

6. Kada ste zadnji put koristili antibiotike?
 __ Unutar 12 mjeseci __ Prije više od 12 mjeseci __ Prije više od 10 godina

7. Koliko je djece između 3 i 6 godina u Vašem domaćinstvu?
 __ niti jedno __ jedno __ dvoje __ tri ili više

8. Jeste li ikada djetetu dali antibiotik?
 __ Da __ Ne __ Ne znam

9. Koliko je puta Vaše dijete pilo antibiotik u svom životu?
 __ Jednom __ Manje od 10 puta __ Više od 10 puta

10. Kada je Vaše dijete zadnji put pilo/primilo antibiotik?
 __ Unutar mjesec dana __ Unutar 12 mjeseci __ Prije više od 12 mjeseci

11. Jeste li ikada bili na nekom obliku zdravstvene zaštite? (tečaj, edukacija)?
 __ Da __ Ne

11.1. Ako da, koju?

12. Koliko imate godina?
 __ 21-30 __ 31-40 __ 41-50 __ 51-60 __ više od 60
Pročitajte navedene tvrdnje te označite je li se slažete, ne slažete ili niste sigurni.

<table>
<thead>
<tr>
<th>Broj</th>
<th>Tvrdnja</th>
<th>Način označavanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Dobro je sačuvati preostale antibiotike kod kuće, ako zatreba za idući put.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>14.</td>
<td>Dobro je posuditi antibiotike od rodbine, da ne moram ići liječniku.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>15.</td>
<td>Dobro je kad mogu kupiti antibiotike preko interneta, da ne moram ići liječniku.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>16.</td>
<td>Bilo bi dobro kada bi antibiotike mogli kupiti bez recepta.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>17.</td>
<td>Antibiotici su korisni u liječenju bakterijskih infekcija.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>18.</td>
<td>Antibiotici su korisni protiv virusa.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>19.</td>
<td>Prehladu uzrokuju bakterije.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>20.</td>
<td>Prehladu uzrokuju virusi.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>21.</td>
<td>Antibiotici ubrzavaju oporavak kod prehlade.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>22.</td>
<td>Ako je iscjedak iz nosa obojen, često trebamo koristiti antibiotike kako bi se riješili prehlade.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>23.</td>
<td>Ako kašalj traje dulje od tjedan dana, trebamo antibiotike kako bi nam pomogli riješiti se kašlja.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>24.</td>
<td>Ispravno je koristiti antibiotike kad nas boli grlo kako ne bi oboljeli od nečeg ozbiljnijeg.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>25.</td>
<td>Ispravno je koristiti antibiotike kod upale mandula kako ne bi oboljeli od nečeg ozbiljnijeg,</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>26.</td>
<td>Upala uha kod djeteta starosti između 3 i 6 godina uvijek se mora tretirati antibioticima.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>27.</td>
<td>Upala mjehura kod žena može se liječiti bez antibiotika.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>28.</td>
<td>Koristeći antibiotike možete izbjeći otvaranje bolovanja.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>29.</td>
<td>Različiti antibiotici potrebni su za različite bolesti.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>30.</td>
<td>Antibiotici ubijaju sve bakterije u našem organizmu.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>31.</td>
<td>Ako imate reakcije na koži nakon korištenja antibiotika, taj antibiotik ne bi trebalo ponovno uporabiti.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>32.</td>
<td>Antibiotici mogu poremetiti normalnu bakterijsku floru kod čovjeka.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>33.</td>
<td>Ako se za vrijeme liječenja antibioticima pojave neželjene pojave, liječenje treba obustaviti istog trena.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>34.</td>
<td>Ako se osjećamo bolje već nakon uzimanja pola antibiotika, možemo prestati uzimati antibiotike.</td>
<td>_____ _____ _____</td>
</tr>
<tr>
<td>35.</td>
<td>Uporaba antibiotika može smanjiti sposobnost vlastitog organizma da se uspješno odupe infekciji.</td>
<td>_____ _____ _____</td>
</tr>
</tbody>
</table>
36. Ljudi mogu steći otpornost na antibiotike.

37. Uporaba antibiotika može povećati otpornost bakterija na antibiotike.

38. Bakterije mogu biti otporne na antibiotike.

39. Uporaba antibiotika može povećati otpornost virusa na antibiotike.

40. Virusi mogu biti otporni na antibiotike.

41. Uporaba antibiotika kod životinja može smanjiti učinak antibiotika kod ljudi.

42. Otpornost bakterija na antibiotike može se prenijeti sa životinja na ljude.

43. Otpornost bakterija na antibiotike može se prenijeti s čovjeka na čovjeka.

44. Otpornost bakterija na antibiotike veliki je problem u Hrvatskoj.

45. Otpornost bakterija na antibiotike veliki je problem u cijelom svijetu.

46. Prije propisivanja antibiotika, liječnik uzme dovoljno vremena da razmotri da li ga propisati ili ne.

47. Liječnici često prepisuju antibiotike jer pacijenti to očekuju.

48. Vjerujem liječniku kada mi prepiše antibiotike jer je to potrebno.

49. Liječnik često izdvaja vrijeme kako bi mi objasnio kako pravilno koristiti antibiotike.

50. Ljekarnik mi objašnjava kako pravilno koristiti antibiotike.

51. Bez obzira na objašnjenje kako uzimati antibiotik, znam kako se pravilno uzima.

52. Često i sam znam jesu li mi potrebni antibiotici i prije nego odem kod liječnika.

53. Vjerujem liječniku kada odluči da mi antibiotici nisu potrebni.

54. Liječnik koji ne propisuje antibiotik kada pacijent smatra da je to potrebno loš je liječnik.