Analiza uroda zrna kukuruza na OPG-u „Vuković“

Vuković, Vedran

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of agriculture / Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:151:704800

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-09

Repository / Repozitorij:

Repository of the Faculty of Agrobiotechnical Sciences Osijek - Repository of the Faculty of Agrobiotechnical Sciences Osijek
Vedran Vuković, apsolvent

Diplomski studij Bilinogojstvo, smjer Biljna proizvodnja

ANALIZA URODA ZRNA KUKURUZA NA OPG- U „VUKOVIĆ“

Diplomski rad

Osijek, 2016.
Vedran Vuković, apsolvent

Diplomski studij Bilinogojstvo, smjer Biljna proizvodnja

ANALIZA URODA ZRNA KUKURUZA NA OPG- U „VUKOVIĆ“

Diplomski rad

Osijek, 2016.
Vedran Vuković, apsolutent

Diplomski studij Bilinogojstvo, smjer Biljna proizvodnja

ANALIZA URODA ZRNA KUKURUZA NA OPG- U „VUKOVIĆ“

Diplomski rad

Povjerenstvo za ocjenu i obradu završnog rada:

1. doc. dr. sc. Vjekoslav Tadić, predsjednik
2. doc. dr. sc. Miro Stošić, mentor
3. doc. dr. sc. Monika Marković, član

Osijek, 2016.
SADRŽAJ:

1. UVOD ... 1
 1.1. Podrijetlo kukuruza .. 1
 1.2. Važnost i upotreba kukuruza .. 1
 1.3. Morfološka i biološka svojstva kukuruza ... 2
 1.4. Vrste kukuruza .. 6
 1.5. Cilj istraživanja ... 6

2. PREGLED LITERATURE .. 7

3. MATERIJALI I METODE .. 9
 3.1. Agroekološki uvjeti proizvodnje kukuruza .. 10
 3.1.1. Vremenske prilike tijekom 2010. godine ... 10
 3.1.2. Vremenske prilike tijekom 2011. godine ... 11
 3.1.3. Vremenske prilike tijekom 2012. godine ... 13
 3.1.4. Vremenske prilike tijekom 2013. godine ... 14
 3.2. Tlo ... 17
 3.3. Agrotehnika ... 18

4. REZULTATI S RASPRAVOM ... 21
 4.1. Rezultati za 2010. godinu ... 21
 4.2. Rezultati za 2011. godinu ... 22
 4.3. Rezultati za 2012. godinu ... 23
 4.4. Rezultati za 2013. godinu ... 24
 4.5. Prosjek uroda zrna kukuruza ... 26

5. ZAKLJUČAK .. 28

6. POPIS LITERATURE .. 29

7. SAŽETAK ... 31

8. SUMMARY ... 32

9. POPIS TABLICA, SLIKA I GRAFIKONA ... 33

TEMELJNA DOKUMENTACIJSKA KARTICA
BASIC DOCUMENTATION CARD
1. UVOD

1.1. Podrijetlo kukuruza

Podrijetlo kukuruza je iz Centralne Amerike, a nakon otkrića američkog kontinenta prenesen je i proširen u Europu i druge kontinente. Područje uzgoja kukuruza vrlo je veliko te se uzgaja u cijelom svijetu, što mu omogućuje različita duljina vegetacije, raznolika mogućnost upotrebe i adaptabilnost na lošija tla i lošije klimatske uvjete.

Kukuruz se uzgaja na vrlo širokom području od 55º sjeverne geografske širine do 40º južne geografske širine. Po zasijanim površinama kukuruz je treća svjetska kultura, nakon pšenice i riže. Sije se na oko 130 milijuna hektara, a prosječni prirod zrna je oko 3700 kg/ha. Najveće površine zasijane kukuruzom imaju SAD (oko 28 milijuna hektara), Kina (oko 19 milijuna hektara), Brazil (oko 12,5 milijuna hektara), Meksiko (oko 7 milijuna hektara).

U Republici Hrvatskoj, nakon Domovinskog rata, površine zasijane kukuruzom su smanjene. Kreću se oko 280 – 330 tisuća hektara, a prosječni prirod zrna je oko 6500 kg/ha (Statistički ljetopis 2014.).

1.2. Važnost i upotreba kukuruza

Važnost kukuruza u svjetskim razmjerima velika je, što se vidi po ukupnoj površini na kojoj se proizvodi. Površine zasijane kukuruzom i prirodi zrna kukuruza u stalnom su porastu. Kukuruz daje visoke prirode zrna po jedinici površine, maksimalni prirod zrna su i preko 25000 kg/ha. Svi dijelovi biljke kukuruza mogu se iskoristiti. Zrno kukuruza koristi se za hranidbu domaćih životinja, u prehrani ljudi i industriji.

Cijela stabljika koristi se za spravljanje silaže za hranidbu domaćih životinja i u bioplinskoj industriji. Zrno sadrži 70 – 75% ugljikohidrata, oko 10% bjelančevina, oko 5% ulja, oko 15% mineralnih tvari, oko 2,5% celuloze (Pospišil, 2010).

U prehrani ljudi koristi se za pripravljanje kruha uz dodatak pšeničnog brašna, zatim za pripravljanje palente, kokice, kao pečen i kuhan. Koriste se i različite industrijske preradevine za prehranu ljudi, u farmaceutskoj i kemije industriji, za proizvodnju alkohola, ulja.
1.3. Morfološka i biološka svojstva kukuruza

Korijen kukuruza je žiličast (Slika 1.) i obuhvaća veliki volumen tla, najveća masa korijena nalazi se u sloju do 30 centimetara, a dubina prodiranja iznosi do 3 metra. Korijenov sustav sastoji se od primarnog i sekundarnog korijena. Kukuruz klija jednim primarnim korijenom.

Slika 1. Korijen kukuruza
(Izvor: Vedran Vuković)

Primarni korijen sastoji se od tri tipa: glavni klicin korijen, bočni klicini (hipokotilni) korijenovi i mezokotilni korijen. Oblikuju se u vrijeme klijanja. Zadaća tog korijenja je da učvrsti sjeme i mladu biljčicu za tlo, da crpe hranu i vodu. Razvojem sekundarnog korijenova sustava uloga primarnoga jako se smanjuje, ali ostaju aktivni do kraja vegetacije.

Sekundarni korijen kukuruza raste iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku.

Podzemno nodijalno korijenje razvija se iz podzemnih i nekoliko nadzemnih nodija stabljike, pa razlikujemo podzemno nodijalno i nadzemno ili zračno nodijalno korijenje. Nodijalno korijenje je razvijeno, šire i dublje prodire u tlo, crpi vodu i hraniva te hrani biljku. Donje etaže razvijaju manje korijenova, a gornje sve više. Samim time korijen kukuruza postaje kompaktan, prodire u dubinu i do dva metra, a u širinu više od metra, zahvaća velik volumen tla i crpi hranu i vodu (Pospišil, 2010.).
Nadzemno nodijalno korijenje razvija se iz prvog i drugog, a ponekad i iz trećeg nodija izvan površine tla. Osnovna uloga mu je da učvrsti i stabilizira biljku zbog visine stabljike i težine klipa.

Korijen kukuruza dobro je razvijen i dobre upojne moći, pa mu to omogućuje da i na lošijim tlima i u uvjetima suše daje relativno dobre prirode. Na razvoj korijenova sustava utječe hibrid, tip tla i njegova plodnost, klimatski uvjeti (toplina, voda, zrak), agrotehnika, obrada tla, vrijeme, dubina sjetve, hranidba, njega i zaštita (Kovačević i Rastija, 2009.).

Stabljika kukuruza sastoji se od nodija i internodija, kojih može biti desetak i više, ispunjena je provodnim snopovima i parenhimom koji daje čvrstoću, visoka je i relativno debela (Slika 2.).

Slika 2. Stabljika kukuruza
(Izvor: Vedran Vuković)

Prvi internodij je najkraći, a svaki daljnji je sve duži. Visina stabljike varira od 0,5 metara na krajnjem sjevernom uzgojnom području, pa do 5 do 7 metara kod tropskih kasnozrelih hibrida. Raniji hibridi imaju nižu i tanju stabljiku, a što je vegetacija dulja povećava se visina i debljina stabljike. Hibridi u našim uvjetima uzgoja imaju visinu od 1,5 metara do 3,5 metara, a stabljika je debela od 1,5 do 3 centimetara.

Internodiji stabljike pokriveni su rukavcima listova u čijim se pazusima zameću pupovi bočnih izdanaka. Iz pupova podzemnih koljenaca i prvih koljenaca na dnu stabljike
oblikuju se zaperci, čije je formiranje karakteristika nekih podvrsta kukuruza- šećerca i kokičara, ali njihovu pojavu mogu izazvati i vanjski uvjeti: rjeđi sklop, bogatija ishrana dušikom, jače osvjetljenje.

Iz pupova prema sredini i vršnom dijelu stabljike oblikuju se začeci klipova, od kojih se, ovisno o uvjetima, razvije 1 do 5 klipova. Iz vršnih pupova ne oblikuju se začeci klipova.

List prema značenju i prema mjestu gdje se zameću i nalaze razlikuju se tri tipa listova: klicini listovi, pravi ili listovi stabljike i listovi omotača klipa (komušina).

Klicini listovi imaju svoje začetke još u klici i ima ih 5 do 7. Potpuno se razvijaju u prvih 10 do 15 nakon nicanja kada su od presudnog značaja za biljku. Nakon formiranja pravih listova, klicini listovi gube svoje značenje i suše se u prvom dijelu vegetacije. Pravi listovi (Slika 3.) sastoje se od plojke, rukavca i jezička.

![Slika 3. Listovi kukuruza](Izvor: Vedran Vuković)

Plojka je linearna i široka 5 do 15 centimetara, dužine 50 do 100 centimetara, na rubovima valovita, lice je pokriveno dlačicama, a naličje glatko. Rukavac je debeo i čvrst s manje primjetnom centralnom žilom.
Rani hibridi koji se kod nas uzgajaju imaju 8 do 10 listova, a najkasniji 18 do 22 listova. Broj listova stabilno je svojstvo i malo se mijenja u različitim godinama kod istog hibrida. Listovi omotača klipa razvijaju se na nodijima drške klipa, a to je skraćeni bočni izdanak. Listovi omotača klipa štite klip i zrna na njemu od štetnih vanjskih utjecaja, bolesti i štetnika.

Metlica i klip oblikuju se na istoj biljci. Na vrhu stabljike na metlici razvijaju se muški cvjetovi, a na klipu ženski cvatovi. Metlica se sastoji od glavne grane, od koje se odvajaju postrane grane i grančice, kojih ima od 3 do 15. Na glavnoj i postranim granama razvijaju se klasići, svaki klasić obuhvaćaju dvije pljeve i ima dva cvijeta. Svaki cvijet obuhvaćen je s dvije pljevice, u dnu cvijeta su dvije pljevičice, koje u vrijeme cvatnje upijaju vodu, bubre i otvaraju cvijet.

U cvijetu se nalaze tri prašnika, a tučak je zakržljao (Gagro, 1997.). Klip se najčešće razvija na petom do sedmom nodiju, a može se razviti i na zapercima. Klip se sastoji od zadebljalog vretena (oklasak) na kojem se uzdužno u parnim redovima nalaze klasići sa ženskim cvjetovima. Vreteno klipa u stanju zrelosti teži 18 do 25% od ukupne mase klipa.

Broj redova zrna uvijek je paran, kod većine naših hibrida je od 8 do 20. Tučak se sastoji od plodnice, dugog vrata i još duže njuške- svila. Dugačke svilenkaste niti prekrivene su dlačicama, a dlačice izlučuju ljepljivu tekućinu, koja pomaže hvatanju polenovih zrnaca nošenih zračnim strujama. Polen pada na bilo koji dio svile i izvršava oplodnju.

Plod kukuruza je zrno. Zrno kukuruza (Slika 4.) sastoji se od ljuske ploda (pericarp), sjemene ljuske (perisperm), endosperma i klice.

Slika 4. Zrno kukuruza
(Izvor: Vedran Vuković)
Endosperm čini oko 80% zrna, ljuska oko 7% i klica 7 do 10%. U ljusci ploda nalazi se pigment koji zrnu daje boju. Između sjemene ljuske i endosperma nalazi se tanak aleuronski sloj sastavljen iz jednog sloja stanica. Boja aleuronskog sloja može biti različita, sadrži dosta bjelančevina, vitamina i ulja te zrna aleurona. Endosperm zauzima najveći dio zrna, u sastavu stanica najveći udio je škroba. Klica sadrži najveći udio ulja i bjelančevina u zrnu kukuruza.

1.4. Vrste kukuruza

1. zuban (*Zea mays* L. indentata Sturt.)
2. tvrdunac (*Zea mays* L. indurata Sturt.)
3. šećerac (*Zea mays* L. saccharata Sturt.)
4. kokičar (*Zea mays* L. everta Sturt.)
5. mekunac (*Zea mays* L. amylacea Sturt.)
6. voštanač (*Zea mays* L. ceratina Kulesk)
7. pljevičar (*Zea mays* L. tunicata Sturt.)
8. poluzuban (*Zea mays* L. semidentata Kulesk)
9. škrobni šećerac (*Zea mays* L. amylo saccharata Sturt.)

Od navedenih podvrsta kukuruza u proizvodnji su najviše zastupljene dvije: zuban i tvrdunac, kojima pripada najveći broj kultivara i hibrida. Zuban je rodniji od tvrdunca, ali tvrdunac ima kvalitetnije zrno, s većim postotkom bjelančevina. Zrno zubana više se koristi u prehrani domaćih životinja i industrijskoj preradi, a tvrdunac se više koristi u prehrani ljudi (Gagro, 1997.).

1.5. Cilj istraživanja

Cilj ovog rada je prikazati rezultate uroda zrna kukuruza na OPG „Vuković“ u razdoblju od 2010. do 2013. godine, na tipu tla pseudoglej na zaravni, koji prevladava na uzgojnom području OPG „Vuković“, s obzirom na vremensko- klimatske prilike i provedenu agrotehniku uzgoja.
2. PREGLED LITERATURE

Kukuruz je jedna od najvažnijih ratarskih kultura u Hrvatskoj. Sije se na površini od 280 do 330 tisuća hektara. U istočnom dijelu Hrvatske je, uz ozimu pšenicu, najzastupljenija ratarska kultura. U Hrvatskoj prevlada uzgoj kukuruza u konvencionalnoj obradi, kojoj je baza oranje.

Konvencionalna obrada tla donosi najveće i najstabilnije urode zrna kukuruza. To je zbog povoljnih prilika stvorenih u tlu, što je posljedica oranja na određenu dubinu, odnosno stvaranje rahlog oraničnog sloja, miješanje i homogeniziranje hraniva u istom, povoljna ocjeditost tla. Tlo je nakon oranja dobrih fizikalnih svojstava, ali isto tako i kemijsko-bioloških svojstava. Oranje kao zahvat stvara povoljne prilike za rast i razvoj korijenovog sustava, što uvelike određuje uspješnost same poljoprivredne proizvodnje (Ţugec i sur., 2006.).

Prema Mihaliću (1976.) ovisno o zahtjevima kultura i promjenjivim agro-ekološkim uvjetima agrotehničke zahvate, odnosno sustave biljne proizvodnje treba tako i primjenjivati.

Osim konvencionalne obrade, obrada tla za kukuruz može biti i nekim od reduciranih sustava obrade. Provedenim istraživanjima i razvojem tehnologije razvija se više smjerova obrade tla koje u današnje vrijeme struka prepoznaje kao „reducirana“, „racionalna“, „minimalna“, „konzervacijska“ i „izostavljena obrada tla“ (no-tillage) (Butorac i sur., 1986.)

U Republici Hrvatskoj proizvođači dosta otežano prihvaćaju nove koncepte i sustave proizvodnje upravo zbog tradicionalnih razloga, neadekvatne mehanizacije, ali i zbog nedostatka znanja (Stošić, 2012.).

Danas se nastoje izbjeći pogreške iz prošlosti i ističe se važnost usklađivanja odnosa između zaštite tla i tehnologije uzgoja. Svrha obrade popravak je i zaštita fizikalnih i bioloških svojstava tla na način i do dubine koja zadovoljava uvjete uzgoja i zaštite tla. Zaštita tla i pouzdana biljna biljna proizvodnja mogu se uskladiti primjerenom tehnologijom obrade. Svi zahtjevi biljaka mogu biti ispunjeni održavanjem tla u dobrom fizikalnom i biološkom stanju, primjenom konzervacijske obrade uz istovremeno izbjegavanje oštećivanja tla i smanjivanje troškova (Jug i sur., 2015.).

Kukuruz se sije na velikim površinama, pa u suženoj strukturi proizvodnje dolazi u užem plodoredu ili čak u monokulturi. Iako kukuruz bolje podnosi monokulturu, on će pri uzgoju u plodoredu dati veći prirod, to veći što je veći vremenski razmak u kojem vraćamo
kukuruz na istu površinu. Kukuruz treba obavezno uzgajati u plodoredu, jer se tako bolje koristi potencijalna plodnost tla, smanjuje se napad biljnih bolesti, štetnika i korova, uključuje se raznovrsnost obrade tla itd. Dobre pretkulture za kukuruz su jednogodišnje i višegodišnje leguminoze, krumpir, šećerna repa, suncokret, uljana repica pa i strne žitarice (Gagro, 1997.).

Kukuruz ima visok proizvodni potencijal i da bi se taj potencijal iskoristio, gnojidbom se treba osigurati sva potrebna hraniva u dovoljnoj količini. Da bi se na osrednje plodnim tlima postigli visoki prirodi, treba gnojidbom dati 150 do 200 kilograma dušika (N), 100 do 150 kilograma fosfora (P2O5) i 120 do 200 kilograma kalija (K2O) po hektaru (Pospišil, 2010.).

Ako se kukuruz uzgaja nakon kultura koje ostavljaju veće žetvene ostatke (slama, kukuruzovina), treba prije zaoravanja tih ostataka gnojidbom dati 100 do 150 kg/ha UREA-e, da bi se osiguralo dovoljno dušika za rad mikroorganizama, koji razgraduju organske ostatke i za to troše dušik. Gnojidbu treba izvesti na taj način da se do 2/3 fosfornih i kalijevih gnojiva te oko 1/3 dušičnih gnojiva daje pred duboko oranje, a ostatak fosfornih i kalijevih gnojiva i 1/2 do 2/3 dušičnih gnojiva u pripremi tla za sjetvu (Vukadinović i Lončarić, 1997.).

Vrhunski prinosi i dobra kakvoća uroda postižu se samo korištenjem kombiniranog učinka i optimiziranjem cjelokupne agrotehnikе i prakse upravljanja, pa samo gnojidba, ma kako ona bila važna, nije dovoljna za dobivanje visokih prinosa dobre kakvoće. Također, suvremeni trendovi u strategiji gnojde pokušavaju zamijeniti visoko intenzivnu proizvodnju hrane visoko učinkovitim sustavom što zahtijeva poznavanje i uključivanje većeg broja različitih indikatora u određivanju potrebe za gnojidbom, ali i u agrotehničkom aspektu, odnosno primjeni gnojiva (Vukadinović i Bertić, 2013.).
3. MATERIJALI I METODE

Praćenje visine uroda zrna kukuruza vršeno je na OPG „Vuković“, koje se nalazi u mjestu Beničanci, u zapadnom dijelu Osječko-baranjske županije.

OPG „Vuković“ mješovito je poljoprivredno gospodarstvo s primarnom ratarskom i stočarskom proizvodnjom, manjim dijelom voćarskom i povrtlarskom proizvodnjom. Proizvodnja je većim dijelom za vlastite potrebe, višak se plasira na tržište.

Ratarska proizvodnja obavlja se na 8 hektara poljoprivredne površine. Na 6 hektara površine uzgajaju se žitarice i to kukuruz, zob i tritikale. Na 2 hektara površine su zasijane i prirodne livade. U stočarskoj proizvodnji uzgajaju se ove, svinje, konji i perad.

Od proizvodnih kapaciteta tu su gospodarski objekti: staja za uzgoj ovaca, staja za uzgoj i tov svinja i staja za uzgoj konja. Gospodarstvo posjeduje dva traktora: IMT 560 snage 60 KS i IMT 542 snage 42 KS, dvije prikolice nosivosti 2,5 tona te priključke za obavljanje ratarske proizvodnje: plug Olt Posavac 1.40, plug IMT 2.30, plug Olt Slavonac 2.35, tanjurača Lemind 24 diska, laka drljača 3 metra, prskalica Leško 440 litara- 10 metara, raspodjeljivač mineralnog gnojiva Megametal obujma 500 litara, žitna sijačica 2,5 metara, rotaciona kosilica zahvata 1,35 metara, grablje za okretanje i kupljenje sijena. Za sjetvu kukuruza i žetvu uzgajanih kultura koriste se usluge drugih proizvođača.

Kukuruz je naša najznačajnija ratarska kultura. Predstavlja osnovu u hranidbi domaćih životinja te isto tako visoki urodi predstavljaju najvažniji čimbenik rentabilnosti na sve zahtjevnijem tržištu poljoprivrednih proizvoda.

Analizama klimatskih prilika kao i kroz primjenjene agrotehničke zahvate obraditi će se uspješnost proizvodnje kukuruza na OPG „Vuković“.
3.1. Agroekološki uvjeti proizvodnje kukuruza

3.1.1. Vremenske prilike tijekom 2010. godine

Što se tiče agroklimatskih pokazatelja, najvažniji utjecaj u agroekološkim istraživanjima predstavljaju temperature i oborine. Utjecaj temperature i oborina najbolje se vidi u ekstremnim godinama, koje odstupaju od višegodišnjih prosjeka nekog mjernog područja.

Tijekom 2010. godine palo je 1037,9 mm kiše, što govori o jednoj izrazito kišnoj godini za prilike Osijeka. U tridesetogodišnjem mjerenju (1961.–1990.) zabilježen je prosjek oborina od 650,4 mm (387,5 mm oborina više od prosjeka). U pogledu temperature, vremenske prilike bile su takve da je 2010. godine na području Osijeka, u odnosu na razdoblje od 1961. do 1990. bila za 0,5 °C toplija (Grafikon 1.).

Temperature u 2010. godini (prosjek 11,3 °C) više su od tridesetogodišnjeg mjerenja (1961.–1990.), te je evidentan rast srednji dnevnih temperatura, kao i srednjih mjesečnih temperatura za većinu mjeseci. Početkom godine, odnosno u siječnju zabilježen je rast
srednjih dnevnih temperatura (za 0,4 °C) u odnosu na višegodišnji prosjek (-1,2 °C), a u veljači srednje dnevne temperature manje su za 0,3 °C u odnosu na višegodišnji prosjek (1,6 °C). Od ožujka pa do rujna imamo veće srednje dnevne temperature u odnosu na višegodišnji prosjek. Srednja mjesečna temperatura je u svakom mjesecu bila veća od višegodišnjeg prosjeka od 0,7 do 2,1 °C. U rujnu je temperatura manja za 1,0 °C od višegodišnjeg prosjeka, a u listopadu manja za 2,1 °C. Nakon toga, do kraja godine imamo više srednje dnevne temperature u odnosu na višegodišnji prosjek (10,8 °C), što se u konačnici odražava na srednju godišnju temperaturu za 2010. godinu (11,3 °C), koja je bila veća za 0,5 °C.

U pogledu oborina tijekom 2010. godine, u siječnju je zabilježeno 47 mm više oborina u odnosu na tridesetogodišnje mjerenje (1961. – 1990.), te se taj trend nastavlja i u veljači, dok su u ožujku oborine manje, a u travnju više od višegodišnjeg prosjeka. U svibnju imamo ekstremno odstupanje od višegodišnjeg prosjeka (121 mm) kada je zabilježeno 62,5 mm više oborina. Slično stanje je bilo i u lipnju (višegodišnji prosjek 88,0 mm) kad je zabilježeno 146 mm više oborina. U srpnju imamo manje oborina za 32,8 mm, a u kolovozu više oborina za 52,5 mm u odnosu na višegodišnji prosjek. U rujnu je zabilježeno 63,2 mm više oborina od višegodišnjeg prosjeka, a do kraja godine oborine nisu puno odstupale od višegodišnjeg prosjeka.

Dakle, 2010. godina se može ocijeniti kao kišna godina sa 387,5 mm oborina više od višegodišnjeg prosjeka.

3.1.2. Vremenske prilike tijekom 2011. godine

Grafikon 2. Heinrich- Walterov klimadijagram za 2011. godinu

Temperature u 2011. godini, pogotovo u proljetnom i ljetnom dijelu godine dosta odstupaju od tridesetogodišnjeg mjerenja (1961. – 1990.). U siječnju imamo za 2,3 °C veće temperature od prosjeka, a u veljači su one manje za 0,9 °C od prosjeka. Od ožujka pa do listopada imamo zabilježene više temperature od prosjeka, i to za 0,2 do 3,7 °C. Naročito se to izražava u kolovozu kada je temperatura od prosjeka odudarala za ekstremnih 3,7 °C.

Nakon toga, od rujna do studenoga temperature su niže od višegodišnjeg prosjeka za 0,6 do 3,1 °C. U prosincu temperatura je bila viša za 2,5 °C od višegodišnjeg prosjeka. Na kraju, 2011. godina, još jedna godina puna ekstremnih temperaturnih kolebanja, završava sa srednjom prosječnom temperaturom od 11,7 °C, što je više od višegodišnjeg prosjeka za 0,9 °C.

Što se tiče oborina tijekom godine 2011., još jedna izrazito sušna godina. Od početka godine pa sve do srpnja bilježimo manje oborina od višegodišnjeg mjerenja (1961. – 1990.). U siječnju bilježimo 22,9 mm manje oborina u odnosu na tridesetogodišnje mjerenje (1961. – 1990.) te se taj trend nastavlja preko ožujka i travnja do srpnja. Tijekom tog razdoblja palo je 229,0 mm oborina, odnosno za 103,2 mm oborina manje od višegodišnjeg prosjeka za to razdoblje.
Tek u srpnju imamo 74,0 mm oborina, odnosno 9,2 mm oborina više u odnosu na prosjek za taj mjesec. Nakon toga sušno razdoblje sve do prosinca, jer je od kolovoza do studenoga palo svega 50,0 mm oborina. U odnosu na višegodišnji prosjek za to razdoblje to je za 151,9 mm oborina manje. Tek je u prosincu zabilježeno 17,4 mm oborina više od prosjeka za taj mjesec. Iz svega toga proizlazi da je 2011. godina sušna godina sa 228,3 mm oborina manje od višegodišnjeg prosjeka.

3.1.3. Vremenske prilike tijekom 2012. godine

Što se tiče temperatura, siječanj (2,1 °C) je bio topliji za 3,3 °C od višegodišnjeg prosjeka (-1,2 °C), dok je veljača bila hladnija, s srednjom mjesečnom temperaturom od -4,1 °C. Razdoblje od ožujka do studenog je bilo iznadprosječno toplije. Prema višegodišnjem prosjeku za to razdoblje srednja temperatura iznosi 14,2 °C, a 2012. godine je zabilježena srednja temperatura od 16,6 °C (toplje za 2,4 °C).
Osim siječnja, veljače i prosinca koji su bili hladniji od prosjeka, tijekom svih ostalih mjeseci zabilježena je veća srednja mjesečna temperatura, što se u konačnici vidi iz srednje godišnje temperature od 12,3 °C. Visoke prosječne mjesečne temperature u lipnju, srpnju i kolovozu (od 22,5 do 24,7 °C) imale su najveći utjecaj na jako niske urode zrna kukuruza.

Za 2012. godinu možemo reći da je isto specifična u pogledu oborina, odnosno zbog nedostatka oborina tijekom zimskih mjeseci (ožujak) te tijekom ljetnih mjeseci, ova godina se može ocijeniti kao nepovoljna.

Oborine u siječnju su manje za 18,9 mm od višegodišnjeg prosjeka. Ožujak je bio gotovo bez oborina, sa svega 1,0 mm oborina, odnosno manje za 43,8 mm od prosjeka za ožujak. Travanj je bio prosječan s oborinama, a u svibnju je bilo suficita oborina, odnosno za 35,5 mm oborina više od prosjeka za mjesec svibanj. U srpnju i kolovozu zabilježeno je 116,0 mm oborina, odnosno za 36,8 mm oborina manje od višegodišnjeg prosjeka.

U rujnu je bilo 12,8 mm oborina manje od višegodišnjeg prosjeka, a nešto više oborina zabilježeno je u listopadu, i to za 23,7 mm više od prosjeka za taj mjesec.

U studenom je zabilježeno 7,3 mm oborina manje, a u prosinцу čak 52,4 mm oborina više od višegodišnjeg prosjeka (51,6 mm) za to područje. Godina 2012 je bila dosta loša u pogledu rasporeda oborina, manjak u ožujku i travnju kao i u srpnju i kolovozu, sa 56,4 mm oborina manje od višegodišnjeg prosjeka za područje Osijeka.

3.1.4. Vremenske prilike tijekom 2013. godine

Tijekom 2013. godine pao je 772,7 mm oborina, što govori o jednoj prosječnoj godini za prilike Osijeka (Grafikon 4.).

Prema tridesetogodišnjem mjerenju (1961. – 1990.) područje Osijeka ima prosjek oborina od 650,4 mm.

Dakle, 2013. godina sa 122,3 mm oborina više od višegodišnjeg prosjeka se može ocijeniti povoljna godina, ali s lošijim rasporedom oborina po mjesecima.

U pogledu temperatura, za 2013. godine za područje Osijeka zabilježena je srednja godišnja temperatura od 12,1 °C, a u odnosu na tridesetogodišnje mjerenje (1961. – 1990.) bilo za 1,3 °C toplije.

U siječnju imamo za 3,3 °C veće temperature od prosjeka, a u veljači su one veće za 1,4 °C od prosjeka. U oţujku temperatura je manja za 0,9 °C od prosjeka.

Od travnja pa do rujna imamo zabiljeţene više temperature od prosjeka, i to za 0,2 do 2,6 °C. Naročito se to izraţava u kolovozu kada je temperatura od prosjeka odudarala za 2,6 °C. Nakon toga, u rujnu temperatura je niţa za 0,7 °C. Listopad i studeni topliji su od prosjeka za 2,5 °C. U prosincu temperatura je bila viša za 0,7 °C od višegodišnjeg prosjeka.

Na kraju, 2013. godina nije imala prevelike temperaturne oscilacije, osim toplijih srpnja i kolovoza, završava sa srednjom prosječnom temperaturom od 12,1 °C, što je više od višegodišnjeg prosjeka za 1,3 °C.

Što se tiče oborina tijekom godine 2013. one su približne višegodišnjem prosjeku. Početkom godine oborine su više od višegodišnjeg mjerenja (1961. – 1990.).

U siječnju biljeţimo 14,0 mm više oborina u odnosu na prosjek, veljači više za 45,8 mm i oţujku više za 39,2 mm oborina. Travanj ima manje za 8,8 mm oborina. Svibanj je kišan sa skoro najviše oborina u 2013. godini, odnosno 119,0 mm, što je više za 60,5 mm.
od prosjeka. U lipnju imamo 63,0 mm oborina, odnosno 25,0 mm oborina manje u odnosu na prosjek za taj mjesec. Srpanj i kolovoz su sušni, oborine su 36 mm i 33 mm, što je manje za 28,8 mm i 25,5mm od prosjeka. Rujan je najkišniji sa 129,0 mm oborina, što je za 84,2 mm oborina više od prosjeka. u listopadu i studenom količina oborina je oko prosjeka. Prosinac je jedini zabilježen mjesec u analiziranim godinama koji je bez oborina. Iz svega toga proizlazi da je 2013. godina prosječna godina s 772,7 mm oborina, što je za 122,3 mm oborina više od višegodišnjeg prosjeka.

Prošječne godišnje teperature u svim analiziranim godinama više su od višegodišnjeg prosjeka.

Grafikon 5. Analizirano razdoblje od 2010. do 2013. godine
3.2. Tlo

Tip tla koji prevlada na gospodarstvu je pseudoglej na zaravni (Vukadinović, Vesna, Interaktivna pedološka karta Slavonije i Baranje). Takav tip tla uglavnom je manje povoljan za uzgoj ratarskih kultura, a tome u prilog govori i rezultat analize tla na gospodarstvu (Tablica 1.).

Tablica 1. Analiza tla

<table>
<thead>
<tr>
<th>pH</th>
<th>Humus %</th>
<th>AL-P$_2$O$_5$ mg 100 g$^{-1}$ tla</th>
<th>AL-K$_2$O mg 100 g$^{-1}$ tla</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>12.5</td>
<td>16</td>
</tr>
</tbody>
</table>

Rezultati kemijske analize tla interpretirani prema Ishrani bilja (Vukadinović V. i Vukadinović Vesna, 2011.) pokazali su da je tlo ekstremno kiselo, koncentracija humusa je na granici dobre opskrbljenosti (2 %), raspoloživost fosfora i kalija je na granici osrednje i dobre opskrbljenosti (Tablica 2.) Obzirom na ekstremnu kiselost tla potrebno je utvrditi potrebu za kalcizacijom i obaviti je što ranije.

Tablica 2. Granične vrijednosti AL-P$_2$O$_5$ i AL-K$_2$O za ratarske usjeve na području istočne Hrvatske

<table>
<thead>
<tr>
<th>Razred raspoloživosti</th>
<th>AL-P$_2$O$_5$ mg 100 g$^{-1}$ tla</th>
<th>AL-K$_2$O mg 100 g$^{-1}$ tla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH < 6</td>
<td>pH ≥ 6</td>
</tr>
<tr>
<td></td>
<td>lako</td>
<td>srednje</td>
</tr>
<tr>
<td>(A) jako siromašno</td>
<td>< 5</td>
<td>< 8</td>
</tr>
<tr>
<td>(B) siromašno</td>
<td>5 - 12</td>
<td>8 - 16</td>
</tr>
<tr>
<td>(C) dobro</td>
<td>13 - 20</td>
<td>17 - 25</td>
</tr>
<tr>
<td>(D) visoko</td>
<td>21 - 30</td>
<td>26 - 45</td>
</tr>
<tr>
<td>(E) ekstremno visoko</td>
<td>> 30</td>
<td>> 45</td>
</tr>
</tbody>
</table>

(Izvor: Ishrana bilja (Vukadinović V. i Vukadinović Vesna, 2011.))
3.3. Agrotehnika

Kukuruz se može uzgajati u monokulturi, ali bolje prirode daje u plodoredu. Najbolji predusjevi su leguminoze, strne žitarice i industrijsko bilje. Uzgoj u monokulturi valja izbjegavati zbog opasnosti od kukuruzne zлатице (Diabrotica virgifera virgifera Le Conte) i radi proširenja višegodišnjih korova sirka (Sorghum halepense L.), poljskog slaka (Convolvulus arvensis L.) i drugih.

Na gospodarstvu predusjevi su strne žitarice: zob i tritikale. Nakon žetve ozimina slijedi prašenje strništa tanjuračom na dubinu od 5 centimetara radi provociranja nicanja sjemena korova, unošenja biljnih ostataka i očuvanja vlage.

Krajem kolovoza vrši se još jedno tanjuranje radi uništavanja izniklih korova prije cvatanje korova. U listopadu slijedi raspodjeljivanje gnojiva za osnovnu gnojidbu. Nakon raspodjeljivanja gnojiva slijedi oranje na dubinu od 25 do 30 centimetara (Slika 5.).

Slika 5. Oranje
(Izvor: Vedran Vuković)
Obrada u proljeće sastoji se od zatvaranja zimske brazde lakom drljačom (Slika 6.) da bi se spriječio gubitak vode iz tla. U travnju slijedi raspodjeljivanje dušičnog gnojiva i predsjetvena priprema tanjuračom i lakom drljačom. Cilj predsjetvene obrade je stvoriti mrvičastu strukturu s posteljicom za zrno i uništiti rano iznikle korove.

Slika 6. Zatvaranje zimske brazde

(Izvor: Vedran Vuković)

Gnojdbna na gospodarstvu je da se cjelokupna količina fosfora i kalija te manja količina dušika unosi s osnovnom obradom primjenom gnojiva NPK 7:20:30 u količini od 300 kilograma po hektaru.

U proljeće, prije predsjetvene pripreme, raspodjeljuje se dušično gnojivo UREA (46% N) u količini od 300 kilograma po hektaru. S tom gnojdbom dodano je ukupno 159 kilograma dušika po hektaru, 60 kilograma fosfora po hektaru i 90 kilograma kalija po hektaru.

Količina hraniva nije izbalansirana i manja je od potrebne za postizanje 10 tona po hektaru zrna kukuruza (Tablica 3.).
Tablica 3. Izračun potrebne količine mineralnog gnojiva za planirani prinos

<table>
<thead>
<tr>
<th>Za izgradnju 100 kg suhe tvari:</th>
<th>Za prinos 10 t/ha potrebno je:</th>
<th>Gnojdbom bi trebalo dodati:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 – 3,6 kg N</td>
<td>250 – 300 kg N</td>
<td>200 – 250 kg N</td>
</tr>
<tr>
<td>0,8 – 1,2 kg P₂O₅</td>
<td>100 - 120 kg P₂O₅</td>
<td>80 – 120 kg P₂O₅</td>
</tr>
<tr>
<td>2,7 – 3,1 K₂O</td>
<td>280 – 300 kg K₂O</td>
<td>180 – 200 kg K₂O</td>
</tr>
</tbody>
</table>

(Izvor: http://www.savjetodavna.hr/adminmax/publikacije/kukuruz.pdf)

Optimalni rok sjetve za kukuruz kreće se u razdoblju od 10. do 25. travnja. U tom razdoblju posijan je i kukuruz na gospodarstvu u analiziranim godinama.

Dubina sjetve iznosila je 4 do 6 centimetara, ovisno o vlažnosti tla u trenutku sjetve. Kukuruz je sijan OLT PSK 4 sijačicom, razmak između redova je 70 centimetara, a u redu 21 centimetar, što daje sklop od oko 68000 biljaka po hektaru. Nakon nicanja sklop se kretao oko 60000 biljaka po hektaru.

Zaštita protiv korova vršena je zemljišnim herbicidima Radazin Extra TZ i Lumax nakon nicanja kukuruza u fazi 3 lista kukuruza za suzbijanje jednogodišnjih uskolisnih i širokolisnih korova. Izvršena je i jedna kultivacija, bez prihrane, u fazi 8 do 10 listova kukuruza radi sprječavanja gubitka vlage iz tla.
4. REZULTATI S RASPRAVOM

4.1. Rezultati za 2010. godinu

Prinosi ratarskih kultura variraju po godinama i uvelike ovise o vremenskim prilikama tijekom pojedine godine.

Godina 2010. bile je specifična u vezi oborina. Količina oborina tijekom cijele godine uglavnom je bila viša od tridesetogodišnjeg prosjeka (Grafikon 6.).

Grafikon 6. Višak i manjak oborina u 2010. godini

Količina oborina iznosila je 1037,9 mm, što je više za 387,5 mm od tridesetogodišnjeg prosjeka za mjerno područje Osijek koji iznosi 650,4 mm.

Početkom godine oborina je bilo dovoljno za nicanje i početni razvoj kukuruza, ali više oborina u svibnju i lipnju uvjetovalo je sporiji porast i razvoj kukuruza.

Više oborina prati razvoj kukuruza i u generativnim fazama, što je uvjetovalo djelomično spiranje polena i slabiju oplodnju.

Dovoljne količine oborina, čak i više od prosjeka, u kolovozu i rujnu djelovale su povoljno na nalijevanje zrna.

Temperature u početku vegetacije bile su oko tridesetogodišnjeg prosjeka i djelovale su povoljno za nicanje i početni razvoj kukuruza.
U fazi oplodnje i nalijevanja zrna temperature su oko tridesetogodišnjeg prosjeka i povoljno su djelovale na oplodnju i nalijevanje zrna.

Raspored oborina i temperatura bio je povoljan, te je povoljno djelovao na urod zrna kukuruza u 2010. godini, usprkos neizbalansiranoj i reduciranoj gnojidbi.

Velika količina oborina u svibnju i lipnju (ukupno 355,0 mm) utjecale su na djelomično slabije usvajanja hraniva, kao i na njihovo ispiranje u dublje slojeve tla, prvenstveno nitratnog oblika dušika.

Urod zrna kukuruza u 2010. godini na površini od 3 hektara iznosi 10,0 tona po hektaru.

4.2. Rezultati za 2011. godinu

Oborine u 2011. godini iznosile su 422,1 mm što je manje za 228,3 mm od tridesetogodišnjeg prosjeka, koji za mjerno područje Osijek iznosi 650,4 mm. Taj nedostatak odrazilo se nepovoljno na razvoj i prirod kukuruza. Osim ukupnih oborina i raspored oborina je bio nepovoljan (Grafikon 7.).

Grafikon 7. Višak i manjak oborina u 2011. godini

U fazi nicanja i početnog porasta oborine su manje od prosjeka, ali zaliha zimske vlage iz 2010. uvjetuje dobro nicanje i početni porast.
Od svibnja i srpnja oborine su oko prosjeka, te djeluju povoljno na razvoj kukuruza i oplodnju.

U fazi nalijevanja zrna velik nedostatak oborina (oko 20,0 mm) što nepovoljno utječe na nalijevanje zrna te na konačan urod zrna.

Temperature su bile više od tridesetogodišnjeg prosjeka tijekom cijelog vegetacijskog razdoblja kukuruza.

Djelovale su povoljno za početni razvoj kukuruza zbog dovoljne količine oborina, ali su djelovale nepovoljno u oplodnji uzrokujući sterilnost polena i slabiju oplodnju, još nepovoljnije u nalijevanju zrna uzrokujući smanjenje mase 1000 zrna, što se pokazalo u urodu zrna.

Konačno, nepovoljan raspored i manjak oborina, te više temperature od prosjeka utjecale su negativno na urod zrna kukuruza u 2011. godini. Uz neizbalansiranu i reduciranu gnojidbu prisno je puno manji od genetskog potencijala hibrida. Manjak oborina utjecao je i na slabije usvajanje hraniva iz tla.

Urod zrna kukuruza u 2011. godini na površini od 3 hektara iznosi 6,7 tona po hektaru.

4.3. Rezultati za 2012. godinu

Godina 2012. bila je izrazito nepovoljna za uzgoj kukuruza. Oborine u 2012. iznosile su 594,0 mm, što je manje za 56,4 mm od tridesetogodišnjeg prosjeka za mjerno područje Osijek, koji iznosi 650,4 mm.

Naizgled manjak nije velik, ali se nadovezao na manjak zimske vlage iz 2011. godine te je i raspored oborina bio nepovoljan (Grafikon 8.).

Jedino na početku vegetacije, u nicanju i početnom porastu, oborine su bile oko prosjeka. U oplodnji i nalijevanju zrna manjak je oborina, što utječe na slabu oplodnju i nalijevanje zrna.

Uz manjak oborina, temperature više od tridesetogodišnjeg prosjeka u cijelom vegetacijskom razdoblju djelovale su nepovoljno.

Naročito je to izraženo u srpnju i kolovozu kada je prosječna mjesečna temperatura iznosila 24,7 °C i 24,1 °C, u pojedinim danima bila je i iznad 40 °C. To je izazvalo sterilnost polena i uzrokovalo jalovost većine biljaka kukuruza.

Više temperature u nalijevanju zrna smanjile su urod i na biljkama koje su se uspjele oploditi.
Zajednički utjecaj manjka i nepovoljnog rasporeda oborina te visokih temperatura u oplodnji i nalijevanju zrna uzrokovao je iznimno nizak urod zrna kukuruza u 2012. godini.

Nedostatak oborina blokirao je usvajanje hraniva iz tla. Tako mali urod bio je i dosta nekvalitetan, zbog niske mase 1000 zrna.

Urod zrna kukuruza u 2012. godini na površini od 3 hektara iznosio je 2,2 tone po hektaru.

4.4. Rezultati za 2013. godinu

Godina 2013. bila je povoljna za uzgoj kukuruza. Oborine u 2013. iznosile su 772,7 mm, što je više za 122,3 mm od tridesetogodišnjeg prosjeka za mjerno područje Osijek, koji iznosi 650,4 mm, ali nisu bile ravnomjerno raspodijeljene (Grafikon 9.).

U nicanju i početnom porastu oborine su bile oko prosjeka. Svibanj ima više oborina od prosjeka, što usporava rast i razvoj kukuruza. Ljetne oborine su manje i utječu na slabiju oplodnju i kondiciju kukuruza. U nalijevanju zrna imamo više oborina koje doprinose dobrom nalijevanju zrna.

I u 2013. godini nastavlja se trend viših prosječnih temperatura od prosjeka. U nicanju i početnom porastu one djeluju pozitivno. U oplodnji temperature su više i slabija je...
oplodnja zbog djelomične sterilnosti polena. I u nalijevanju zrna temperature su više i smanjena je masa 1000 zrna.

Grafikon 9. Višak i manjak oborina u 2013. godini

Temperature i oborine utjecale su povoljno na urod zrna kukuruza u 2013. godini. Oborine veće u početku vegetacije uvjetovale su dobar rast i razvoj kukuruza, sve do oplodnje kukuruza. Manjak oborina u nalijevanju zrna smanjio je urod zrna.

Temperature više od prosjeka djelovale su povoljno na početni rast kukuruza, štetno na oplodnju i nalijevanje zrna. Naravno i oborine, odnosno manjak oborina tijekom ljetnih mjeseci je uvelike pridonijelo manjem urodu zrna kukuruza.

Posebice je važno za napomenuti da je u fenofazi metličanja i svilanja, za pretpostaviti je, došlo do problema u oplodnji, jer je poznato da temperature preko 30 °C nepovoljno djeluju na oplodnju, odnosno na viabilnost samog polena.

Urod zrna kukuruza u 2013. godini na površini od 3 hektara iznosi 8,1 tona po hektaru.
4.5. Prosjek uroda grana kukuruza

Najveći utjecaj na urod imali su nepovoljni agroekološki uvjeti u analiziranim godinama, reducirana i neizbalansirana gnojidba i slabija plodnost tla (Grafikon 10.).

Urod u sljedećim godinama nastojat će se povećati uz pomoć kalcizacije kao neophodne mjere za smanjenje kiselosti tla te adekvatne i izbalansirane gnojidbe, naravno uz poštovanje ostataka agrotehnike uzgoja kukuruza.

Što se tiče vremenskih prilika, vidljivo je da je od 2000. godine došlo do promjena u vremenskim, odnosno meteorološkim elementima, temperaturi i oborinama.

Prema prognozama MZOIP (2010), u Hrvatskoj će prema dugoročnim klimatskim
prognozama, ukupna količina oborina biti nešto ispod prosjeka tijekom proljeća, ljeta i
jeseni (cca 45 mm po sezoni), dok će tijekom zime doći do neznatnog povećanja oborina.

Isto tako prema Branković i sur., (2012.), a prema dugoročnim klimatskim
projekcijama doći će do povećanja prosječne temperature tijekom zimskog razdoblja za 0,6
°C, dok će u ljetnom razdoblju to povećanje iznositi oko 1 °C. Za pretpostaviti je da će, u
budućnosti, glavna mjera za uspješnu biljnu proizvodnju biti prezervacija vode, odnosno
ekonomično trošenje vode.
5. ZAKLJUČAK

6. POPIS LITERATURE

17. www.savjetodavna.hr/adminmax/publikacije/kukuruz.pdf
7. SAŽETAK

Rezultati uroda zrna kukuruza bili su manji od očekivanih, prosječni prinos kretao se od 2,2 do 10,0 tona po hektaru, a prosjek iznosi 6,75 tona po hektaru.

Ključne riječi: kukuruz, oborine, prinos, temperatura
8. SUMMARY

The analysis of grain yield of corn was carried out at the family farm „Vuković“ from Beničanci in the period from 2010. to 2013. The main reason for the smaller grain yield of corn at the family farm „Vuković“ during the four year period are adverse weather conditions and reduced fertilization. From analyzed four years, the year 2010. was an extremely rainy with above average rainfall in the growing season. Years 2011. and 2012. were dry to very dry with rainfall below the multi-year average and above average temperatures compared to the long-term averages. Year 2013. has the average precipitation, but temperatures above long-term averages.

The results of grain yield of corn were lower than expected, the average yield ranged from 2.2 to 10.0 tons per hectare, and the average amounts 6.75 tons per hectare.

Key words: corn, precipitation, temperature, yield
9. POPIS TABLICA, SLIKA I GRAFIKONA

Tablica 1. Analiza tla
Tablica 2. Granične vrijednosti AL-P₂O₅ i AL-K₂O za ratarske usjeve na području istočne Hrvatske
Tablica 3. Izračun potrebne količine mineralnog gnojiva za planirani prinos
Slika 1. Korišen kukuruza
Slika 2. Stabljika kukuruza
Slika 3. Listovi kukuruza
Slika 4. Zrno kukuruza
Slika 5. Oranje
Slika 6. Zatvaranje zimske brazde
Grafikon 1. Heinrich-Walterov klimadijagram za 2010. godinu
Grafikon 2. Heinrich-Walterov klimadijagram za 2011. godinu
Grafikon 3. Heinrich-Walterov klimadijagram za 2012. godinu
Grafikon 4. Heinrich-Walterov klimadijagram za 2013. godinu
Grafikon 5. Analizirano razdoblje od 2010. do 2013. godine
Grafikon 6. Višak i manjak oborina u 2010. godini
Grafikon 7. Višak i manjak oborina u 2011. godini
Grafikon 8. Višak i manjak oborina u 2012. godini
Grafikon 9. Višak i manjak oborina u 2013. godini
Analiza uroda zrna kukuruza na OPG-u „Vuković“
Vedran Vuković

Sažetak:

Rezultati uroda zrna kukuruza bili su manji od očekivanih, prosječni prinos kretao se od 2,2 do 10,0 tona po hektaru, a prosjek iznosi 6,75 tona po hektaru.

Rad je izrađen pri: Poljoprivredni fakultet u Osijeku
Mentor: doc. dr. sc. Miro Stošić
Broj stranica: 35
Broj grafikona i slika: 16
Broj tablica: 3
Broj literaturnih navoda: 17
Broj priloga: 0
Jezik izvornika: hrvatski

Ključne riječi: kukuruz, oborine, prinos, temperatura

Datum obrane:

Stručno povjerenstvo za obranu:
1. Doc. dr. sc. Vjekoslav Tadić, predsjednik
2. Doc. dr. sc. Miro Stošić, mentor
3. Doc. dr. sc. Monika Marković, član

Rad je pohranjen u: Knjižnica Poljoprivrednog fakulteta u Osijeku, Sveučilištu u Osijeku, Kralja Petra Svačića 1d.
Analysis of grain yield of corn at OPG „Vuković“
Vedran Vuković

Abstract:

The analysis of grain yield of corn was carried out at the family farm „Vuković“ from Beničanci in the period from 2010. to 2013. The main reason for the smaller grain yield of corn at the family farm „Vuković“ during the four year period are adverse weather conditions and reduced fertilization. From analyzed four years, the year 2010. was an extremely rainy with above average rainfall in the growing season. Years 2011. and 2012. were dry to very dry with rainfall below the multi-year average and above average temperatures compared to the long-term averages. Year 2013. has the average precipitation, but temperatures above long-term averages.

The results of grain yield of corn were lower than expected, the average yield ranged from 2,2 to 10,0 tons per hectare, and the average amounts 6,75 tons per hectare.

Thesis performed at: Faculty of Agriculture in Osijek

Mentor: DSc Miro Stošić, Assistant Professor

Number of pages: 35
Number of figures: 16
Number of tables: 3
Number of references: 17
Number of appendices: 0
Original in: Croatian

Key words: corn, precipitation, temperature, yield

Thesis defended on date:

Reviewers:
1. DSc Vjekoslav Tadić, Full Professor, chair
2. DSc Miro Stošić, Assistant Professor, mentor
3. DSc Monika Marković, Assistant Professor, member

Thesis deposited at: Library, Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d