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1. INTRODUCTION 



                                                                                                                                  Introduction 

1 

 

Prediction is that there will be over 2 billion different vehicles worldwide by 2030 (Ali 

et al., 2016). Raising concerns over environmental pollution, high emission of CO2 and scarce 

of fossil fuels have brought high interest in production of alternative, more sustainable 

biofuels from renewable sources, mostly agricultural residues. Among other biofuels used for 

transportation, bioethanol is being the most produced on the industrial scale. In order not to 

compete with food production and animal feed, abundant lignocellulosic biomass materials 

available at relatively low cost make considerable renewable substrates for bioethanol 

production. Due to high production costs of converting lignocellulose into ethanol, there have 

been made significant advances in bioprocessing technologies lately, such as developing 

simultaneous saccharification and fermentation (SSF) and a single step processes, referred to 

as consolidated processing. Both approaches are mostly relying on genetically improved 

microorganisms with a few reports on the production in co-cultures. 

Recently, filamentous wood decaying fungi have become interesting candidates for 

SSF due to their great ability to completely degrade all components of lignocellulosic 

materials and they do not require strict anaerobic conditions for the ethanol fermentation. 

They are being used for biopulping in pulp and paper industry and for cost-effective 

biological pre-treatment of lignocellulose raw-materials in bioethanol production. Although 

ethanol yields from integrated fungal fermentation are still quite low, changes in culture 

conditions or addition of chemicals have been suggested to increase the production of ethanol 

and shorten the incubation time. 

Main goal of this Thesis was to improve bioprocess of lignocellulose conversion into 

ethanol by employing co-culture consisted of white-rot filamentous fungi Phlebia radiata, 

Phlebia acerina and yeast. Improvement of state-of-the-art process comprised cultivation of 

the filamentous fungi on core board as only carbon source, characterisation and selection of 

yeast candidate, regarding its fermentative efficiency and ability to grow in the co-culture, and 

finding optimal conditions for the ethanol production. After selection of yeast, conditions for 

the ethanol production have to be optimised in order to define inoculation time point for 

selected yeast and produce as high as possible ethanol concentration over reasonable duration 

of the bioprocess. Appropriate set of analytical methods for determination of reducing sugars 

concentration and ethanol concentration and growth of selected yeast were applied for 

monitoring of the bioprocess for direct conversion of lignocellulose to ethanol. In such semi-

solid system it would be of great importance to define the core board decay as well as portion 

of synthesized fungal mycelial biomass. 
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2.1. Role of wood decay fungi in environment 

One of the most important parameters in regulating ecosystem productivity and 

climate is global carbon cycle. The short-term C-cyle consists of carbon exchange in terms of 

terrestrial and marine photosynthesis, respiration, and organic matter formation (Horwath, 

2007). In order to keep the carbon cycling between atmosphere, soil, water and living beings 

(see Fig.1), as well as other nutrients, the carbon exchange must be in balance. Two-thirds of 

the terrestrial organic carbon is fixed in organic compounds of nonliving biomass, mainly 

plant lignocelluloses. Complete degradation of dead wood components and humified material 

in forest ecosystems can reach up to thousands years and that is why wood decay fungi play 

important role in the short term C-cycle. Wood decay fungi are the only species in the world 

known to be able to completely degrade wood. 

 

Figure 1. The short-term C cycle (Horwath, 2007) 

In terms of waste recycling, fungi as well have a great importance. Nowadays, agricultural 

industry produce huge amount of wastes by throwing away more than 70% of what is grown. 

Cereal straw or sugarcane bagasse is a typical agricultural residue containing 30-40% of 
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cellulose, 20-30 % of hemicellulose and 15-35 % of lignin (Moore et al., 2011). 

Decomposition of acumulated plant material and thrown agricultural waste by fungi allow the 

release of carbon dioxide back into the atmosphere as well as release of essential nutrients as 

nitrogen and phosphorus to sustain plant biomass and other organisms (Horwath, 2007).  

2.2. Main biopolymers in wooden materials 

The most abundant biopolymers in nature as components of plant cell walls are 

cellulose, hemicellulose and lignin. Cellulose is the most abundant organic compound in the 

world, accounting for over 50% of organic carbon and 10
11

 tonnes of cellulose is synthesised 

each year (Moore et al., 2011). It is a linear polymer consisted of repeating glucose units 

linked together by β-1,4-glycosidic bonds. The degree of polymerisation can reach from 8000 

up to 12000 of glucose units per one polymeric chain (Souza, 2013). The major product of 

cellulose breakdown by microorganisms and macrofungi, though, is cellobiose which is 

further hydrolysed to glucose (Eriksson et al., 1990). Cellulose chains are stabilised by 

hydrogen bonds into microfibrils and further into cellulose fibers. It can exist in two forms, 

highly organised crystalline cellulose which is harder to degrade and amorphous non-

organised more degradable cellulose. 

Hemicellulose is comprised of linear and branched heteropolysaccharides consisting of 

mostly 5-C sugars D-xylose and L-arabinose, and hexoses D-mannose, D-glucose, D-galactose, 

and D-glucuronic acid which can also be acetylated or methylated (Eriksson et al., 1990). 

Galactoglucomannans and arabinoglucuronoxylan hemicelluloses dominate in softwood while 

glucouronoxylan dominates in hardwood. Due to its moderate degree of polymerisation (100-

200 units) and amorphous form, hemicellulose is more degradable than cellulose (Mäkelä, 

2009). 

Lignin serves as mechanical support to plants and aids in water transportation. It as 

well protects cellulose from enzymatic attack by different microorganisms and pathogens due 

to its dense nature, hydrophobicity and non-specific structure (Horwath, 2007). It is a 

heterogenic aromatic polymer composed of p-hydroxyphenil, guaiacyl and syringyl type of 

monolignol subunits joined together by different carbon-carbon and ether bonds (Mäkelä, 

2009). Similar to hemicellulose, composition and amount of lignin varies between softwood 

and hardwood. It makes 15-36 % of wood dry weight and along with cellulose is the most 

important renewable material (Eriksson et al., 1990). 
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2.3.Wood degradation by white-rot fungi 

Based on macroscopic characteristics of wood decay by fungi, four different patterns 

can be visually distinguished in forest ecosystems: white-rot, brown-rot, soft-rot and blue 

stain (Lundell et al. 2014). Common characteristic of white-rot decayed wood is white to 

yellow colour with dark manganese deposits (Lundell et al., 2014). The decayed wood may be 

brittle, soft, and spongy or fragmented into strings (Eriksson et al. 1990). White-rot fungi 

belong to phylum Basidiomycota class Agaricomycetes and attack dead coniferous wood, 

fallen trunks or burned wood (Lundell et al., 2014). Specific feature of Phlebia sp. white-rot 

fungi is selective lignin-degradation (Hatakka, 1994). Although they degrade cellulose and 

hemicellulose as well, excessive amount of lignin is being degraded from cell walls of 

softwood and hardwood by Phlebia sp. The order and the proportion in which lignin, 

hemicellulose and cellulose are being decomposed vary. The enzymatic attack can result in 

simultaneous degradation of all three components or in a preferential removal of one or more 

components (Eriksson et al., 1990). The lignocellulose decomposition as well depends on a 

type of wood substrate and its composition. 

2.3.1. Enzymatic strategy in wood decomposition 

Wood decomposition by fungi is possible due to their lignin-degrading machinery 

consisting of broad range of oxidative enzymes such as laccase, lignin peroxidase, manganese 

peroxidase and other versatile peroxidases. In lignocellulose degradation H2O2-generating 

enzymes also have an important role: aryl-alcohol oxidase, glyoxal oxidase and pyranose 2-

oxidase (Mäkelä, 2009). Chemical linkage between lignin and hemicellulose can be a possible 

reason for similar regulation of their breakdown (Eriksson et al. 1990). In order to completely 

hydrolase cellulose, several enzymes are needed: 1) β-1,4-endoglucanase, which hydrolyses 

amorphous regions of cellulose microfibrils; 2) cellobiohydrolase, which attacks ends of 

cellulose chains, both reducing and non-reducing, releasing disaccharide cellobiose, 3) β-1,4-

glucosidases, which cleave cellobiose to glucose units (Lundell et al., 2014). The three types 

of enzymes act synergistically. The activity exhibited by the mixture of three enzymes is 

higher than the sum of the individual activities (Zhang and Lynd, 2004). Complex chemical 

linkages between lignin, hemicellulose and cellulose make lignocellulolysis a difficult process 

that requires powerful enzymatic machinery working in synergy. During oxidation of lignin, 

highly-reactive free radicals are being generated and they affect other polysaccharide 

components. Big group of so called Carbohydrate-Active enzymes (CAZymes) is as well 
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aiding the lignocellulose decomposition. There have been detected numerous carbohydrate 

oxidases and other alternative enzymes such as copper-dependent lytic polysaccharide 

monooxygenases that enhance cellulose degradation (Levasseur, 2013). 

 

2.3.2.  Non-enzymatic factors in wood decomposition 

Besides mostly extracellular and oxidative enzymatic reactions involved in 

lignocellulose degradation, secreted fungal metabolites such as phenolic and other aromatic 

compounds, smaller peptides, lignocellulose-derived compounds, metal ions and organic 

acids play an important role in wood decomposition (Lundell et al. 2010). Out of all organic 

acids produced by different species of all classes of fungi, oxalic acid is being produced in the 

largest quantities. It has an important role in pathogenesis, ecology and lignocellulose 

degradation (Dutton and Evans, 1996). Oxalate production by fungi provides them many 

competitive advantages, as being toxic for many microbes. In pathogenesis, due to its 

chelating properties, sequestration of calcium ions from host cell walls and forming of 

calcium oxalate crystals weakens the cell wall of the host. Therefore, oxalic acid is aiding the 

access of fungal cell wall degrading enzymes and initiating wood decay (Dutton and Evans, 

1996). Oxalic acid also could have a synergistic role in lignin degradation acting as an 

electron donor in multiple redox reactions and a source of creating radicals by acting as a 

chelator in Fe(II)/H2O2 system (Singh and Rajini, 2004). Oxalic acid production varies 

between fungal species and depending on the carbon and nitrogen sources and the pH of the 

environment. Although brown-rot fungi in general produce more oxalic acid than white-rot 

fungi, in some white-rot fungi significant amounts of oxalic acid were detected during 

secondary metabolism when nutrients were depleted (Dutton and Evans, 1996.)  

Other factors such as oxygen, glucose concentration or presence of aromatic 

compounds can effect decomposition of lignocellulose. While the lignin and hemicellulose 

degradation is strongly enhanced, degradation of cellulose is being repressed under oxygen 

atmosphere. Aromatic compounds like vanillic acid and veratryl alcohol stimulate lignin 

degradation in the oxygen atmosphere, but veratraldehyde, ferulic acid or veratric acid repress 

it (Cho et al., 2009). Aromatic compounds as well stimulate hemicellulose degradation under 

oxygen atmosphere, but repress cellulose degradation. Interestingly, small amounts of glucose 

(0.05% w/v) can strongly increase lignin degradation and decrease cellulose breakdown (Cho 

et al., 2009). 
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2.4. Phlebia radiata and Phlebia acerina 

White-rot Phlebia genus belongs to the Polyporales phlebioid clade and to the family 

Meruliaceae and includes up to 220 species worldwide (Kuuskeri et al., 2015). They are often 

genetically distinct but phenotypically similar to each other. Cultivated Phlebia acerina was 

described as having wooly subicular mycelia and yellowish-brown hymenia with continuous 

but dried specimens frequently interrupted by areas of white (Nakasone, 1993). Phlebia 

radiata develops persistent, conspicuous, thick walled marginal hyphae. P. radiata can be 

identified by its narrow, cylindrical basidiospores and folded hymenial surface (Nakasone, 

1990). Seven days old fungal mycelia of University of Helsinki Fungal Biotechnology Culture 

Collection (FBCC, Helsinki, Finland) isolates on malt extract agar are shown in Fig.2. P. 

radiata FBCC43 and P. acerina FBCC4, that were used in this Thesis are two different 

species, yet molecular systematics demonstrates a close evolutionary relationship between 

them (Kuuskeri et al., 2015). Enzyme activity profiling of laccase, manganese peroxidase, 

cellobiohydrolase, β-glucosidase and endoglucanase after 14-days long cultivations on a 

milled spruce wood also showed a big similarity between these two species (Kuuskeri et al., 

2015). For P. radiata it has been reported that is able of efficiently degrading hardwood and 

softwood, as well as milled pine wood (Cho et al., 2009). 

 

Figure 2. Mycelia of Phlebia radiata FBCC43 (left) and Phlebia acerina FBCC4 (right) after 

seven days cultivation on a malt extract agar at 25C. 
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2.5. Potential of biofuels 

Nowadays, the world is facing rapid climate changes caused by excessive release of 

CO2 due to human activities during this and past century. CO2 concentrations in the 

atmosphere are increasing faster than ever before. Followed by rising of the oil prices on a 

global scale because of the depletion of the energy sources and the political instability of the 

producing countries, sustainable energy production and renewable energy sources are 

becoming major driving forces in planning the global sustainable development. The fast 

growing human population is demanding more food and places to inhabit and the fuel 

production from abundant waste lignocellulosic biomass has recently become an interesting 

replacement for other agricultural resources which are competing for human food and animal 

feed. Biofuels produced today refer to bioethanol, bio-methanol, vegetable oils, biodiesel, 

biogas, biosynthetic gas (bio-syngas) and bio-hydrogen (Balat, 2011). In terms of producing 

fuels from resources which do not pollute environment, along with biodiesel, bioethanol is the 

only biofuel for transportation produced on an industrial scale today. Biofuels have been used 

by men since nineteenth century: it has been used in Germany and France already from 1894 

starting the industry of internal combustion engines (ICEs) (Demirbas et al., 2007). Nikolaus 

August Otto developed his prototype of a spark ignition engine in the 1860s using ethanol and 

Deutz Gas EngineWorks designed one third of their heavy locomotives to run on pure ethanol 

in 1902. (Antoni et al., 2007). 

There are many benefits of biofuels production. From the economic point of view, it is 

sustainable, offers fuels diversity, increases competiveness, reduces the dependency on 

imported petroleum, increases number of rural manufacturing jobs, etc. It also has an 

environmental impact through reducing greenhouse gases and air pollution. It is 

biodegradable, renewable and improves land and water use (Balat, 2011). The European 

Union (EU) intended that biofuels will account for 10% by 2020 and in 2003 EU directive has 

implemented a tax exemption on biofuels of up to 100%. From the countries in EU utilising 

ethanol, Sweden is the one producing the most, using substrates as crops, sugar cane and 

wood waste. In addition, the largest single ethanol production facility in EU is located in Zeitz 

in Germany (Antoni et al., 2007). On the other hand, the world’s first commercial ethanol 

plant using cellulose as a substrate is considered to be in Crescentino in Italy with a full 

capacity of 75 million litres a year (Dionisi et al., 2014). Another plant in Strážske in Slovak 

Republic is currently under construction while in Fuyang in China a biorefinery four times the 

capacity of the Crescentino plant is under development (Ali et al., 2016). Besides the 



                                                                                                                             Theoretical part 

8 

 

combustion, ethanol has been used as solvent and basic chemical for medical and 

pharmaceutical purposes as well as in food and beverage industry and households. 

2.6. Ethanol production from lignocellulosic raw materials 

Biofuels produced from sugar based materials as corn or sugarcane, are called first-

generation biofuels (Soccol et al., 2011). The most common way of producing bioethanol 

nowadays is by microbial fermentation of simple sugars using bacteria like Zymomonas 

mobilis or other engineered bacteria containing its enzymatic systems, and fungi, mostly yeast 

Saccharomyces cerevisiae (Antoni et al., 2007). Ethanol production by yeast is the most 

efficient, technologically and economically, allowing high ethanol yields in short time, but its 

disadvantage is limitation in substrate variations. For example, wild type S. cerevisiae is able 

to ferment only hexoses and cannot metabolise xylose, the main component of hemicellulose. 

Also, the most of the microbes used for fermentation are not able to hydrolyse cellulose. 

When talking about ethanol production from lignocellulose materials, second-generation 

biofuels, it is far more technically and economically challenging. Although lignocellulose raw 

materials serve as abundant feedstock at low cost, it still has not reached its full industrial 

potential (Balat, 2011). 

The production of second-generation biofuels includes several biological processes 

that can be performed separately or combined in a single process: 1) breaking the lignin 

structure and making cellulose and hemicellulose available for hydrolysis, 2) further 

hydrolysis of polymers to simple sugars, 3) fermenting simple sugars to ethanol and 4) 

biomass separation and ethanol purification (Dionisi et al., 2014). Chemical pre-treatments 

like acid or alkaline hydrolysis or physical pre-treatments of lignocellulose, such as steam 

explosion or milling, result in accumulation of unwanted or toxic chemicals, which are later 

needed to be removed and deposited. Also, high pressure and high temperature conditions and 

the usage of commercially available expensive hydrolytic enzymes for a hemicellulose and 

cellulose treatment are making the process economically unattractive. Only pre-treatment of 

lignocellulosic feedstock contributes to 33% of the overall costs for ethanol production 

(Behera et el., 2014). All these steps performed separately are cause for current high costs of 

ethanol production from lignocellulose materials. Additionally, separation, washing and 

polishing between each step also contributes to low cost-effectiveness (Brethauer and Studer, 

2015). For example, in 2012 biofuels production from lignocellulosic feedstock accounted for 

only 0.15% of the total production (HLPE, 2013). Therefore, usage of biological pre-

treatment by fungi, co-cultivation of different microorganisms, making simultaneous 
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saccharification and fermentation (SSF) processes or entirely microbial processes in one step, 

so-called consolidated bioprocessing (CBP), brings cost advantages and is becoming more 

industrially interesting. In the following chapters different steps and latest advances in 

bioprocessing of lignocellulose to ethanol are described and the respective scheme is 

presented (see Fig. 3 below). 

 

2.6.1. Simultaneous saccharification and fermentation (SSF) 

Comparing to traditional separate hydrolysis and fermentation (SHF) process with 

little cost-effectiveness, new more economical approaches have been made. Combining 

enzymatic hydrolysis and the fermentation of sugars in one step is termed as simultaneous 

saccharification and fermentation (SSF). In this process, pre-treatment of lignocellulose is 

done separately and cellulolytic enzymes are added into single reactor where the hydrolysis 

and fermentation of hexoses is taking place. In SSF the fermentation of pentoses needs to be 

performed separately. Research group from United Kingdom performed SSF process of steam 

exploded duckweed using commercially available cellulases and β-glucosidase and has 

successfully reached 80% (w/w) of the maximum theoretical ethanol yield (Zhao et al., 2015). 

In addition, when fermenting high concentrations of duckweed substrate, higher ethanol 

yields were reached by increasing the yeast titre in inoculum or preconditioning yeast on 

steam exploded liquor so that the yeast could metabolise fermentation inhibitors (Zhao et al., 

2015). In bioethanol production from banana pseudostem, two fungal strains Aspergillus 

ellipticus and Aspergillus fumigatus were used in co-culture to produce cellulases on-site and 

allow release of reducing sugars. The obtained hydroxylate was further used for ethanol 

fermentation by S. cerevisiae (Ingale et al., 2014). 

Main advantages of SSF processes are the avoidance of end-product inhibition and 

prevention of hexose losses. Also, decrease in capital investment has been estimated to be 

larger than 20% (Olofsson et al., 2008). On the other hand, the optimal temperature for 

hydrolysis is much higher than the optimal temperature for the fermentation, therefore there 

must be found a compromise in SSF process with the consequence of affecting the process 

productivity. The ideal microorganism for SSF processes should have high temperature 

tolerance, inhibitor tolerance and the ability to use many kinds of simple sugars. 
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2.6.2. Simultaneous saccharification and co-fermentation (SScF) 

The microorganisms used for fermentations are not efficiently co-fermenting variety 

of sugars released from lignocellulosic materials. That is why it is considered to co-cultivate 

microorganisms with different substrate preferences. As an upgraded version of previously 

described SSF, simultaneous saccharification and co-fermentation does not require separate 

hexose sugars and pentose sugars fermentations. One of attempts was done by group of 

researchers in Zürich where filamentous fungus Trichoderma reesei has been used for 

production of cellulolytic enzymes in a co-culture with S. cerevisiae and Scheffersomyces 

stipitis that were fermenting simple sugars into ethanol. For that purpose bioreactor system 

enabling simultaneous aerobic and anaerobic conditions was created. A dense oxygen 

permeable membrane served as a growth support for fungus T. reesei. Oxygen necessary for 

the growth of T. reesei and the secretion of cellulolytic enzymes was delivered from the gas-

phase through the membrane at the bottom of the bioreactor and was consumed by fungus and 

an oxygen gradient was created within the bioreactor. The released enzymes hydrolysed the 

lignocellulosic fractions to soluble sugars, which were metabolized by the ethanol fermenting 

microorganisms in the upper, anaerobic parts of the bioreactor (Brethauer and Studer, 2014). 

Compared to commercial enzyme based SScF, using the co-culture with S. cerevisiae and S. 

stipitis, ethanol yields and xylose consumption were higher in those processes using the 

membrane reactor system. Another successful work has been done by scaling-up SScF 

process from laboratory scale to 10 m
3
 demonstration scale plant (Koppram et al., 2013). In 

work described by Koppram et al. (2013) recombinant S. cerevisiae carrying genes from 

xylose fermenting S. stipitis was used in the process reaching 4% (w/v) ethanol using xylose 

rich corncobs. Despite of the technical advances in SScF processes and the efforts to optimise 

culture conditions, the main disadvantage is still present inhibitory effect of hydroxylate on 

some microorganisms, like S. stipitis, yeast strain important for pentose sugars fermentation. 

2.6.3. Consolidated bioprocessing (CBP) 

The most advanced processing approach which reduces process costs to up to 40% 

compared to SSF is consolidated bioprocessing (CBP) that integrates cellulolytic enzymes 

production, cellulose and hemicellulose hydrolysis and fermentation of simple sugars into 

ethanol in a single step (Brethauer and Studer, 2015). There are two possible suggestions of 

doing it and both are scientifically challenging and highly demanding. One way is to 

genetically engineer an organism, which is naturally capable of producing ethanol, to gain 
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new abilities for hydrolysing cellulose. Throughout last 10 years, there have been engineered 

different S. cerevisiae yeast strains carrying genes from T. reesei coding for cellulolytic 

enzymes endoglucanase and cellobiohydrolase (Yamada et al., 2013). In order to achieve 

enzyme synergy, cellulosome strategy is applied in yeast cells, where cellulolytic enzymes are 

being expressed and transported to the cell surface where they are able to attach to α-

agglutinin anchor protein (Tsai et al., 2012). Another approach is to genetically engineer 

organisms which can naturally hydrolyse cellulose and ferment sugars therefrom into ethanol. 

Recently, advances are made in the development of genetic systems for several cellulolytic 

bacteria, where a thermophilic bacterium was engineered to produce ethanol at commercially 

interesting yields (Olson et al., 2012). Clostridium thermocellum and Clostridium 

cellulolyticum, being cellulosome-forming bacteria, are the best-developed as potential CBP 

biocatalysts. Although there have not been many reports of using fungi as CBS candidate 

organisms, group of researchers have developed strains of fungi Fusarium oxysporum and T. 

reesei with a great CBS potential (Ali et al., 2016.). Main characteristics of CBS organism 

should be: tolerance of relatively high temperature and ethanol concentration, then high 

tolerance toward inhibitors released as by-products during process, huge variety of 

monosaccharides that can be used in fermentation, etc. Disadvantage that consolidated 

bioprocessing is facing is ensuring culture conditions optimal for all types of processes 

performed simultaneously; and by using genetically engineered microorganisms: negative 

effects of the co-expression of multiple heterologous genes on the cell capacity, simultaneous 

expression of multiple genes and improper folding of secretion proteins (Ali et al., 2016). 

2.6.4. Microbial consortia 

An alternative for a single genetically engineered CBP organism which may face 

losses of overall performance, robustness and capacity due to importation of multiple gene 

systems, is utilization of naturally occurring mixed cultures. The application of mixed cultures 

is relatively rare and it has been reported to be used in traditional food and beverage industries 

as well as wastewater treatment, biogas production and biological soil remediation (Sabra et 

al., 2010). Industrial processes involving the use of mixed cultures, where many different 

naturally-occurring microorganisms co-exist, to produce biodegradable plastics, methane or 

hydrogen is under investigation (Dionisi et al., 2014). The advantages for the usage of 

naturally occurring microbial consortia in ethanol production from lignocellulose is wide 

variety of lignocellulose substrates, high self-stability and the reducing of pre-treatment of 

lignocellulose and sterilisation requirements (Du et al., 2015). So far, studies on mixed 
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cultures have reported only 0.8 mol of ethanol per mol
-1

 of glucose, compared with the 

maximum theoretical yield which is 2 mol of ethanol per mol
-1 

of glucose (Dionisi et al., 

2014). Besides low ethanol yield, the main challenges that mixed cultures will have to 

overcome are: low rates of lignin and cellulose hydrolysis, control of the fermentation of 

sugars to ethanol and co-existence of different microbial populations. Also, the 

synchronisation of grow rates of co-cultured species and the competiveness for the nutrients is 

quite a challenge. Fungi like T. reesei and Phlebia sp. are great candidates for cellulases 

production, but their growth is slow compared to yeast or bacteria species. Successful results 

in ethanol production from cellulosic materials have been obtained with natural bacterial 

cosortia from a variety of habitats in China where Pseudoxanthomonas taiwanensis has been 

introduced (Du et al., 2015). It was shown that P. taiwanensis, which lacks the capability for 

ethanol fermentation, can increase the ethanol production in bacterial consortia as well β-

glucosidase activity. In microbial consortia, existing synergies may results in more efficient 

substrate utilization and increased product yield (Brethauer and Studer, 2014). Investigating 

complex microbial consortia occurring in nature could lead to better understanding of specific 

interaction between organisms and in future creating artificial co-cultures in order to reach 

high ethanol yields from lignocellulosic raw materials. 

 

Figure 3. Scheme represents different steps in the bioprocessing of lignocellulose to ethanol. 

SHF - separate hydrolysis and fermentation, SSF – simultaneous saccharification and 

fermentation, SSCF – simultaneous saccharification and co-fermentation, CBP – consolidated 

bioprocessing (Ali et al., 2016). 
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2.7. Ethanol production by white-rot fungi 

Despite of raised interest in using filamentous fungi in conducting SSF processes 

when producing bioethanol from lignocellulosic feedstock, there are still very few results 

from direct ethanol production from lignocellulosic raw material. Researchers mostly rely on 

modifying non-cellulolytic organisms that are able to produce high amounts of ethanol in 

order to gain cellulolytic abilities, as mentioned in previous chapters. There have been 

reported several fungal species for ethanol production from cellulose such as Aspergillus sp. 

(Ingale et al., 2014), Rhisopus sp. (Skory et al., 1997; Millati et al., 2005), Neurospora sp. 

(Rao et al., 1983), Fusarium sp. (Ali et al., 2016), and Trichoderma sp. (Stevenson and 

Weimer, 2002; Brethauer and Studer, 2014; Ali et al., 2016). Since white-rot fungi are able to 

degrade all the components of plant cell-walls and do not require strict anaerobic conditions 

for fermentation, they have become interesting microorganisms for consolidated 

bioprocessing. There have been few reports of enzymatic saccharification using white-rot 

fungi Phanerochaete chrysosporium (Zeng et al., 2011), Echinodontium taxodii (Yu et al., 

2009), Ceriporiopsis subvermispora (Wan and Li, 2011), Irpex lacteus (Xu et al., 2010), 

Trametes hirsuta (Saritha et al., 2012), and Cyathus stercoreus (Yamagishi et al., 2011). 

Japanese research group performed screening of ethanol-producing basidiomycetes 

and have found species Peniophora cinerea and Trametes suaveolens as potential candidates 

for application in SFF processes (Okamoto et al., 2010). More efficient P. cinera was able to 

assimilate glucose, mannose, fructose, galactose, sucrose, maltose and cellobiose and produce 

ethanol under both aerobic and micro-aerobic conditions. Initial glucose concentration was 

20.0 g L
-1

 and maximal concentration of produced ethanol after 16 days of cultivation under 

micro-aerobic conditions was 8.1 g L
-1

. On the other hand, when amorphous cellulose 

previously treated with phosphorus acid, was used as an only carbon source, maximal 

concentration of produced ethanol after 18 days of cultivation was 3.0 g L
-1

. In addition, by 

HPLC analysis of products of cellulose hydrolysis showed that released sugars are being 

rapidly consumed for growth of biocatalyst and ethanol production. 

The latest investigations on lignocellulose conversion using Phlebia sp. are made on 

several wood waste materials: sugarcane bagasse, unbleached hardwood kraft pulp, 

hardwood, cellulose materials and recent finding are described in the following chapters. 
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2.7.1. Sugarcane bagasse conversion to ethanol by Phlebia sp. MG-60 

Every year sugarcane industry throws away large quantities of agro-waste causing 

environmental problems. One way to deal with it is to screen for efficient fungal species 

whose delignifying capabilities could be introduced for different industrial applications. The 

great ability of white-rot fungus Phlebia sp. MG-60 to efficiently degrade lignin was tested 

using whole sugarcane bagasse (WSB) (Li et al., 2002). It was showed that more than 50% of 

lignin in WSB was degraded, while less than 10% of cellulose was lost after 30 days of 

cultivation. These results suggested possible employment of Phlebia sp. MG-60 in biopulping 

in the pulp and paper industry as well as in animal feed production because lignin degradation 

in lignocellulosic agro-residues improves their digestibility by cattle. White-rot fungus 

Phlebia sp. was as well proposed for bioethanol production by delignification and 

fermentation of sugarcane bagasse and it was suggested that suitable culture conditions could 

improve fermentation efficiency (Kondo et al., 2014). The effect of initial moisture content 

for the fermentation was tested and 75% of initial moisture showed to be the most beneficial 

for the substrate availability. With this initial moisture content, the highest ethanol yields 

achieved after 2 and 4 weeks of incubation were 44.2 and 64.2 mg of ethanol per g
-1

 of 

bagasse powder, respectively, which was 16.1% and 20.4% of the theoretical maximum. It 

was also suggested that the addition of some chemical additives such as basal media could 

improve fermentation and shorten the process time. 

2.7.2. Ethanol production from cellulose materials using Phlebia sp. MG-60 

Phlebia sp. MG-60 has combined abilities of the lignin degradation, cellulose 

saccharification, and ethanol fermentation, as showed in direct ethanol production from 

cellulosic materials (Kamei et al., 2012a). Microcrystalline cellulose (Avicel PH-101), 

unbleached hardwood kraft pulp (UHKP) and waste newspapers were used as substrates for 

integrated fungal fermentation. When Phlebia sp. MG-60 was cultured for 168.0 h with 

UHKP, 8.4 g L
-1

 of ethanol was produced with 0.42 g of ethanol per g
-1

 of UHKP or 71.8% of 

theoretical yield. It was also showed that the change in inoculum preparation, like dispersion 

of mycelia, affects ethanol production and could shorten incubation period. From waste 

newspaper, 4.2 g L
-1

 of ethanol was produced after 216.0 h of incubation giving yields of 0.20 

g of ethanol per g
-1

 of newspaper, which was 51.1% of theoretical yield. In cultivation with 

20.0 g L
-1

 microcrystalline cellulose, 2.8 g L
-1

 of ethanol, or 25.3% of the theoretical yield 

was detected after 480.0 h of incubation. 
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Another study of fermentation of the UHKP was performed with the aim to evaluate 

the effects of initial concentration of the UHKP on ethanol production by Phlebia sp. MG-60 

(Kamei et al., 2014). Direct fermentation of the UHKP was carried out at several initial 

concentrations: 2.0, 4.7, 9.1, and 16.5% w/w and the highest ethanol concentration of 25.9 g 

L
-1

, or 46.7% of the theoretical yield was observed in the culture containing 9.1% of UHKP 

after 13.0 days of incubation. On the other hand, the highest cellulase activity detected using 

filter paper activity assay for cellulases (FPase) was observed in the 4.7% UHKP culture 

which was explained by possibility that synthesis of cellulases might be induced by water-

soluble depolymerisation products such as cellobiose. In this study (Kamei et al., 2014) it was 

also indicated that the integrated fungal fermentation by Phlebia sp. MG-60 may be affected 

by water content and benefits from a small amount of aeration. 

2.7.3. Ethanol production from hardwood using Phlebia sp. MG-60 

Based on previous findings that Phlebia sp. MG-60 was able to degrade lignin under 

aerobic conditions and produce ethanol by fermenting simple sugars therefrom, Japanese 

research group has manage to produce ethanol from woody biomass in a single step (Kamei et 

al., 2012b). After 56.0 days of incubation on oak wood, 40.7 % of initial lignin was degraded. 

Right after the delignification, fermentation was performed under semi-aerobic conditions 

reaching 43.9% of the theoretical yield of ethanol after 20.0 days. Ethanol concentrations 

were estimated to be 311.3, 301.6, 353.7, 377.6, and 359.7 mg of ethanol per g
-1

 of wood, that 

was previously aerobically treated for 0.0, 14.0, 28.0, 42.0, and 56.0 days, respectively. 

Although the whole process lasted 76.0 days, it was the first report of the use of a single 

organism for ethanol production directly from wood without any additional chemicals or 

enzymes. Also, analysis of cellulase activities and xylanase activities indicated switching of 

metabolism from selective lignin degradation to polysaccharide degradation by changing from 

aerobic condition to semi-aerobic condition. 

2.7.4. Ethanol production using wood-decaying fungal mix in co-culture with 

Saccharomyces cerevisiae 

An interesting study was performed using samples from decomposing wood collected 

in the field to find strains that can exploit a broad spectrum of components from substrate, and 

have faster metabolism (Holmgren and Sellstedt, 2008). The fungal isolates obtained from the 

samples, capable of fermenting hexoses and pentoses, were identified by ITS-sequence 
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analysis as soft rot fungus Chalara parvispora and white rot fungi, Trametes hirsuta and T. 

versicolor. The substrate used was spent sulphite liquor obtained from treated wood in pulp 

industry and it consisted of lignosulfonates, hexoses and pentoses. Using the co-cultures with 

C. parvispora, T. versicolor and S. cerevisiae it was showed three times increase in ethanol 

production compared to fermentation using only S. cerevisiae. The amount of ethanol 

produced by S. cerevisiae in spent sulphite liquor was 8.64 g L
-1

, fungal co-culture consisted 

of C. parvispora and T. versicolor could produce 11.64 g L
-1

 of ethanol, while 24.61 g L
-1

 of 

ethanol was produced by using S. cerevisiae together with the fungal co-culture. Similar study 

was reported in India where fungal mycelium from different species and waste mycelium 

from antibiotic industry increased ethanol production from cane molasses batch fermentation 

by S. cerevisiae (Patil and Patil, 1990). In the presence of mycelium, ethanol production was 

30% to 65% higher at 30°C. 

2.8. Future prospects for bioethanol production from lignocellulose 

Despite the significant advances so far in lignocellulose processing for bioethanol 

production, there are still efforts and steps left to develop for the production on a large-scale. 

Some of the ideas for future biofuels development are: breeding of climate adapted energy 

plants for each area, utilisation of the whole plant as a substrate and simultaneous 

fermentation of pentoses and hexoses, either by introducing genetically modified organisms 

or creating artificial mixed cultures. Also, optimisation of the use of biofuels, standardisation 

of new types of biofuels and fuel mixes and adaptation to present day engines with the 

emphasis on development of new engines should be considered (Antoni et al., 2007). 

From the biological point of view, future advances should rely on improvement of 

different microorganisms as cell factories; designing new strains or enzymes for biofuel 

fermentation, strains with higher fermentation temperature and better tolerance towards 

product, introduction of the lignin hydrolysis capability into microorganisms that are naturally 

able to hydrolyse cellulose, or introduction of the cellulose hydrolysis capability into 

microorganisms that are naturally able to hydrolyse lignin (Dionisi et al., 2014). By doing 

directed mutagenesis and using recombinant DNA technology, microorganisms that are native 

ethanol producers could be engineered to be able to degrade cellulose. On the other hand, 

microorganisms that are naturally able to hydrolyse cellulose could be engineered to produce 

ethanol. When discussing lignocellulose pre-treatment, the most costly step, besides expected 

low energy, capital and operating costs, the future effort should be put on maximising the 
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sugar yields in the hydrolysate, while minimizing the degradation of sugars caused by pre-

treatment method and the formation of inhibitory compounds (Brethauer and Studer, 2015). 

Applications of white-rot fungi in development of future bioprocessing systems are 

promising due to its 1) possession of lignocellulolytic enzymes and 2) production of various 

industrially interesting by-products like organic acids and ethanol. Combining delignification 

and consolidated bioprocessing has advantages related to its low cost for ethanol production 

because of the need for only one strain in a single bioreactor. On the other hand, integrated 

fungal fermentation has longer time requirements and lower ethanol yields (Kondo et al., 

2014). One suggestion to increase ethanol yields is to improve culture conditions (Okamoto et 

al., 2010) and the other is to introduce co-cultures for SSF whose various interactions such as 

symbiosis, cooperation and competition could synergistically affect both delignification and 

ethanol production (Brethauer and Studer, 2015). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. EXPERIMENTAL PART 
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3.1. MATERIALS 

3.1.1. (Micro)organisms 

In this Thesis two filamentous fungi, Phlebia acerina 4, University of Helsinki Fungal 

Biotechnology Culture Collection (FBCC, Helsinki, Finland) and Phlebia radiata 43 (FBCC), 

and selected yeast, Saccharomyces cerevisiae 1164, University of Helsinki, Faculty of 

Agriculture and Forestry, Division of Microbiology and Biotechnology (HAMBI, Helsinki, 

Finland) were used as working (micro)organisms in lignocellulose conversion to ethanol. 

The yeast Saccharomyces cerevisiae HAMBI1164 was selected among 12 yeast 

species, as listed in Table 1., all from HAMBI. The selection was based on several criteria: 

ability to ferment glucose into ethanol and efficiency of the fermentation (Fig. 7), sensitivity 

to oxalic acid (Fig. 8) and sensitivity to ingredients of filtrate that was obtained after 

cultivation of Phlebia acerina FBCC4 (FBCC FG; Fig. 9). All 12 yeast species were as well 

systematically compared (Fig. 13) by their internal transcribed spacer (ITS) DNA sequences, 

previously amplified using polymerase chain reaction (PCR) method (see Chapter 3.2.14.) 

and sequenced (see Chapter 3.2.15.). 

 

Table 1. List of 12 yeast species used in selection of single yeast strain for bioprocess 

catalysed by three-species co-culture. 

 

yeast HAMBI culture collection number 

Saccharomyces cerevisiae 1165 

Saccharomyces cerevisiae 1164 

Saccharomyces cerevisiae 2108 

Saccharomyces cerevisiae 10 

Saccharomyces cerevisiae 785 

Saccharomyces cerevisiae 1459 

Kluyveromyces lactis 2238 
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Table 1. List of 12 yeast species used in selection of single yeast strain for bioprocess 

catalysed by three-species co-culture (continued). 

strain HAMBI culture collection number 

Candida humilis 1169 

Wickerhamomyces anomalus 811 

Rhodosporidium toruloides 2246 

Candida albicans 261 

Zygosaccharomyces rouxii 2239 

 

 

3.1.2. Chemicals 

3.1.2.1. Modified Okamoto media 

 

Media used in this Thesis are modifications of T medium (Okamoto et al., 2010), 

further called modified Okamoto medium (see Table 2). Original T medium consisted of: 

yeast extract, 10.0 g L
-1

; potassium phosphate, 10.0 g L
-1

; ammonium sulphate, 2.0 g L
-1

; and 

magnesium sulphate heptahydrate, 0.5 g L
-1

; and it had pH value of 6.0. 

 In two modified Okamoto media two different carbon sources were used - glucose, 

20.0 g L
-1

 (modified Okamoto medium 1) or core board, 50.0 g L
-1

 (modified Okamoto 

medium 2). 
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Table 2. Purity and manufacturer of chemicals used in preparation of modified Okamoto 

media. 

Chemical Purity grade Manufacturer 

glucose 

Pharmaceutical 

Applications 

(Ph.Eur) 

Sigma Aldrich, St.Louis, 

MO, USA 

core board / 
Metsä Tissue, Mänttä, 

Finland 

yeast extract / 
LabM, Lancashire, 

United Kingdom 

potassium phosphate monobasic (KH2PO4) 

analytical 

reagent 

(Analar reagent) 

Sigma-Aldrich, Munich, 

Germany 

ammonium sulphate [(NH4)2SO4] 
general purpose 

reagent (puriss) 

Merck, Darmstadt, 

Germany 

magnesium sulphate heptahydrate  

(MgSO4 7H2O) 

analytical 

reagent (p.a.) 

 

J.T.Baker, Deventer, 

Holland 

 

 

3.1.2.2. Malt extract agar (MEA) 

 

Malt extract agar was used for maintenance and determination of growth of Phlebia 

acerina FBCC4, Phlebia radiata FBCC43 and Saccharomyces cerevisiae HAMBI1164 

monocultures. Three monocultures were cultivated in malt extract agar (pH=5.5) which 

contained malt extract, 20.0 g L
-1

 (Biokar Diagnostics, Beuvais Cedex, France) and agar-agar, 

20.0 g L
-1

 (Amresco, Solon, Ohio, USA). 
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3.1.2.3. Other chemicals 

 

Chemicals used in screening studies for the selection of yeast species as a candidate 

for ethanol production (see Chapter 4.2.), are listed in Table 3. 

Table 3. Purity and manufacturer of other chemicals used in research. 

Chemical Purity grade Manufacturer 

glucose p.a. 
Merck, Darmstadt, 

Germany 

Oxalic acid 
anhydrous 

puriss p.a. 

Sigma Aldrich, St.Louis, 

MO, USA 

Ethanol  96.1% 
Altia Oyj, Helsinki, 

Finland 

Ringer tablets 115525 - 
Merck KgaA, 

Darmstadt, Germany 

NaOH p.a. 
Merck, Darmstadt, 

Germany 

HCl p.a. 
Merck, Darmstadt, 

Germany 

 

 

3.1.2.4. Primers used in PCR-amplification of Internal Transcribes Spacer (ITS) of the rDNA 

region of yeast species 

 

Primers used in amplification of the yeast rDNA region consisted of the conserved 

18S (partially), 5.8S and 28S (partially), and variable ITS1 and ITS2 rDNA regions were 

ITS1 5'-TCCGTAGGTGAACCTGCG-3' and ITS4 5'-TCCTCCGCTTATTGATAT-3' 

(White et al. 1990), synthesised by Tag Copenhagen A/S, Copenhagen, Denmark. 
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3.1.3. Equipment 

 

3.1.3.1. Multiwell spectrophotometer Tecan 

 

Spectrophotometer Tecan 811001737 (Tecan Austria GmbH, Grödig, Austria) was 

used allowing measurements at wavelength (λ) of 540 nm for determination of reducing 

sugars concentration by DNS method (see Chapter 3.2.6.), and at λ of 600 nm for measuring 

optical density (OD600) of yeast cells (see Chapter 3.2.5.). 

It was equipped with UV-lamp (Tecan Austria GmbH, Grödig, Austria) for measuring of 

NADH concentration at λ of 340 nm (see Chapter 3.2.7.) 

 

3.1.3.2. Other equipment 

o Arktik Thermal Cycler TCA4848 (Thermo Fisher Scientific, Vantaa, Finland); 

o Gel imaging system Universal Hood II.,SN:720BR/01908 (BioRad, Hercules, CA, 

USA); 

o Drying oven 40050-IP-20 (Memmert GmbH & Co. KG, Schwabach, Germany); 

o Incubator Innova 4230 (New Brunswick Scientific Co., Edison, New Jersey, USA); 

o Centrifuge ScanSpeed Mini (LaboGene ApS, Lynge, Denmark); 

o pH-meter Orion SA720 (Merck, Darmstadt, Germany); 

o Lab balance Precisa junior 3100C (Precisa Gravimetrics AG, Dietikon, Switzerland); 

o Water filtration system (Millipore, Bangalore, India); 

o 96-well plates Costar 3635 (Corning, Vordingborg, Denmark); 

o Optical microscope Leica DM 750 (Leica, Wetzlar, Germany); 

o Leica E3 camera (Leica, Wetzlar, Germany); 

o Rubber plugs with hole (top diameter 29 mm, height 35 mmm, bottom diameter 30 

mm), and rubber plugs without hole (top diameter 38 mm, height 35 mmm, bottom 

diameter 31 mm) (VWR, Radnor, Pennsylvania, SAD); 

o Lab glassware: graduated cylinder, Erlenmeyer flask, beakers (Schott Duran, 

Wertheim, Germany); 

o Magnetic stirrer; 

o Vortexmixer; 

o Pipettmans; 

o Tips, filter tips. 
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3.2. METHODS 

3.2.1. Preparation of modified Okamoto medium 1 

For the preparation of 1.0 L of basic Okamoto medium 10.526 g of yeast extract 

(LabM, Lancashire, United Kingdom), 10.526 g of KH2PO4 (Sigma-Aldrich, Munich, 

Germany), 2.105 g of (NH4)2SO4 (Merck, Darmstadt, Germany) and 0.526 g of MgSO4 
. 7 

H2O (J.T.Baker, Deventer, Holland) were weighed using laboratory balance Precisa junior 

3100C (Precisa Gravimetrics AG, Dietikon, Switzerland), passed into 1 000.0 mL beaker and 

to this mixture 700.0 mL of water [obtained from the filtration by reverse osmosis (RO water) 

using reverse osmosis system (Millipore, Bangalore, India)] was added. Magnetic stirrer was 

used to dissolve the mixture. The measurement of pH was done by pH-meter Orion model 

SA720 (Merck, Darmstadt, Germany) and pH was adjusted to pH 6.0 by adding 4.0 M NaOH 

or 4.0 M HCl (Merck, Darmstadt, Germany). After setting the pH, the solution was passed 

into volumetric flask, filled up to 1 000.0 mL with the RO water and closed with plastic plug. 

The flask was inverted 3-4 times. Finally, the total volume was divided into 1.0 L bottles and 

autoclaved (121°C, 1 atm, 15 min). Sterile medium was stored in cold room at 4°C. Modified 

Okamoto medium supplied with 2% D-(+)-glucose (Sigma-Aldrich, St.Luis, MO, USA) was 

further called modified Okamoto medium 1 and the procedure for preparation od modified 

Okamoto medium 2 is described in Chapter 3.2.2. 

3.2.2. Preparation of the substrate for modified Okamoto medium 2 

The substrate for lignocellulose conversion into ethanol as the only carbon source used 

was core board roll from the toilet paper roll (Metsä Tissue, Mänttä, Finland). The exact 

composition of the core board is under determination, but it is assumed to be mainly 

lignocellulose. The core board was soaked in RO water in a plastic container for 5-10 minutes 

and milled using IKA A11 Basic Analytical Mill 230V (Sigma-Aldrich, Munich, Germany). 

The milling was performed 3 times for 2-3 seconds. Each core board roll was milled 

separately. Afterwards, the milled core board was left to dry in a drying oven 40050-IP-20 

(Memmert, Schwabach, Germany) at 105°C for 24.0 h. Dried core board was milled once 

again, as described before, and the final result was core board of dust-like texture. Core board 

prepared as described was then weighed using lab balance Precisa junior 3100C (Precisa 

Gravimetrics AG, Dietikon, Switzerland) and 1.0 g was transferred by forceps into 100.0 mL 

Erlenmeyer flask. By using graduated cylinder the basic Okamoto medium (19.0 mL; see 
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Chapter 3.2.1.) was added to the prepared core board in Erlenmeyer flask and 1.0 mL of the 

RO water was pipetted to make a total volume of modified Okamoto medium 2 of 20.0 mL. 

The Erlenmeyer flask was covered by aluminium foil and autoclaved (121°C, 1 atm, 15 min). 

 

3.2.3. Inoculation of one and two discs portion of filamentous fungi and cultivation in 

modified Okamoto medium 2 

Monocultures of filamentous fungi Phlebia radiata FBCC43 and Phlebia acerina 

FBCC4 were cultivated on a malt extract agar (MEA) in Petri dish for one week at 25C in 

incubator Innova 4230 (New Brunswick Scientific, Edison, New Jersey, USA) before 

inoculating one disc (see below) into modified Okamoto medium 2 (see Chapter 3.2.2.). By 

using sterile metal cylinder every inoculum-disc (0.6 cm in diameter) was cut out from 

mycelium pre-grown on MEA under described conditions. The disc was carefully transferred 

with sterile forceps into 20.0 mL of sterile modified Okamoto medium 2. Double portion of 

inoculum (two discs) was prepared in the same way, as described above. The whole procedure 

of inoculation was accomplished in laminar flow hood. The Erlenmeyer flask with inoculated 

medium was closed with previously autoclaved rubber plugs with a hole in the middle (VWR, 

Radnor, Pennsylvania, USA) carrying filter-tip and then placed in the incubator at 25°C. 

 

3.2.4. Preparation of overnight culture of yeast cells for selection experiments and 

bioprocesses for ethanol production 

By using inoculating microbiological loop one colony of pre-grown yeast was 

aseptically transferred to 5.0 mL of sterile modified Okamoto medium 1 (see Chapter 3.2.1.) 

in test tube. Inoculated medium was incubated overnight in the incubator at 25°C with 

constant shaking at 160 rpm. 

 

3.2.5. Determination of optical density of yeast cells suspension 

Optical density (OD600) of yeast cells suspension was determined by using multiwell 

spectrophotometer Tecan 811001737 (GmbH, Grödig Austria) at  of 600 nm. The volume of 

150.0 µL of sample or blank was added into each well of 96-well plate (Costar 3635, Corning, 

Vordingborg, Denmark) in three technical replicates. The blank used for measuring OD600 

was sterile corresponding medium. 
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3.2.6. Determination of reducing sugars by DNS assay 

3,5- dinitrosalicylic acid (DNS) assay was used for determination of concentration of 

reducing sugars. It was assumed that glucose, which was released after core board 

lignocellulose hydrolysis, was main reducing sugar in liquid phase of the medium. The 

method is based on a redox-reaction between 3,5- dinitrosalicylic acid and reducing sugars. In 

the presence of reducing sugars, 3,5- dinitrosalicylic acid in alkaline medium reduces to 3-

amino-5-nitrosalicylic acid while aldehyde group of reducing sugar oxidise to carboxyl group 

and, due to described reaction, colour of mixture will be changed from bright yellow to 

brown-red while heated. Described procedure was, as follows: 50.0 µL of sample was mixed 

with 75.0 µL of DNS reagent (Miller, 1959) in a plastic 96-well plate. Obtained mixture was 

then boiled in vigorously boiling water for 5.0 min and left to cool down in cold water. Tecan 

multiwell spectrophotometer 811001737 (GmbH, Grödig Austria) was used for measurement 

of absorbance at  of 540 nm. The obtained absorbance value was converted to concentration 

of reducing sugars expressed in g L
-1

 by using standard curve and resulting equation. The 

standard was glucose (Merck, Darmstadt, Germany) and stock solution containing 0.01M of 

glucose in a 0.05 M Na-citrate buffer, pH 5.0, was prepared, aliquoted and freezed. After 

unfreezing, dilution series was prepared by using Milli-Q water obtained by filtration system 

(Millipore, Bangalore, India) in concentrations from 0.00 mM to 10.00 mM, as follows: 0.00 

mM, 1.25 mM, 5.00 mM and 10.00 mM. Three technical replicates were performed. Blank for 

absorbance measurement was 50.0 µL of Milli-Q water mixed with 75.0 µL of DNS reagent. 

Each set of reducing sugars determination was done with new curve and 

corresponding equation. One of equations is presented below. 

 

 y = 0.8988x – 0.0264  R² = 0.9990     [1] 

 

y= determined absorbance at  of 540 nm 

x= concentration of reducing sugars in g L
-1
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3.2.7. Enzymatic assay for determination of ethanol concentration 

Concentration of ethanol (g L
-1

) was determined by enzymatic method. Megazyme 

ethanol kit (Megazyme International, Wicklow, Ireland) was used. Priciple of the 

determination is described briefly below. Ethanol was converted into acetaldehyde in reaction 

catalysed by alcohol dehydrogenase and then resulting acetaldehyde was converted by 

aldehyde dehydrogenase to acetic acid. In both reactions one mole NADH was formed per 

mole of substrate. The change in NADH concentration was determined 

spectrophotometrically at  of 340 nm by using UV-lamp of multiwell platereader Tecan 

811001737 (Tecan GmbH, Grödig Austria).  

Protocol for a full 96-well plate Costar 3635 (Corning, Vordingborg, Denmark) 

consisted of several steps starting with preparing standards solutions from Megazyme ethanol 

standard stock (5.0 µg µL
-1

). The dilutions were prepared by pipetting 40.0 µL of standard 

stock into 960.0 µL of Milli-Q water in an Eppendorf tube and vortexed to prepare so called 

Standard 3 (dilution 1:24, concentration of ethanol of 0.20 µg µL
-1

). Then, 500.0 µL of 

Standard 3 was mixed with 500.0 µL of Milli-Q water in a new Eppendorf tube to prepare 

Standard 2 (dilution 1:1, concentration of ethanol of 0.10 µg µL
-1

). Afterwards, 500.0 µL of 

Standard 2 was mixed with 500.0 µL of Milli-Q water in another Eppendorf tube to make 

Standard 1 (dilution 1:1, concentration of ethanol of 0.05 µg µL
-1

). Standard zero (0) was pure 

Milli-Q water. To prepare alcohol dehydrogenase (ADH) dilution from Megazyme kit, 210.0 

µL of Megazyme ADH and 840.0 µL of Milli-Q water was gently mixed with a pipette in an 

Eppendorf tube. To prepare Megazyme aldehyde dehydrogenase (Al-DH) dilution from 

Megazyme kit, 500.0 µL of Al-DH and 700.0 µL of Milli-Q water was mixed together, as 

described for the ADH. Next step was preparing a series of dilutions from the samples. 

Dilution ratio depended on the ethanol concentration expected to be found in the sample. 

Method was optimised for samples that contain ethanol concentrations in range 0.1-0.2 µg µL
-

1
. Firstly, 185.0 µL of Milli-Q water was pipetted to all wells. Then 10.0 µL of diluted sample 

or Standard solution 3, 2, 1 or 0 was added in well. Volume of 2.0 mL of Megazyme buffer, 

2.0 mL of Megazyme NAD
+
 solution and 1.2 mL of diluted Al-DH were mixed together in 

order to prepare enzyme-precursor mixture. Volume 52.0 µL of prepared mixture of NAD
+
 

and Al-DH was pipetted to each well. Then, the plate was inserted to Tecan reader 811001737 

(GmbH, Grödig Austria) and executed integrated pre-prepared programe „Megazyme EtOH“. 

Now, first value was acquired (Absorbance 1). Afterwards, as plate moved out automatically, 
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10.0 µL of diluted ADH was quickly added into each well and the program continued. So. 

The second value was acquired (Absorbance 2).  

The subtraction of Absorbance 1 from the Absorbance 2 gave absorbance value which 

was related to ethanol concentration that was present in tested samples (Equation [2]). 

 

Absethanol = Abs2 – Abs1       [2] 

 

The ethanol concentration was calculated from the standard curve (Equation [3]) and 

multiplied by the dilution factor. Each set of ethanol determination was done with new curve 

and corresponding equation. One of equations is presented below. 

 

y = 5.6292x + 0.1014  R² = 0.99     [3] 

 

y= determined absorbance at  of 340 nm 

x= concentration of ethanol in g L
-1

 

 

 

3.2.8. Fermentative ability of 12 yeast strains 

Fermentation ability test was made by using 12 yeast species from HAMBI (see Table 

1. in Materials) in order to select best performing yeast (see Chapter 3.1.1.). Main criteria for 

the selection were: efficiency in glucose (initial concentration of 20.0 g L
-1

) consumption and 

ethanol production over period of 24.0 h under defined conditions (temperature of 25°C, 

shaking at 50 rpm, and relatively low amount of dissolved oxygen). An overnight pregrown 

culture of 12 yeast species was prepared as described previously (see Chapter 3.2.4.). Volume 

of 500.0 µL of each overnight pregrown culture was pipetted into 5.5 mL of modified 

Okamoto medium 1 (see Chapter 3.2.1.) in a sterile test tube under aseptic conditions and 

incubated in incubator Innova 4230 (New Brunswick Scientific, Edison, New Jersey, USA) at 

25°C and shaking at 160 rpm for 6 h. After incubation OD600 of suspensions was determined 

(see Chapter 3.2.5.). Then, suspensions were diluted by using basic Okamoto medium to 

obtain OD600 of 0.05. Prepared diluted suspension was used as inoculum (1.0 mL) of 50.0 mL 

of modified Okamoto medium 1 in 100.0 mL sterile Erlenmeyer flask. Then, flasks with 

inoculated medium were closed with sterile rubber plugs with a hole in the middle (VWR, 

Radnor, Pennsylvania, SAD) carrying filter-tip in order to ensure microaerophilic conditions 
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and placed in the incubator Innova 4230 (New Brunswick Scientific, Edison, New Jersey, 

USA) at 25°C and shaking at 50 rpm. Samples were aseptically taken 24.0 h after the 

inoculation. Withdrawn sample (200.0 µL) was pipetted in Eppendorf tube and fermentation 

test was conducted in three biological replicates. As control modified Okamoto medium 1 

without inoculum was used. 

 

3.2.9. Oxalic acid sensitivity test 

During lignocellulose conversion filamentous fungi produce different organic acids, 

mainly oxalic acid. Therefore, six yeast species were subjected to cultivation in modified 

Okamoto medium 1 with different concentrations of added oxalic acid. Selected yeast species 

were pre-grown as overnight cultures (see Chapter 3.2.4.) and OD600 was determined, as 

described previously (see Chapter 3.2.5.). In order to adjust initial OD600 of 0.01, different 

volumes of pregrown yeast suspensions were added in 5.0 mL of modified Okamoto medium 

1 supplied with oxalic acid (Sigma-Aldrich, St.Luis, MO, USA) in concentrations of 0.0 mM 

(0.0 g L
-1

), 0.1 mM (0.009 g L
-1

), 1.0 mM (0.09 g L
-1

) and 10.0 mM (0.9 g L
-1

). Experiment 

was performed in sterile test tubes and incubation was performed in the incubator Innova 

4230 (New Brunswick Scientific, Edison, New Jersey, USA) at 25°C and shaking at 160 rpm. 

Samples were aseptically taken after 4.0 h, 6.0 h, 18.0 h and 24.0 h of inoculation. Volume of 

150.0 µL of sample was pipetted in 96-well plate (producer) and OD600 was determined (see 

Chapter 3.2.5.). Each experiment was conducted in three biological replicates and as control 

modified Okamoto medium 1 was used. 

 

3.2.10. Yeast growth in monoculture FBCC4 filtrate with glucose 

Production of yeast growth inhibitors might occur during lignocellulose conversion by 

filamentous fungi. In order to test inhibitory effect of fungal products present in liquid phase 

of broth, filtrate of pre-grown monoculture Phlebia acerina FBCC4 was prepared and used as 

medium for yeast growth. Monoculture FBCC4 was cultivated in modified Okamoto medium 

2 over 18 days (see Chapter 3.2.3.) at 25C and without shaking. Filtrate was obtained, as 

described later (see Chapter 3.2.20.) and the pH value of the filtrate (pH 4.89) was determined 

using pH-meter Orion SA720 (Merck, Darmstadt, Germany). Volume of 100.0 mL of the 

filtrate was supplied with 2% D-(+)-glucose (Sigma-Aldrich, Lyon, France) and autoclaved 

(115°C, 1 atm,15 min). 
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An OD600 value (see Chapter 3.2.5.) of overnight pre-grown yeast suspension (see 

Chapter 3.2.4.) was determined and adjusted to be 0.01 in all samples by pipetting 

suspensions to sterile 5.0 mL of fungal filtrate with 2% D-(+)-glucose (Sigma-Aldrich, Lyon, 

France) (FBCC4 FG) in test tube. Inoculated FBCC4 FG was incubated in the incubator 

Innova 4230 (New Brunswick Scientific, Edison, New Jersey, USA) at 25°C and shaking at 

160 rpm. After 18.0 h sample (150.0 µL) was withdrawn and pipetted in 96-well plate 

(producer) and then OD600 was determined (see Chapter 3.2.5.). Three biological replicates 

were performed and control was FBCC FG. 

 

 

3.2.11. Inoculation of pre-grown yeast suspension in modified Okamoto medium 2 in 

Erlenmeyer flasks with pre-grown filamentous fungi FBCC4 and FBCC43 

An overnight pre-grown suspension of yeast HAMBI1164 and HAMBI1459 (see 

Chapter 3.2.4.) were used as inocula for modified Okamoto medium 2 in Erlenmeyer flasks 

with pre-grown filamentous fungi FBCC4 and FBCC43 after 7 days of FBCC4 and FBCC43 

cultivation. First, OD600 value of yeast suspension was determined (see Chapter 3.2.5.) and 

certain volume of pre-grown suspension of yeast was pipetted to a sterile Eppendorf tube and 

then centrifuged (3500 rpm, 5 min) using centrifuge ScanSpeed Mini (LaboGene, Lynge, 

Denmark). The volume was calculated from obtained OD600 value in order to get initial OD600 

of 0.01 in 20.0 mL of total volume of modified Okamoto medium 2 used for cultivation of 

FBCC4 and FBCC43 over first 7 days. The supernatant was carefully removed by pipette and 

the cells were re-suspended in basic Okamoto medium (see Chapter 3.2.1.) by mixing it 

gently with a pipette. Whole volume was added to Erlenmeyer flask in which the bioprocess 

started 7 days before. Flasks were carefully rotated manually to spread the yeast cells over the 

FBCC mycelia. Afterwards, prepared co-cultures were incubated in the incubator Innova 4230 

(New Brunswick Scientific, Edison, New Jersey, USA) at 25°C and constantly shaking at 50 

rpm. 

 

3.2.12. Lignocellulose conversion and ethanol production in three-species co-culture FBCC4 

+ FBCC43 + HAMBI1164 or HAMBI1459 

Co-culture consisted of Phlebia acerina  FBCC4, Phlebia radiata FBCC43 and 

Saccharomyces cerevisiae HAMBI1164 or HAMBI1459 was cultivated in modified Okamoto 

medium 2 over 15 days. The cultivation started (day 0) by inoculation of FBCC4 and 
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FBCC43 in modified Okamoto medium 2 (see Chapter 3.2.3.) at 25C and without shaking. 

After 7.0 days, inoculum of HAMBI1164 or HAMBI1459 was added to pre-grown FBCC4 + 

FBCC43, as described above (see Chapter 3.2.11.), and cultivation was continued at 25C and 

shaking at 50 rpm. From 7
th

 to 14
th
 day of described bioprocess samples were aseptically 

taken from the liquid phase of broth by Pasteur pipette (≈ 300 µL) and transferred to 

Eppendorf tube (sample taken on the 7
th

 day of bioprocess was taken right before yeast 

inoculation), stored at -20°C, and analysed as required. Concentration of reducing sugars and 

ethanol were determined as described previously (Chapters 3.2.6. and 3.2.7., respectively) 

while procedure for determination of colony forming units (CFU) is described in Chapter 

3.2.13. 

Sample taken at the end of bioprocess (14
th
 day) consisted of core board, mycelia and 

liquid phase was used for determination of core board weight loss and weight of dry mycelial 

biomass (see Chapter 3.2.20.). Before determination core board, mycelia and liquid phase 

were separated. The experiment was conducted in three biological replicates and with three 

controls. One control was modified Okamoto medium 2. Another control was modified 

Okamoto medium 2 inoculated with filamentous fungi FBCC4 and FBCC43, and the third 

control was modified Okamoto medium 2 inoculated with yeast HAMBI1164 or 

HAMBI1459. 

 

3.2.13. Determination of yeasts colony forming units (CFU) 

On the 7
th

 day of the bioprocess that was carried out by FBCC4 + FBCC43 + HAMBI 

1164 or HAMBI1459, liquid phase (≈ 300 µL) was aseptically taken by Pasteur pipette as 

sample for determination of yeasts CFU. Sample was transferred into a sterile Eppendorf tube 

and 100.0 µL of the sample was pipetted into another sterile Eppendorf tube containing 900.0 

µL of Ringer salt solution and marked as 10
-1

 dilution. The tube was vortexed and 100.0 µL 

of diluted sample (10
-1

) was pipetted in another sterile Eppendorf tube also containing 900.0 

µL of Ringer salt solution and marked as 10
-2

 dilution. The procedure was repeated until the 

dilution 10
-4

 was prepared. Volume of 100.0 µL of each of previously mixed dilutions10
-3

 and 

10
-4

 was pipetted onto MEA as a droplet and spread equally using sterile glass spreader, 

previously rinsed with 96.1% ethanol (Altia, Helsinki, Finland) and flamed. The plates were 

marked and two replicates of each dilution were made. Inoculated MEA were incubated in the 

incubator Innova 4230 (New Brunswick Scientific, Edison, New Jersey, USA) at 25°C. After 
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48 h grown colonies were counted manually and CFU mL
-1

 was calculated according to 

following equation: 

              N =
sum of all colonies

sum of all volumes
=

∑ Nn
i=1

∑ Vn
i=1

      [
CFU

mL
]      [4] 

 

The procedure was repeated every 24.0 h over next three days. 

 

 

3.2.14. Polymerase chain reaction (PCR) of the Internal Transcribed Spacer (ITS) of rDNA 

sequence 

Phire Plant Direct PCR Kit (Thermo Scientific, Vantaa, Finland) was used for the PCR 

amplification of the internal transcribed sequence (ITS) from the rDNA of the 12 yeast 

species using ARKTIK Thermal Cycler TCA4848 (Thermo Scientific, Vantaa, Finland). The 

amplified region consisted of, as follows: a part of the conserved 18S, variable ITS1, 

conserved 5.8S, variable ITS2 and a part of the conserved 28S region of rRNA genes. First, 

cell lysis was done by pipetting 20.0 µL of Phire Plant Direct PCR dilution buffer into a 

sterile Eppendorf tube. Yeast colonies were scratched from the MEA plates by inoculation 

microbiological loop and transferred in an Eppendorf tube containing a dilution buffer. The 

samples were vortexed vigorously for 10 seconds and put on the ice. Before putting it on the 

ice, the samples and the dilution buffer were kept on a room temperature. The primers used 

for PCR amplification were ITS1 and ITS4 (see Chapter 3.1.2.3.). The 30.0 µL of PCR 

reaction mixture was prepared by mixing 12.40 µL of nuclease-free water, 15.00 µL of Phire-

Plant buffer, 0.75 µL of ITS1-primer (10.0 µM), 0.75 µL of ITS4-primer (10.0 µM), 0.60 µL 

of Phire Hot Start II- DNA polymerase and 0.50 µL of DNA sample. The PCR amplification 

protocol is described in Table 4. All PCR reagents, enzyme and primers were stored at -20°C 

or kept on the ice right before usage. 
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Table 4. PCR-amplification program set in ARKTIK Thermal Cycler TCA4848 (Thermo 

Scientific, Vantaa, Finland) 

PCR-amplification steps Temperature (°C) Time (s) 

Initial denaturation 98 300 

Denaturation 98 5 

Primer annealing 58 5             x30 

Extension phase 72 20 

Continued extension phase 72 60 

Storage temperature 4 ∞ 

  

 

3.2.15. Sequencing and processing of the ITS-sequences 

All PCR products were examined by running an agarose gel electrophoresis at room 

temperature and 120 V for 40 minutes. The formed DNA bands were imaged under UV-

illumination using gel imaging system BioRad SN:720BR/01908 (BioRad,Hercules, CA, 

USA). The resulting PCR products were sent for DNA-sequencing to the Laboratory for 

genome and DNA sequencing in the Institute of Biotechnology at the University of Helsinki. 

PCR products were sequenced directly from the PCR reaction mixture using the same primers 

as in the ITS-PCR (see Chapter 3.2.14.). The sequences obtained and their electropherograms 

were analysed with Molecular Evolutionary Genetics Analysis software version 6.0 (MEGA6) 

(Tamura et al. 2013). Forward and reverse sequences were modified and a single trimmed 

sequence was created. ITS sequences comprising the regions ITS1, 5.8S and ITS2 were 

aligned using ClustalW and contig sequence was created. Sequences obtained were compared 

to sequence information database of National Center for Biotechnology Information (NCBI, 

Rockville Pike, Bethesda MD, USA) using Basic Local Alignment Search Tool (BLAST) and 

blast algorithm for species identification. 
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3.2.16. Construction of the phylogenetic tree 

Evolutionary analyses were conducted and the phylogenetic tree was constructed using 

MEGA6 software (Tamura et al. 2013). The evolutionary history was inferred by using the 

Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei 1993). Initial 

tree for the heuristic search were obtained automatically by applying Neighbor-Join (Saitou 

and Nei, 1987) and BioNeighbor-Join (Gascuel, 1997) algorithms to a matrix of pairwise 

distances estimated using the Maximum Composite Likelihood (MCL) approach. The analysis 

involved 24 nucleotide sequences. HAMBI sequences comprising rDNA regions ITS1, 5.8S 

and ITS2 were obtained by PCR amplification (see Chapter 3.2.14.) and sequenced (see 

Chapter 3.2.15.). Processed ITS-sequences were compared to corresponding reference 

sequences obtained by BLAST. Bootstrap values (100 replications) higher than 50% were 

indicated for the nodes. Scale bar represented 0.05 nucleotide substitutions per position. 

 

3.2.17. Reverse-phase microscopy of yeast cells 

Overnight cultures of 12 yeast strains were analysed by reverse-phase microscopy 

using optical microscope Leica DM 750 (Leica, Wetzlar, Germany) and the images of each 

yeast species (data not shown) were obtained by digital camera Leica EC 3 (Leica, Wetzlar, 

Germany). Microscope scale in µm was photographed separately and the respective scale was 

constructed using Dia Diagram Editor version 0.97.2. The scale was attached to photograph of 

the selected yeast strain Saccharomyces cerevisiae 1164, HAMBI (see Fig. 15) in order to be 

able to estimate the size of cells. 

 

3.2.18. Determination of the termination of the lignocellulose conversion and ethanol 

production process in three-species co-culture FBCC4 + FBCC43 + HAMBI1164 

In order to determine the optimal duration of the lignocellulose conversion and ethanol 

production process, the sampling was done on the 9
th
 and the 10

th
 day of the process. The aim 

was to check if the ethanol concentrations remain in the same range after 9
th
 day. The duration 

of the process was 10 days in total. It started by cultivating only filamentous fungi in modified 

Okamoto medium 2 (see Chapter 3.2.3.). On the 7
th
 day of the process, Saccharomyces 

cerevisiae HAMBI1164 was aseptically inoculated (see Chapter 3.2.11.). There were two sets 

of parallel experiments. From one set, samples were taken on the 7
th

, 9
th
 and 10

th
 day and 
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from the other set, samples were taken on the 7
th

 and 10
th

 day. Samples were aseptically taken 

from the liquid phase by Pasteur pipette (≈ 300 µL), passed to a clean Eppendorf tube and 

stored at -20°C. Core board, mycelia and fungal liquid were separated on the 10
th
 day of the 

process and the masses of dry core board and dry mycelium were determined (see Chapter 

3.2.20.). The experiment was conducted in three biological replicates and there were two 

controls. One control was modified Okamoto medium 2 inoculated with filamentous fungi 

FBCC4 and FBCC43 and another was modified Okamoto medium 2. Almost anaerobic 

conditions were ensured by using rubber plugs without holes (VWR, Radnor, Pennsylvania, 

USA). 

 

3.2.19. Lignocellulose conversion and ethanol production using three-species co-culture 

FBCC4 + FBCC43 + HAMBI1164 

After selection of the best yeast candidate for the ethanol production in three-species 

co-culture with filamentous fungi and after determination of the optimal time-frame of the 

process, lignocellulose conversion and ethanol production was performed simultaneously 

during nine days in total. The process procedure was the same as previously described (see 

Chapter 3.2.18.) with single change. The last sample was taken on the 9
th

 day, as well as the 

core board, mycelia and fungal liquid separation (see Chapter 3.2.20.). 

 

 

3.2.20. Core board, mycelia and fungal liquid separation procedure and the measurement of 

their weight 

At the end of the bioprocess of lignocellulose conversion into ethanol, vacuum 

filtration was performed to separate liquid from the rest of solid core board and biomass. 

Created semi-solid layer of mycelium and core board in the Erlenmeyer flask was gently 

pushed out using forceps, taking care that mycelium does not break while pouring the content 

in the vacuum filtration system. The bottom of flask was used to press and squeeze out the 

remaining liquid while the mycelium with core board remained glued to the bottom of the 

flask due to the slimy mycelia texture. Then the solid complex was gently removed by hand 

and placed face-down on the flat area on the table. Unused core board was carefully scratched 

with the forceps away from the mycelia. Both mycelia and core board were dried in a drying 

oven 40050-IP-20 (Memmert, Schwabach, Germany) at 105°C for 24 h and weighed using 

lab balance Precisa junior 3100C (Precisa Gravimetrics AG, Dietikon, Switzerland). As both 
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mycelia and the core board were dried in an aluminium foil, the mass of the folium was 

subtracted from the total weight to get the mass of each sample. 

 

 

3.2.21. Ethanol and mycelia yield calculation 

The ethanol yield (YP/S) was calculated as quotient of mass of ethanol (g) obtained at 

the end of the process (9
th
 day) and dry mass of consumed or total core board (g): 

 

    YP/S =
γ V

m
 [g g−1]       [5] 

 

γ = concentration of ethanol [g L
-1

] 

V = total volume [L] 

m = dry mass of consumed or total core board [g] 

 

The mycelia yield (YX/S) was calculated as quotient of dry mass of produced mycelia 

(g) at the end of the process (9
th
 day) and dry mass of consumed core board (g): 

 

     YX/S =
mX

mS
 [g g−1]       [6] 

 

mX = dry mass of mycelia [g] 

mS = dry mass of consumed core board [g] 

 

The consumed core board (CB) at the end of the bioprocess was calculated as a 

percentage of the control sample: 

  

 CB(consumed) = (1 −
m(CB)

m(control)
) x100  [%]  [7] 

 

m(CB) = dry mass of core board left at the end of the bioprocess [g] 

m(CB) = dry mass of core board from the control sample without working organisms [g] 
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Dry mass of consumed core board used in calculations for ethanol and mycelia yield 

was calculated as the percentage of consumed core board of the total (1.0 g) core board. 

Ethanol and mycelia mass was obtained as the average of two independent experiments. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. RESULTS AND DISCUSSION 
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Aim of this Thesis was improvement of bioprocess for ethanol production from 

untreated lignocellulosic raw material. Filamentous fungi Phlebia acerina FBCC4 and 

Phlebia radiata FBCC43 were employed as biocatalysts which possess hydrolytic and 

fermentative activity and are able to convert lignocellulose to fermentable sugars and ferment 

sugars therefrom to ethanol. In order to improve direct conversion of lignocellulose to 

ethanol, two-species co-culture of Phlebia acerina FBCC4 and Phlebia radiata FBCC43 

(two-species co-culture FBCC4 + FBCC43), instead of monoculture of either species, was 

used as biocatalyst. In order to get more efficient bioprocess for ethanol production 12 yeast 

species from HAMBI were tested and two yeast strains, Saccharomyces cerevisiae 

HAMBI1459 and Saccharomyces cerevisiae HAMBI1164, were selected as the most 

appropriate candidates for bioprocess conducted by three-species co-culture of P. acerina 

FBCC4, P. radiata FBCC43 and S. cerevisiae HAMBI1459 (three-species co-culture FBCC4 

+ FBCC43 + HAMBI1459) and P. acerina FBCC4, P. radiata FBCC43 and S. cerevisiae 

HAMBI1164 (three-species co-culture FBCC4 + FBCC43 + HAMBI1164). 

Two different modified Okamoto media were used: modified Okamoto medium in 

which glucose (20.0 g L
-1

) was added as carbon source (modified Okamoto medium 1) and 

modified Okamoto medium in which core board (50.0 g L
-1

) was added as carbon source 

(modified Okamoto medium 2).  

Experiments were performed in test tubes with working volume of 5.0 mL or in 

Erlenmeyer flasks with working volume of 20.0 or 50.0 mL, as indicated in every figure 

caption. Cultivation of Phlebia sp. was performed without shaking while experiments with 

yeasts were performed with shaking (50 or 160 rpm). All experiments were done in triplicates 

and data in this Thesis represent the average of three biological replicates. Values are means 

±SD for samples. 
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4.1. Bioconversion of lignocellulose to fermentable sugars by monocultures and two-

species co-cultures of P. acerina FBCC4 and P. radiata FBCC43 

 

 Degradation of lignocellulose to fermentable sugars was followed in modified 

Okamoto medium 2. Monoculture FBCC4, monoculture FBCC43 and two-species co-culture 

FBCC4 + FBCC43 were used as biocatalyst (Figs. 4-6). Concentration of fermentable sugars 

was determined by DNS assay, as described in Chapter 3.2.6. in Experimental. 

Different portions of inoculum were used: single disc of pre-grown Phlebia sp. 

mycelium was used in experiment presented in Fig. 4 while two discs of pre-grown Phlebia 

sp. mycelium were used in experiment presented in Figs. 5 and 6.  

 

 

 
 

Figure 4. Changes in concentration of reducing sugars during cultivation of monoculture 

FBCC4 (Phlebia acerina FBCC4; ■) and monoculture FBCC43 (Phlebia radiata FBCC43; 

■) and the two-species co-culture FBCC4 + FBCC43 (■) in modified Okamoto medium 2 in 

Erlenmeyer flask (working volume of 20.0 mL) at 25C without shaking. For inoculation 

procedures see Chapter 3.2.3. in Experimental. 
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Concentration of reducing sugars presented in Fig. 4 is a result of two processes - 

lignocellulose hydrolysis and reducing sugars uptake via fermentation and mycelial biomass 

synthesis. In all three cultivations the concentration was in range from 0.06 to 0.47 g L
-1

 and 

the highest reducing sugars concentration was determined on the 10
th

 day. The first two days 

of the bioprocess the concentration was not followed because it was rather low.  

During bioprocess catalysed by monocultures of two Phlebia sp. similar trend of reducing 

sugars concentration was observed from the 3
rd

 to 14
th
 day. Reducing sugars concentration 

increased until 10
th

 day of bioprocess when started to decrease until the end of the bioprocess. 

It might be assumed that rate of lignocellulose hydrolysis and rate of reducing sugars uptake 

were not balanced. 

When grown in two-species co-culture FBCC4 + FBCC43 biocatalysts produced almost 

2-fold higher concentration of reducing sugars over first seven days of the bioprocess. That 

indicated the possibility to shorten the bioprocess in total if using both species in two-species 

co-cultivation rather than monoculture. In that case, yeast might be inoculated on the 7
th
 day 

of bioprocess when the concentration of reducing sugars is high enough for growth and 

fermentative activity of the yeast. Between the 7
th
 and the 10

th
 day of the bioprocess reducing 

sugars concentration was rather constant. It might be due to balanced rate of lignocellulose 

hydrolysis and reducing sugars uptake. After the 10
th
 day the concentration decreased in 

similar trend as during the bioprocesses catalysed by the monocultures. 

In order to investigate effect of mycelial inoculum portion on reducing sugars 

concentration during bioprocesses catalysed by two monocultures (FBCC4 and FBCC43) 

instead of one disc (see Chapter 3.2.3.) two discs were used for inoculation (Fig. 5). 
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Figure 5. Changes in concentration of reducing sugars during cultivation of monoculture 

FBCC4 (two discs of inoculum) (■), monoculture FBCC43 (two discs of inoculum)  (■) and 

the two-species co-culture FBCC4 + FBCC43 (■) in modified Okamoto medium 2 in 

Erlenmeyer flask (working volume of 20.0 mL) at 25C without shaking. For inoculation 

procedures see Chapter 3.2.3. in Experimental. 

 

In this set of experiments reducing sugars concentration was in range from 0.0 to 0.3 g 

L
-1

. However, similar trend like in previous set of experiments (Fig. 4) was observed with the 

highest concentration of reducing sugars on the 10
th
 day. Therefore, it was concluded that in 

all next sets of experiments one disc of pre-grown mycelia of each monoculture and two-

species co-culture FBCC4 + FBCC43 will be used. 
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Figure 6. Changes in reducing sugars concentrations during three independent cultivations 

(A; ■, B; ■ and C; ■ ) of two-species co-culture FBCC4 + FBCC43 in modified Okamoto 

medium 2 in Erlenmeyer flask (working volume of 20.0 mL) at 25C without shaking. For 

inoculation procedure see Chapter 3.2.3. in Experimental.  

 

Although there are high standard deviations between biological replicates, which are 

rather characteristic for semi-solid media and mycelial growth of fungi, data presented in Fig. 

6 show similar trend as observed within three independently performed experiments, with the 

highest reducing sugars concentrations determined on the 7
th
 and 10

th
 day of the bioprocess. 

 

4.2. Screening studies for the selection of yeast species for ethanol production 

In order to improve reducing sugars uptake via fermentation, yeast candidate for three-

species co-culture was selected. Fermentative ability of 12 yeast species from HAMBI (see 

Table 1. in Experimental) was investigated (Chapter 4.2.1.) and six of them were cultivated in 

modified Okamoto medium 1 in which oxalic acid, usual by-product of Phlebia sp. 

metabolism, was added. Results are presented in Chapter 4.2.2. Five out of those six yeast 

species were further selected based on their growth in filtrate of monoculture FBCC4 (FBCC4 
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FG, see Chapter 4.2.3.) obtained after cultivation of the fungal strain in modified Okamoto 

medium 2 at 25C after 18 days. Two yeast candidates were selected for three-species co-

cultivation (Fig. 9 in Chapter 4.2.3.). 

 

4.2.1. Fermentative ability of 12 yeast species 

Ethanol producing yeast species available in HAMBI were used in this set of screen study. 

Six S. cervisiae strains (HAMBI10, 785, 1164, 2108, 1459 and 1165), two species from genus 

Candida (HAMBI1169 and 261) and one from genera Kluyveromyces (HAMBI2238), 

Wickerhamomyces (HAMBI811), Rhodosporidium (HAMBI2246) and Zygosaccharomyces 

(HAMBI2239) were candidates for fermentation in modified Okamoto medium 1. The results 

are presented in Fig. 7. 

Glucose consumption was monitored by DNS assay (Chapter 3.2.6. in Experimental), 

optical density of yeast suspensions was followed spectrophotometrically (Chapter 3.2.5. in 

Experimental) and ethanol production by enzymatic method (Chapter 3.2.7. in Experimental). 
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Figure 7. Optical density (OD600, ■; right y-axis) of 12 yeast species (see Table 1. in 

Experimental), concentration of remaining glucose (■) and produced ethanol (■) after 24.0 h 

of cultivation of monocultures of yeast species in modified Okamoto medium 1 in 

Erlenemeyer flask (working volume of 50.0 mL) at 25C and shaking at 50 rpm (see Chapter 

3.2.8. in Experimental). 

 

All species were able to grow under chosen conditions. Optical density had similar 

values in all suspensions of S. cerevisiae strains as well as C. humilis HAMBI1169. Five yeast 

species: HAMBI2238, 811, 261, 2239 and 2246 showed very modest growth which was in 

agreement with low sugar uptake. 

The results presented in Fig. 7 are showing the ability of 12 different yeast strains to 

ferment glucose. Only seven of them were capable of producing ethanol (HAMBI10, 785, 

1164, 2108, 1459, 1165 and 1169). Regarding concentration of produced ethanol, the best 

producers were S. cerevisiae strains (HAMBI10, 785, 1164, 2108, 1459 and 1165). 

Nevertheless, six species (HAMBI10, 785, 1164, 1459, 1165 and 1169) which spent almost 

all glucose were considered for further investigation. 
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4.2.2. Effect of different concentration of oxalic acid on growth of yeast species 

Oxalic acid production is widespread phenomena among fungal species. One of its 

hypothetical functions is inhibition of the growth of other microorganisms in different 

habitats, while it is also involved in hydrolysis of lignocellulose. Therefore, screen study on 

sensitivity of yeast species on the oxalic acid was performed to select the appropriate 

candidate for a three-species co-cultivation. 

Growth rate of yeasts was followed by measuring optical density as described in 

Chapter 3.2.5. in Experimental after 2.0, 4.0, 18.0 and 24.0 h after inoculation of six yeast 

species (HAMBI10, 785, 1164, 1459, 1165 and 1169) into modified Okamoto medium 1 and 

modified Okamoto medium 1 containing different oxalic acid concentrations, as indicated in 

Figure 8, and cultivation of listed yeast species as monocultures at 25C and shaking (160 

rpm). 
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Figure 8. Optical density (OD600) of six yeast species cultivated in modified Okamoto 

medium 1 and different concentrations of oxalic acid, as follows: 0.0 mM (0.0 g L
-1

; ■), 0,10 

mM (0.009 g L
-1

; ■), 1.0 mM (0.09 g L
-1

; ■) and 10.0 mM (0.9 g L
-1

; ■). Yeast species tested 

were: HAMBI1164 (A), HAMBI1165 (B), HAMBI10 (C), HAMBI785 (D), HAMBI1459 (E) 

and HAMBI1169 (F). Experiments were performed in test tubes (working volume 5.0 mL) at 

25C and shaking at 160 rpm (see Chapter 3.2.9. in Experimental). 
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Obtained values of optical density during the cultivation of monocultures of all tested 

Saccharomyces strains (HAMBI10, 785, 1164, 1459 and 1165) showed very little inhibitory 

effect of oxalic acid on their growth. The biggest inhibitory effect proportional to increasing 

oxalic acid concentrations was observed with Candida humilis HAMBI1169 (Fig. 8F) and, 

therefore, it was excluded from further experiments. On the other hand, S. cerevisiae 

HAMBI1459 (Fig. 8E) showed almost no inhibitory effect which made this yeast species a 

good candidate for three-species co-cultures. Yeast species HAMBI1164 (Fig. 8A), 

HAMBI1165 (Fig. 8B), HAMBI10 (Fig. 8C) showed decreasing values of OD600 at 20.0 h 

after inoculation compared to OD600 values determined at 18.0 h after inoculation, while 

OD600 values of yeast species HAMBI785 (Fig. 8D), HAMBI1459 (Fig. 8E) and 

HAMBI1169 (Fig. 8F) determined at 20.0 h after inoculation remained similar as at 18.0 h 

after inoculation in the modified Okamoto medium 1 without oxalic acid. 

 

4.2.3. Effect of FBCC4 filtrate with glucose on growth of selected yeast species 

Monoculture FBCC4 was cultivated in modified Okamoto medium 2 for 18 days and 

mycelium and core board was separated by filtration from liquid phase of cultivation broth, as 

described in Chapter 3.2.20 in Experimental. To obtained filtrate, containing all metabolites 

of FBCC4, 2.0% of glucose was added. Sterile FBCC4 filtrate with glucose (FBCC4 FG) was 

used as a medium for cultivation of five S. cerevisiae strains (HAMBI10, 785, 1164, 1459 and 

1165). Growth of five yeast monocultures in FBCC4 FG was compared to the growth of five 

yeast monocultures in modified Okamoto medium 1, as showed in Figure 9. 
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Figure 9. Optical density (OD600) of five yeast species (HAMBI1164, HAMBI1165, 

HAMBI10, HAMBI785, and HAMBI1459) cultivated in modified Okamoto medium 1 (■) 

and in FBCC4 FG (■). Optical density was determined after 18.0 h of cultivation in modified 

Okamoto medium 1 or FBCC4 FG (both with working volume of 5.0 mL) in test tubes at 

25C with shaking (160 rpm). Cultivation procedure is described in Chapter 3.2.10. in 

Experimental. 

 

All yeast strains presented in the Figure 9 were able to grow in FBCC4 FG, although 

less successfully when compared to their growth in modified Okamoto medium 1. According 

to similarities in growth curves obtained in experiments with modified Okamoto medium 1 

without addition of oxalic acid (0.0 mM or 0.0 g L
-1

; Fig. 8), S. cereviasiae strains were 

grouped in two groups: group A (HAMBI1164, 1165, 10) and group B (HAMBI785, 1459). 

Namely, S. cerevisiae strains from group A have similar growth curves with the highest value 

at 18 h and with decreasing values determined afterwards while S. cerevisiae strains from 

group B also have the highest value at 18 h but afterwards OD600 value remains almost 

constant (as in stationary growth phase). 
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Based on results from Fig. 8 and 9, one yeast strain from each group, A and B, was 

chosen for experiments performed with three-species co-cultivation: HAMBI1459, because of 

the greatest tolerance to oxalic acid (Fig. 8), and HAMBI1164, due to the lowest growth 

inhibition in monoculture FBCC4 FG when compared to the growth of the strain in modified 

Okamoto medium 1 (Fig. 9). In addition, both yeast strains were able to ferment glucose to 

ethanol under conditions used for Phlebia sp. cultivation (see Fig. 7). 

 

4.3. Selection of yeast strain for ethanol production from lignocellulose by three-species 

co-culture 

In this set of experiments ethanol production from lignocellulose catalysed by three-

species co-cultures FBCC4 + FBCC43 + HAMBI1164 or HAMBI1459 was investigated. 

Changes in reducing sugars concentrations and ethanol production during the bioprocess 

catalysed by three-species co-cultures in modified Okamoto medium 2 are presented in 

Chapter 4.3.1. and growth of S. cerevisiae strains HAMBI1164 and HAMBI1459 during the 

bioprocess under described conditions is shown in Chapter 4.3.2. 

Based on experimental results, strain HAMBI1164 was chosen as a good candidate for 

bioprocess conducted by three-species co-cultures FBCC4 + FBCC43 + HAMBI1164 (see 

Chapter 4.4.). Before further experiments phylogenetic analysis of all 12 yeast species used in 

this Thesis was done, as shown in Chapter 4.3.3. 

 

4.3.1. Changes in reducing sugars concentrations and ethanol production during bioprocess by 

three-species co-cultures 

 

Previously experimentally selected S. cerevisiae strains HAMBI1164 and 

HAMBI1459 were used in three-species co-cultivation with Phlebia species FBCC4 and 

FBCC43 in modified Okamoto medium 2. Reducing sugars concentrations and ethanol 

concentrations determined during 15 days long bioprocess in three-species co-cultivations 

FBCC4 + FBCC43 + HAMBI1164 or HAMBI1459 were compared to two-species cultivation 

FBCC4 + FBCC43. Results are shown in Figs. 10 and 11, respectively. 
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Figure 10. Changes in concentration of reducing sugars during cultivation of three-species 

co-culture FBCC4 + FBCC43 + HAMBI1164 (■), three-species co-culture FBCC4 + 

FBCC43 + HAMBI1459 (■) and two-species co-culture FBCC4 + FBCC43 (■). The 

cultivations were carried out in modified Okamoto medium 2 in Erlenmeyer flasks (working 

volume 20.0 mL) at 25C. Shaking (50 rpm) started after inoculation of yeast strains 

(HAMBI1164 and HAMBI1459) on the 7
th
 day of bioprocess (see Chapter 3.2.11. in 

Experimental). 
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Figure 11. Ethanol production by three-species co-culture FBCC4 + FBCC43 + HAMBI1164 

(■), three-species co-culture FBCC4 + FBCC43 + HAMBI1459 (■) and two-species co-

culture FBCC4 + FBCC43 (■). The cultivations were carried out in modified Okamoto 

medium 2 in Erlenmeyer flasks (working volume 20.0 mL) at 25C. Shaking (50 rpm) started 

after inoculation of yeast (HAMBI1164 and HAMBI1459) on the 7
th
 day of bioprocess (see 

Chapter 3.2.11. in Experimental). 

 

Changes in reducing sugars concentrations and ethanol production were followed after 

inoculation of S. cerevisiae HAMBI1164 or HAMBI1459 on the 7
th

 day of bioprocess. 

Reducing sugars concentrations were in the range from 0.02 to 0.50 g L
-1

 (Fig. 10) and 

ethanol concentrations in range from 0.00 to 0.34 g L
-1

 (Fig. 11). 

During first two days of three-species co-cultivation FBCC4 + FBCC43 + 

HAMBI1164 the production of ethanol increased rapidly. After the 9
th

 day, reducing sugars 

concentration was below 0.1 g L
-1

 (see Fig. 10) and concentration of ethanol was rapidly 

decreased. Since fermentable (reducing) sugars were almost depleted (< 0.1 g L
-1

) and ethanol 

was the only remaining simple carbon source (lignocellulose from core board was still present 

in the flask, see Figs. 19 and 20), it seems that the three-species co-culture FBCC4 + FBCC43 

+ HAMBI1459 under microaerophilic conditions used ethanol as a main carbon source. 
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On the 14
th

 day of the bioprocess ethanol concentration slightly increased when 

compared to 10
th

 day (Fig. 11), while the reducing sugars concentration remained the same as 

on the 10
th
 day (Fig. 10). 

Similar trend in reducing sugars consumption and ethanol production was observed in 

three-species co-culture FBCC4 + FBCC43 + HAMBI1459 with main difference in ethanol 

production between 7
th
 and 10

th
 day of bioprocess. S. cerevisiae strain HAMBI1164 is better 

ethanol producer under these conditions than S. cerevisiae strain HAMBI1459 as indicated in 

Fig. 11. 

In two-species co-culture FBCC4 + FBCC43 reducing sugars concentration was 

constantly decreasing from 7
th

 to 14
th

 day of bioprocess, as indicated in Figure 10. Ethanol 

concentration measured on the 7
th

 day of bioprocess was the same as measured on the 10
th

 

day, but slightly increased on the 14
th

 day (Fig. 11). Compared to ethanol concentrations in 

three-species co-cultures on the 14
th

 day of bioprocess, there was slightly more ethanol 

produced in two-species co-culture. However, the highest ethanol concentration (0.34 g L
-1

) 

was detected on the 9
th
 day of bioprocess in three-species co-culture FBCC4 + FBCC43 + 

HAMBI1164, therefore S. cerevisiae strain HAMBI1164 was selected for lignocellulose 

conversion to ethanol in three-species co-culture. 

 

 

4.3.2. Growth of S. cerevisiae strains HAMBI1164 and HAMBI1459 during bioprocess in 

modified Okamoto medium 2 

Growth of S. cerevisiae strains HAMBI1164 and HAMBI1459 (expressed as CFU mL
-

1
) in three-species co-culture FBCC4 + FBCC43 + HAMBI1164 and FBCC4 + FBCC43 + 

HAMBI1459 in modified Okamoto medium 2 was followed every 24.0 h from 7
th

 to 10
th
 day 

of bioprocess (see Chapter 3.2.13. in Experimental) in order to investigate if yeast strains 

were able to grow and be active in three-species co-culture. Results are compared to the 

growth of monoculture HAMBI1164 and monoculture HAMBI1459 also cultivated under the 

same conditions, as presented in Figure 12. 
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Figure 12. Growth of S. cerevisiae HAMBI1164 during bioprocess catalysed by three-species 

co-culture FBCC4 + FBCC43 + HAMBI1164 (Δ) and S. cerevisiae HAMBI1459 during 

bioprocess catalysed by three-species co-culture FBCC4 + FBCC43 + HAMBI1459 (□). 

Monocultures of HAMBI1164 (◊) and HAMBI1459 (×) were also cultivated as monocultures 

in modified Okamoto medium 2 in Erlenmeyer flasks (working volume 20.0 mL) at 25C and 

shaking (50 rpm). Samples were withdrawn, as indicated, and inoculated on malt extract agar 

and incubated at 25C over 48.0 h for determination of CFU, as described in Chapter 3.2.13. 

in Experimental. 

 

Number of cells of both tested yeast strains HAMBI1164 and HAMBI1459 increased 

from the 7
th

 to the 10
th
 day of bioprocess catalysed by three-species co-cultures and this 

results showed that yeasts were able to grow and retain their metabolic activity during co-

cultivation with filamentous fungi. When compared to control samples (monoculture 

HAMBI1164 and monoculture HAMBI1459 cultivated under the same conditions), number of 

cells of two yeast strains in three-species co-cultures were 10-fold higher. In addition, core 

board mass loss at the end of the bioprocess conducted by monoculture HAMBI1164 or 

monoculture HAMBI1459 was not detected (data not shown) while core board mass loss 
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during the bioprocess catalysed by three-species co-culture was observed, as shown in Figs. 

17 and 20. 

Based on these results it may be assumed that yeast strains HAMBI1164 and 

HAMBI1459 cannot hydrolyse hemicellulose from core board in medium in which core board 

was the only carbon source. As a consequence, the yeast strains do not grow, as confirmed 

experimentally. All in all, it might be concluded that three-species co-cultures create 

favourable conditions for growth and activity of two yeast strains. 

 

4.3.3. Phylogenetic analysis of 12 yeast species 

Phylogenetic tree comprised 12 yeast species (see Table 1. In Experimental) is 

constructed as described in Chapter 3.2.16. in Experimental and presented in Fig. 13. 

Reverse-phase microscopy was used to create image of selected S. cerevisiae HAMBI1164, as 

shown in Fig. 14. 
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Figure 13. Molecular phylogenetic analysis of 12 yeast species from HAMBI collection (see 

Table 1. in Experimental) and 12 reference sequences from NCBI, based on ITS1-5.8S-ITS2 

sequences, created by Maximum Likelihood method based on the Tamura-Nei model (Tamura 

and Nei, 1993). Bootstrap values (100 replications) higher than 50% are indicated for nodes. 

Scale bar represents nucleotide substitutions per position. The yeast species Rhodosporidium 

toruloides was chosen as an outgroup sequence and used as a tree root. Yeast strain 

Saccharomyces cerevisiae HAMBI1164, marked with grey circle, was chosen for bioprocess 

for ethanol production from lignocellulosic material. 
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Figure 14. Image of S. cerevisiae HAMBI1164 cells obtained by reverse-phase microscopy 

(Leica E3 camera; Leica, Wetzlar, Germany) with respective size-scale in µm created by 

using Dia Diagram Editor version 0.97.2 (see Chapter 3.2.14.). 
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4.4. Ethanol production from lignocellulose by three-species co-culture FBCC4 + 

FBCC43 + HAMBI1164 

After selecting the yeast strain for the ethanol production by three-species co-culture, 

the optimal duration of the bioprocess was determined, as described in Chapter 4.4.1. Ethanol 

production by lignocellulose conversion using three-species fungal co-cultures is discussed in 

Chapter 4.4.2. 

4.4.1. Determination of the bioprocess duration 

Direct ethanol production from lignocellulose catalysed by three-species co-culture 

FBCC4 + FBCC43 + HAMBI1164 in modified Okamoto medium 2 was performed in two 

sets of experiments, as described in Chapter 3.2.18. in Experimental. Ethanol and reducing 

sugars concentrations during bioprocess 1 and 2 are shown in Figure 15. 
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Figure 15. Ethanol (■) and reducing sugars concentration (■) during bioprocess 1 (on the left 

side of the Fig.) and bioprocess 2 (on the right side of the Fig.) (separated by dashed grey 

line), both catalysed by three-species co-culture FBCC4 + FBCC43 + HAMBI1164. Both 

bioprocesses were carried out in modified Okamoto medium 2 in Erlenmeyer flasks (working 

volume of 20.0 mL) at 25C and shaking at 50 rpm. (see Chapter 3.2.18. in Experimental). 

 

 

In both bioprocesses reducing sugars concentration from 7
th

 to 10
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 day was below 0.5 
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. In the bioprocess 1 reducing sugars concentration is decreasing from the 7
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day when it started to increase to the 10
th
 day of the bioprocess. In bioprocess 2 reducing 

sugars concentration determined on the 10
th

 day was lower than reducing sugars concentration 

determined on the 7
th

 day. The highest ethanol concentration (2.17 g L
-1

) was reached on the 

10
th
 day of the bioprocess 2. In the bioprocess 1 and the bioprocess 2 ethanol concentrations 

were increasing from 7
th

 to 10
th
 day of bioprocess. Since the ethanol concentrations were not 

significantly higher on the 10
th
 day compared to 9

th
 day of bioprocess, it was reasonable to 

reduce duration of the bioprocess to 9 days. 
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4.4.2. Ethanol production by lignocellulose conversion using three-species fungal co-cultures 

Ethanol production from lignocellulose using three-species co-culture FBCC4 + 

FBCC43 + HAMBI1164 was compared to ethanol production from lignocellulose using two-

species co-culture FBCC4 + FBCC43 and the results are presented in Figure 16. Both fungal 

co-cultivations, three- and two-species, were performed in modified Okamoto medium 2 

under the same conditions. In addition, core board mass loss, mycelia weight and ethanol 

yield are discussed below. 

 

 

Figure 16. Ethanol (■) and reducing sugars concentration (■) during bioprocess catalysed by 

two-species co-culture FBCC4 + FBCC43 (A) and bioprocess catalysed by three-species co-

culture FBCC4 + FBCC43 + FBCC1164 (B). Both bioprocesses were carried out in modified 

Okamoto medium 2 in Erlenmeyer flasks (working volume 20.0 mL) at 25C and shaking at 

50 rpm (see Chapter 3.2.19. in Experimental). 
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Reducing sugars concentration in experiments performed by two-species co-culture 

(Fig. 16A) remained almost constant over two days of the bioprocess (from the 7
th

 to 9
th
 day) 

while in experiments performed by three-species co-culture (Fig. 16B) reducing sugars 

concentration decreased on the 9
th

 day of the bioprocess. Results clearly show that the yeast 

strain contributed to reducing sugars consumption. This conclusion was further confirmed by 

data obtained for ethanol concentration which were higher at the end of the bioprocess 

catalysed by three-species co-culture (1.89 g L
-1

) than in the bioprocess catalysed by two-

species co-culture (1.30 g L
-1

). 

Ethanol yield was calculated according to equations [2] and [3] in Chapter 3.2.21. in 

Experimental. The bioprocess procedure created in this Thesis, catalysed by three-species co-

culture FBCC4 + FBCC43 + HAMBI1164 over 9 days in total, resulted in 139.5 mg and 37.8 

mg ethanol produced per gram of consumed and total core board, respectively. In comparison, 

in the bioprocess conducted by two-species co-culture FBCC4 + FBCC43 over 9 days 122.1 

mg and 26.0 mg of ethanol per g of consumed and total core board was produced, 

respectively. 

Further, the highest ethanol yield (37.8 mg g
-1

) obtained by simultaneous 

saccharification and fermentation of untreated core board by three-species co-culture FBCC4 

+ FBCC43 + HAMBI1164 over 9 days can be compared to ethanol production from 

sugarcane bagasse where ethanol yield of 64.2 mg g
-1

 bagasse was achieved after four weeks 

of delignification followed by 20 days of fermentation catalysed by Phlebia sp. (Kondo et al.; 

2014). Results from this Thesis might be also compared to oak wood utilization in ethanol 

production although the carbon sources composition differs. When the oak wood was used as 

only carbon source, 359.7 mg of ethanol per g of wood was produced after 56 days of 

delignification and 20 days of fermentation (Kamei et al. 2012b). 

Results obtained in this Thesis seem to be promising for further investigation on 

lignocellulose conversion into ethanol by using tested co-cultures. On the other hand, more 

promising results have been already published. In bioprocess with unbleached hardwood kraft 

pulp as substrate strain Phlebia sp. MG-60 produced 420 mg of ethanol per g of unbleached 

hardwood kraft pulp over 7 days (Kamei et al. 2012a). More efficient bioprocess might be 

result of utilization of different Phlebia strains as biocatalysts, more favourable carbohydrate 

types in the substrate and inocula preparation. 
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4.4.2.1. Mycelial biomass growth and core board weight loss 

 

Core board and mycelia weight were determined as described in Chapter 3.2.20. in 

Experimental. Calculations for core board weight loss and mycelia weight were done 

according to equations presented in Chapter 3.2.21. in Experimental. Comparison of core 

board weight loss and mycelial synthesis between 9
th

 and 15
th

 day of bioprocess is shown in 

Figs. 17 and 18, respectively. Changes in consistency of modified Okamoto medium 2 and 

mycelial growth of tested co-cultures is shown in Fig. 19. Separated mycelial biomass and 

core board, which remained after the bioprocesses, were shown in Fig. 20. 

 

 

 

Figure 17. Core board weight loss (%) after 9 and 15 days of bioprocess catalysed by two-

species co-culture FBCC4 + FBCC43 (■) and three-species co-culture FBCC4 + FBCC43 + 

HAMBI1164 (■). 
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Figure 18. Weight of dry mycelial biomass (m) as determined after 9 and 15 days of 

bioprocess catalysed by two-species co-culture FBCC4 + FBCC43 (■) and three-species co-

culture FBCC4 + FBCC43 + HAMBI1164 (■). 

The mycelial biomass produced in three-species co-culture was 0.70 g of dry mycelial 

biomass per g of
 
consumed core board and in two-species co-culture 0.75 g dry mycelial 

biomass per g of consumed core board was produced. 

The core board mass loss was higher in three-species co-culture (27.1%) than in two-

species co-culture (21.3%). It might be assumed that reducing sugars concentration during the 

bioprocess catalysed by two-species co-culture ( = 0.40-0.42 g L
-1

; Fig. 16A) affects the 

hydrolysis of lignocellulose while lower and decreasing concentration of reducing sugars 

during the bioprocess conducted by three-species co-culture ( = 0.40-0.17 g L
-1

; Fig. 16B) 

has reduced effect on the lignocellulose hydrolysis. So, addition of yeast strain HAMBI1164 

to the co-culture (FBCC4 + FBCC43 + HAMBI1164) decreased concentration of reducing 

sugars and increased core board mass loss. 

It was previously reported that presence of relatively low concentration of glucose 

(0.05% w/v) decreased the cellulose breakdown by Phlebia sp. (Cho et al.; 2009). Also, 

bagasse weight loss during the bioprocess conducted by Phlebia sp. MG-60 after 4 weeks was 

16.4% (Kondo et al. 2014). 

  

0,0 0,1 0,2 0,3 0,4 0,5

9

15

m (g) 

ti
m

e 
(d

a
y

s)
 



                                                                                                              Results and Discussion 

62 

 

 

 

 

 

Figure 19. Consistency of modified Okamoto medium 2 inoculated by two-species co-culture 

FBCC4 + FBCC43 at the beginning of the bioprocess (A) and after 9 days of bioprocess 

carried out by two-species co-culture  FBCC4 + FBCC43 at 25C without shaking (B), and 

three-species co-culture FBCC4 + FBCC43 + HAMBI1164 after 9 days of bioprocess carried 

out at 25C with shaking at 50 rpm (C). 

After 9 days the consistency of modified Okamoto medium 2 utilised by two-species 

co-culture FBCC4 + FBCC43 (Fig. 19B) was visually the same as the consistency of 

modified Okamoto medium 2 utilised by three-species co-culture FBCC4 + FBCC43 + 

HAMBI1164 (Fig. 19C). It might be assumed that the addition of yeast HAMBI1164 in 

modified Okamoto medium 2 containing two-species co-culture FBCC4 + FBCC43  at the 7
th

 

day of the bioprocess did not affect the mycelial growth of the white-rot fungi FBCC4 and 

FBCC43.  
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Figure 20. Mycelia (M) and remaining core board (CB) withdrawn from the bioprocesses 

carried out in modified Okamoto medium 2 in Erlenmeyer flasks at 25C after 9 or 18 days 

by: three-species co-culture FBCC4 + FBCC43 + HAMBI1164 (after 9 days; A), two-species 

co-culture FBCC4 + FBCC43 (after 18 days; B), monoculture FBCC4 (after 18 days; C), and 

monoculture FBCC43 (after 18 days; D). 
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Based on the results presented in this Thesis following conclusions can be made: 

 

1. Bioprocess for ethanol production from lignocellulosic raw material was investigated. 

Filamentous fungi Phlebia acerina FBCC4 and Phlebia radiata FBCC43 were 

employed as biocatalysts in direct conversion of lignocellulose to ethanol and the 

bioprocess was improved by employing three-species co-culture of Phlebia acerina 

FBCC4, Phlebia radiata FBCC43 and yeast Saccharomyces cerevisiae HAMBI1164 

(three-species co-culture FBCC4 + FBCC43 + HAMBI1164). Experiments were 

performed in modified Okamoto medium 2 in which core board (50.0 g L
-1

) 

lignocellulose was main carbon and energy source. 

2. Two-species co-culture FBCC4 + FBCC43 hydrolysed core board lignocellulose more 

efficiently than the monoculture FBCC4 and monoculture FBCC43 and produced 

reducing sugars in range from 0.11 g L
-1

 to 0.42 g L
-1

. The highest reducing sugars 

concentrations were observed between 7
th

 and 10
th
 day of the bioprocess. Increasing 

portion of inocula of monoculture FBCC4 and monoculture FBCC43 which was 

added to the medium did not increased concentration of reducing sugars. 

3. Between 12 tested yeast species S. cerevisiae HAMBI1164 was selected as the best 

candidate for three-species co-culture FBCC4 + FBCC43 + HAMBI1164. 

Monoculture HAMBI1164 fermented glucose from modified Okamoto medium 1 and 

very efficiently produced ethanol. In addition, growth of the monoculture was almost 

not affected by oxalic acid nor ingredients of monoculture FBCC4 filtrate with 

glucose. Furthermore, HAMBI1164 efficiently grew as a member of three-species co-

culture FBCC4 + FBCC43 + HAMBI1164 in modified Okamoto medium 2. 

4. Three-species co-cultures FBCC4 + FBCC43 + HAMBI1164 produced the highest 

concentration of ethanol (0.34 g L
-1

) on the 9
th
 day of the bioprocess carried out in 

modified Okamoto medium 2 under microaerophilic conditions. When almost 

anaerobic conditions were created, higher concentration of ethanol (1.89 g L
-1

) was 

produced on 9
th
 day of the bioprocess. During this period weight of core board from 

modified Okamoto medium 2 was reduced for 27.1 % of the initial weight while 

weight of dry mycelial biomass increased to 0.19 g in one Erlenmeyer flask. 
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