Usporedba trostupanjske i jednostruke ekstrakcije esencijalnih teških metala u poljoprivrednim tlima

Rajković, Magdalena

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of agriculture / Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:151:381214

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-03-02

Repository / Repozitorij:

Repository of the Faculty of Agrobiotechnical Sciences Osijek - Repository of the Faculty of Agrobiotechnical Sciences Osijek
Magdalena Rajković
Diplomski studij Ekološka poljoprivreda

USPOREDBA TROSTUPANJSKE I JEDNOSTRUKE EKSTRAKCIJE ESENCIJALNIH TEŠKIH METALA U POLJOPRIVREDNIM TLIMA

Diplomski rad

Osijek, 2016.
Magdalena Rajković
Diplomski studij Ekološka poljoprivreda

USPOREDBA TROSTUPANJSKE I JEDNOSTROUKE EKSTRAKCIJE ESENCIJALNIH TEŠKIH METALA U POLJOPRIVREDNIM TLIMA

Diplomski rad

Osijek, 2016.
Magdalena Rajković
Diplomski studij Ekološka poljoprivreda

USPOREDBA TROSTUPANJSKE I JEDNOSTRUKE EKSTRAKCIJE
ESENCIJALNIH TEŠKIH METALA U POLJOPRIVREDNIM TLIMA

Diplomski rad

Povjerenstvo za ocjenu i obranu diplomskog rada:
1. doc. dr. sc. Vladimir Ivezic, predsjednik
2. prof. dr. sc. Zdenko Lončarić, mentor
3. doc. dr. sc. Brigida Popović, član

Osijek, 2016.
Sadržaj

1. Uvod .. 1
 1.1. Cilj istraživanja .. 3

2. Pregled literature .. 4

3. Materijal i metode ... 7
 3.1. Analize tla ... 7
 3.1.1. pH tla .. 7
 3.1.2. Sadržaj humusa ... 7
 3.1.3. Hidrolitička kiselost ... 8
 3.1.4. Analiza AL- pristupačnog fosfora i kalija ... 8
 3.1.5. Utvrđivanje sadržaja karbonata (CaCO₃) .. 8
 3.1.6. Metoda trostupanjske ekstrakcije teških metala .. 8
 3.1.7. Jednostruka ekstrakcija pomoću zlatotopke ... 10
 3.1.8. Određivanje mikroelemenata ekstrahiranih s EDTA ... 10
 3.2. Statistička obrada podataka ... 11

4. Rezultati .. 12
 4.1. Osnovna agrokemijska svojstva analiziranih tala ... 12
 4.2. pH reakcija tla ... 13
 4.3. Sadržaj humusa ... 13
 4.4. Koncentracije mikroelemanta ekstrahirane s EDTA .. 14
 4.5. Trostupanjska ekstrakcija esencijalnih teških metala u tlu ... 15
 4.5.1. Prva frakcija esencijalnih teških metala u tlu ... 16
 4.5.2. Druga frakcija esencijalnih teških metala u tlu ... 17
 4.5.3. Treća frakcija esencijalnih teških metala ... 18
 4.5.4. Četvrta frakcija esencijalnih teških metala .. 19
 4.6. Usporedba jednostruke i trostupanske ekstrakcije esencijalnih teških metala 20
 4.6.1. Jednostruka ekstrakcija željeza zlatotopkom ... 20
 4.6.2. Jednostruka ekstrakcija mangana zlatotopkom ... 21
 4.6.3. Jednostruka ekstrakcija cinka zlatotopkom .. 22
 4.6.4. Jednostruka ekstrakcija bakra zlatotopkom ... 23
 4.6.5. Jednostruka ekstrakcija nikla zlatotopkom ... 24

5. Rasprava ... 25
6. Zaključak .. 31
7. Literatura .. 32
8. Sažetak ... 35
9. Summaray .. 36
10. Popis tablica .. 37
11. Popis grafikona .. 38
1. Uvod

Mikroelementi imaju vrlo važne i složene funkcije u ishrani bilja. Prilikom nedostatka predstavljaju ograničavajući čimbenik koji se očituje u smanjenju visine prinosa odnosno same kakvoće prinosa. Živa tvar sadrži manje količine mikroelementa u odnosu na makroelemente. Biljke prosječno trebaju < 1 kg/ha mikroelementa. U tlu se nalaze u različitim frakcijama od kojih su samo neke raspoložive biljci (Lončarić i Karalić, 2015.). Mangan, bakar, cink, molibden i nikal su teški metali koji pripadaju skupini esencijalnih mikroelementa, a željezo se svrstava u skupinu makroelemnata. Uz preveliku koncentraciju, esencijalni mikroelementi iz skupine teških metala mogu imati vrlo toksičan učinak u okolišu te također na biljke i životinje. No ti su elementi neophodni za biljku te je važno da budu biljci dostatno raspoloživi. Kako u litosferi tako i u tlu, mikrohraniva se nalaze u malim koncentracijama, odnosno možemo ih svrstati i u skupini elemenata u tragovima, osim mangana koji je izuzetak (Lončarić i Ivezić, 2015.). Zbog viška ili manjka mikroelementa, česti su poremećaji ljudskog organizma jer mikroelementi sudjeluju u građi velikog broja različitih spojeva, npr. pri nedostatku željeza može doći do slabije pokretljivosti, migrena, dekoncentracije, slabe prokrvljenosti kože itd. (Vukadinović i Lončarić, 1998.). Prema Tandonu (1984.) željezo (Fe) se smatra najvažnijim esencijalnim metalom te ima vrlo raznoliku ulogu u biokompleksima. Željezo u tlu potječe iz primarnih i sekundarnih minerala. U procesima raspadanja primarnih i sekundarnih minerala dolazi do oslobađanja željeza. Željezo u kiselim tlima iznova gradi sekundarne minerale. Dovoljno mobilnog željeza sadrži većina poljoprivrednih tala. Željezo biljke usvajaju u obliku iona Fe^{2+} i Fe^{3+} ili u obliku kelata. Najveća koncentracija željeza kod biljaka je u lišću, ali i korije sadrži velike količine. Kod usvajanja željeza kompeticiju pokazuju nikal, bakar, kobalt, krom, cink te mangan, dok kod viših pH vrijednosti smetaju fosfati i Ca^{2+}. Prilikom ishrane, amonijačna ishrana povećava usvajanje željeza dok nitratna ishrana smanjuje usvajanje željeza. Kritična granica nedostatka željeza je 50 – 150 mg kg^{-1} u suhoj tvari, dok se suvišak rijetko događa, osim u slabo prozračnim tlima, vrlo kiselim, gdje je moguće toksično djelovanje suviška željeza (Vukadinović i Vukadinović, 2011.). Dnevne potrebe odraslog čovjeka za željezom su 10 – 15 mg (Vukadinović i Lončarić, 1998.).
Cink (Zn) kao i željezo u tlu ima podrijetlo iz primarnih i sekundarnih minerala. Prosječan sadržaj iznosi 5-20 mg/kg cinka u tlu. Manje cinka sadrže kisele stijene (gnajs i granit) dok niska temperatura snižavaju usvajanje cinka. Suvišak fosfora kao i suvišak mangan smanjuje usvajanje cinka. U kiselim tlima veća je pristupačnost cinka te postoji i veća opasnost od njegovog ispiranja. Na glinovitim, teškim te karbonatnim tlima i stočne Hrvatske najčešće se javlja nedostatak cinka. Izuzetno niska koncentracija je u vodenoj fazi, te je sadržaj cinka u biljkama često nizak. Na nedostatak cinka vrlo su osjetljive biljke lan, soja te kukuruz, dok su strme žitarice otpornije. Suvišak cinka rijetko se javlja i to samo na kiselim tlima i rudištima.

Bakar (Cu) je u tlu porijeklom iz primarnih minerala te njihovim raspadanjem oksidira do Cu\(^{2+}\) te ga biljke usvajaju kao takvoga ili u vidu kelata. U tlu se nalazi prosječno 5-55 mg/kg bakra. Pristupačnost bakra se povećava s kiselosti stijene te na njegovu raspoloživost značajno utječe pH reakcija tla. Nedostatak bakra izaziva dobru opskrbljenost biljaka fosforom, dušikom dok prilikom usvajanja konkurenciju mu čine željezo, cink i mangan. Pojava suviška bakra je vrlo rijetka pojava, te se javlja na kiselim tlima. Vidi se značaj toksičnosti bakrom, očituju se smanjenje rasta korijena i izdanaka te klorozom starijeg lišća i crvenkastom nekrozom (Vukadinović i Lončarić, 1998.).

Nikal (Ni) je vrlo značajnog mikroelement za usvajanje želja, prilikom prelaze u reproduktivnu fazu. Nikal se u biljkama nalazi kao Ni\(^{2+}\). U biljkama je vrlo niska koncentracija nikla, te na onečišćenim tlima gdje matični supstrat sadrži puno nikla ili prilikom korištenja gradskog otpada kao organskog gnojiva, vrlo lako može dostići toksične granice, tj. 10-50 mg/kg u suhoj tvari biljke (Vukadinović i Lončarić, 1998.).

Mangan (Mn) se u biljkama nalazi kao kation Mn\(^{2+}\) i Mn\(^{3+}\) dok se u tlu nalazi i kao Mn\(^{4+}\) i Mn\(^{6+}\). Biljke lako usvajaju Mn\(^{2+}\) te mangan u obliku kelata. Raspoloživost i koncentracija ukupnog mangana u tlu su nešto niže u odnosu na koncentracije željeza (Karalić i sur., 2015.). Povećanjem kiselosti tla raste i raspoloživost mangana. U tlu se nalazi 200 – 3000 mg/kg, od toga je biljci raspoloživo 0,1 – 1,0 %. Na težim i karbonatnim tlima nalazi se više mangana dok ga je manje na pjeskovitim i lakim tlima. Prilikom dobre raspoloživosti mangana smanjuje se potreba za dušikom, fosforom, kalijem i kalcijem, dakle mangan je vrlo značajan za iskorištavanje drugih hraniva koji se nalaze u tlu. Vrlo je mala pokretljivost.
mangana u biljkama. U sušnim godinama se najčešće zapaža nedostatak mangana. Mangan ima vrlo značajnu ulogu u oksidoreduksijskim procesima te sama pristupačnost mangana zavisi o oksidoreduksijskom potencijalu tla. Kada je u tlu >1000 mg/kg Mn, moguća je toksičnost mangana (Vukadinović i Lončarić, 1998.).

1.1. Cilj istraživanja

Cilj ovog istraživanja je bio utvrditi utjecaj svojstava tla na koncentraciju ukupnih, raspoloživih i teže topivih frakcija esencijalnih teških metala u tlu, zatim usporediti s rezultatima jednostruke ekstrakcije, te procijeniti pogodnost trostupanjske ekstrakcije za analizu esencijalnih teških metala u poljoprivrednim tlima.
Istraživanja koja su provedena na područu Vukovarsko-srijemske i Osječko-baranjske županije pokazuju kako je koncentracija teških metala u šumskim i poljoprivrednim tlima vrlo niska, te da su koncentracije niže od najvećih dopuštenih koncentracija u poljoprivrednim tlima. Dakle, naša poljoprivredna tla su neopterećena teškim metalima. Provedena su različita istraživanja u kontinentalnom dijelu Republike Hrvatske. Tako je u 617 uzoraka tla utvrđeno da su najveće prosječne ukupne koncentracije željeza, zatim mangana i cinka, a najmanje koncentracije su olova, kobalta i kadmija (Lončarić i Ivezic, 2014.).

Prema (Menzies i sur., 2007.) najrašireniji i najčešći način za utvrđivanje mobilnosti teških metala u tlima je upotreba pojedinačnih ekstrakcijskih metoda. Prilikom određivanja pojedine frakcije za ekstrakciju se koriste različiti ekstraktanti. U različitim zemljišnim uvjetima nisu sve metode jedna ko pogodne za proučavanje bioraspoloživosti svih teških metala (Lončarić i Kadar, 2013.).

Guo et al. (2006.) su došli do zaključka da se EDTA može smatrati pogodnom ekstrakcijskom metodom prilikom utvrđivanja mikroelemenata raspoloživih biljkama koje usvajaju velike količine teških metala, tzv. biljaka „akumulatora“.

Kada poljoprivredno zemljište sadrži više teških metala od dozvoljenih količina smatra se onečišćenim. Maksimalno dopuštene količine cinka u poljoprivrednom zemljištu u pjeskovitom tlu su 60 mg kg⁻¹, za praškasto – ilovasta tla je dopuštena količina 150 mg kg⁻¹ dok je u glinastom tlu dopuštena količina 200 mg kg⁻¹. Za nikal su dopuštene količine u pjeskovitom tlima 30 mg kg⁻¹, zatim u praškasto – ilovastim tlima 50 mg kg⁻¹, a u glinastom tlu 75 mg kg⁻¹. Kada govorimo o bakru, dopuštene količine u pjeskovitom tlima su 60 mg kg⁻¹, u praškasto – ilovastim tlima dopušteno je 90 mg kg⁻¹ dok je u glinastim tlima dopuštena količina 120 mg kg⁻¹. Ukoliko je pH glinastog tla manji od 6,0 za kadmij, cink i nikal tada se primjenjuje granična vrijednost propisana za praškasto-ilovasta tla, a ako je pH praškasto-ilovastog tla manji od 6,0 primjenjuje se granična vrijednost propisana za pjeskovita tla.
(Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja, NN 32/10.). Uvjetno tumačenje maksimalno dopuštenih koncentracija prema pH vrijednostima tla posljedica je zaključaka velikog broja istraživača da raspoloživost teških metala u tlima ne ovisi samo o ukupnim koncentracijama, već i o svojstvima tla poput pH reakcije.

Ivezić i sur. (2011.) istražili su ukupne vodotopive koncentracije sedam elemenata u tragovima (Fe, Mn, Ni, Co, Mo, Pb i Cd) te procijenili njihov odnos sa ostalim svojstvima tla Podunavlja u Hrvatskoj. Uzorci su uzimani iz površinskog sloja na dubini od 0 - 25 cm sa zemljišta različite uporabne vrijednosti (šuma i poljoprivrednog zemljišta). Rezultati su pokazali da ukupna koncentracija metala ne može biti dovoljan pokazatelj raspoloživosti, toksičnosti ili nedostatka. Rezultati su pokazali da su pH, organska tvar u otopini tla i kationski izmjnenjivački kapacitet (KIK) važni parametri kvalitete tla koji sudjeluju u kontroli topljivosti metala u tragovima u tlu. Zaključili su da šumska tla sadrže veće koncentracije elemenata u tragovima u otopini tla nego poljoprivredna tla.

U Republici Hrvatskoj se u analizi tla najčešće koristi AL metoda (ekstrakcija tla s amonij-laktat otopinom uz pH 3,75) koja je obvezna agrokemijska analiza tla za utvrđivanje biljkama pristupačnog fosfora i kalija. Rezultati nekih istraživanja pokazali su da se rezultati AA-EDTA (amonij-acetat – etilendiamintetraacetat) metode mogu usporediti s rezultatima AL metode i vrlo uspješno koristiti umjesto AL metode (Pandurić i sur., 2009.).

Kao indikatori procjene i rizika raspoloživosti metala koriste se ukupne koncentracije metala u tragovima. No istraživanja su pokazala kako je ukupna koncentracija loš pokazatelj raspoloživosti. Ivezić i sur. (2013.) su usporedili metode ekstrakcije metala u tragovima te korelaciju među njima. Uzorke su prikupljali s poljoprivrednih tala istočne Hrvatske. Analize uzoraka obavljene su slijedećim metodama: razaranje jakim kiselinama (HNO₃ ekstrakcija i ekstrakcija zlatotopkom (aqua regia)), zatim ekstrakcija slabom kiselinom (EDTA) te najslabija ekstrakcija vodom koja ujedno predstavlja najraspoloživiju frakciju, tj. vodotopivu frakciju u otopini tla. Rezultati istraživanja su pokazali da vodotopiva frakcija ima najbolju koleraciju s EDTA ekstrakcijom (Cu, Fe i Mn). Ukupne ekstrakcije (HNO₃ ekstrakcija i aqua regia) korelirale su s vodotopivom frakcijom samo za Cu. Korelacija između vodotopive frakcije i metoda za ukupne koncentracije ne postoji, te je to potvrdilo nepogodnost ukupne koncentracije kao pokazatelja raspoloživosti. Prema dobivenim rezultatima zaključeno je kako se EDTA ekstrakcija može korisiti za prikaz dostupne koncentracije teških metala u tlu (Ivezić i sur. 2013).
Osim jednostrukih ekstrakcija, moguće je primijeniti sekvencijski postupak gdje se iz jednog uzorka pomoću više ekstrakcija pokušavaju odrediti koncentracije pojedinih frakcija i time definirati raspoloživost elemenata. Sekvencijalni postupak ekstrakcije, primijenjen je na uzorcima tla za određivanje metala (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb i Zn). Taj postupak omogućuje postupno mjerenje različitih frakcija metala iz medija, dakle pomoću nekoliko ekstrakcija: octene kiseline, hidroksilamonij klorida, vodikovog peroksida te amonijevog acetata. Dobiveni rezultati iz postupka sekvencijalne ekstrakcije uspoređeni su sa rezultatima dobivenih ekstrakcijom pomoću zlatotopke. Rezultati budu uglavnom vrlo slični, bez značajnijih odstupanja (Tokalioglu et al, 2001.).

S ciljem da sekvencijska metoda za frakcioniranje metala u tragovima postane standardna metoda, BCR (Community Bureau of Reference) je predložio i validirao modificiranu verziju trostupanjske procedure ekstrakcije teških metala (Ure i sur., 1993., Sahuquillo i sur., 1999.).

Žemberyova i sur. (2006.) trostupanjskom BCR metodom su analizirali referentne materijale tri različita tipa tla u Slovačkoj pri čemu su su ekstrahirane četiri frakcije: prva ili izmjenjiva frakcija, druga ili reducirajuća frakcija (Fe i Mn oksidi), treća ili oksidirajuća frakcija (organska tvar i sulfidi) te četvrta ili rezidualna frakcija, tj. frakcija ekstrahirana zlatotopkom iz ostataka tla. Rezultati njihova istraživanja pokazali su da je suma sve četiri frakcije bila usporediva s koncentracijama Cd, Cr, Cu, Ni, Pb i Zn koje su izmjerene nakon ekstrakcije zlatotopkom iz orginalnih uzoraka.
3. Materijal i metode

Istraživanje je provedeno na 16 uzoraka tla iz Hrvatske (Osijek), Srbije (Novi Sad) i Bosne i Hercegovine (Banja Luka, Mostar i Sarajevo). Uzorci su uzimani na oraničnoj dubini (0-30 cm). Na uzorcima su provedene osnovne agrokemijske analize, te trostupanjska i jednostrukak ekstrakcija esencijalnih teških metala.

3.1. Analize tla

3.1.1. pH tla

Jedinica pH vrijednosti predstavlja negativan dekadski logaritam koncentracije H^+ iona, odnosno njegov aktivitet (Vukadinović i Lončarić, 1998.). pH vrijednost ima vrlo jak utjecaj na kemijske, fizikalne i biološke procese u tlu te predstavlja najznačajniju mjeru alkalnosti ili kiselosti tla. Određivanje pH reakcije tla određeno je elektrometrijski pomoću pH-metra koji se sastoji od mjerne i referentne elektrode uronjene u 1:5 (v/v) suspenziju tla (solni most) s dejoniziranom vodom za utvrđivan trenutne kiselosti, te s 1M otopinom KCl za utvrđivanje supstitucijske kiselosti.

3.1.2. Sadržaj humusa

Količina i kakvoća organske tvari tj. humusa utječe na procese tvorbe i na plodnost tla, a time i na rast biljaka. Organska tvar u tlu je nastala razgradnjom ostataka živih organizama i novom izgradnjom organskih spojeva tla bitno različitih u odnosu na izvornu živu tvar (Vukadinović i Lončarić, 1998.). Za životnu aktivnost mikroorganizama osnovni izvor energije je organska tvar (Vukadinović i Lončarić, 1998.). Humus smo određivali K-bikromatnom metodom koja se zasniva na mokrom spaljivanju organske tvari tla gdje je nakon spaljivanja organske tvari spektrofotometrijhskom tehnikom i preračunavanjem određena koncentracija humusa u uzorcima tla (ISO, 1998.).
3.1.3. *Hidrolitička kiselost*

Alkalnim hidrolitičkim solima aktivira se hidrolitička ili potencijalna kiselost tla. Pri tome dolazi do zamjene H⁺ i Al³⁺ iona na adsorpcijskom kompleksu tla, te nastaje octena kiselina čija se količina utvrđuje titracijom. Hidrolitička kiselost izražava se u cmol(+) kg⁻¹ (Vukadinović i Vukadinović, 2011.).

3.1.4. *Analiza AL-pristupačnog fosfora i kalija*

Lakopristupačni ili biljkama raspoloživi fosfor i kalij u tlu određeni su prema Egner-Riehm-Domingubnekstracijom tla s amonij laktatom, tj. AL metodom (Egner et al., 1960.). Koncentracije kalija utvrđene su direktno iz ekstrakta tla emisijskom tehnikom na atomskom apsorpcijskom spektrofotometru, a fosfor je određen plavom metodom pomoću spektrofotometra. Fosfor ekstrahiran AL metodom obuhvaća biljkama raspoložive frakcije topive u vodi i u slabim kiselinama. Dobiveni rezultati izražavaju se u mg P₂O₅ i K₂O 100g⁻¹ tla (Vukadinović i Bertić, 1989.).

3.1.5. *Utvrdivanje sadržaja karbonata (CaCO₃)*

Karbonati su određeni volumetrijskom metodom gdje se mjeri oslobodeni CO₂ koji se razvija u Scheiblerovom kalcimetru prilikom reakcije tla s klorovodičnom kiselinom (ISO, 1995.a).

3.1.6. *Metoda trostupanske ekstrakcije teških metala*

primjenjen na uzorcima tla i sedimentima kao i standardnih referentnih (materijala) (Tokalioglu i sur., 2001.). Ukupna koncentracija je loš pokazatelj raspoloživosti elemenata. Ekstrakcije vodom kao najslabija ekstrakcija predstavlja najraspoloživiju frakciju (Ivezić i sur., 2013.). Razvijene metode jednostruke ekstrakcije za utvrđivanje izmjnjive frakcije elemenata u tlu su: EDTA, DTPA, NH$_4$NO$_3$, CaCl$_2$, HCl, NH$_4$ – OAc + EDTA i dr. Prilikom usporedbe s DTPA veći postoci teških metala ekstrahirani su s EDTA.

Za trostupanjsku ekstrakciju BCR metodom potrebne su nam slijedeće kemikalije (Rauret et, 2001.):

1. otopina A: 0,11 mol/L octena kiselina
2. otopina B: 0,5 mol/L hidroksilamonij – klorid, uvijek pripremiti svježu otopinu
3. otopina C: 8,8 mol/L vodik peroksid
4. otopina D: 1,0 mol/L aminij – acetata
5. otopina E (zlatotopka): 1/3 HNO$_3$ + 2/3 HCl

Postupak trostupanske akstrakcije

Odvažati 0,75 g uzorka tla u posudice za sušenje i sušiti do konstantne mase na temperaturi 104°C. Tijekom sušenja pripremiti otopinu A (ledena octena kiselina). Prenijeti uzorak u posudicu za centrifugiranje i preli s 30 ml ledene octene kiseline nakon čega uzorke staviti na mučkanje 16 sati. Uzorke centrifugirati 20 minuta pri 3000 g, centrifugirati u serijama po šest uzoraka. Nakon centrifugiranja dekanirati supernatant u polietilenske bočice te čuvati na 4°C. Na ostatak uzorka potrebno je dodati 20 ml deionizirane vode i mučkati 15 minuta radi ispiranja uzoraka od otopine A. Slijedi ponovno centrifugiranje 20 minuta pri 3000 G. Dekantirati supernatant i odbaciti vodu, pazeći pritom da se ne odbace čestice tla.

Slijedi priprema otopine B (hidroksilamonij-klorid) i s 30 ml otopine B preli uzorke uz snažnije mučkanje rukom neposredno nakon dodavanja otopine. Zatim uzorke staviti na mučkanje tijekom 16 sati, te nakon toga centrifugirati 20 minuta pri 3000 G. Dekantirati supernatant u polietilenske bočice, izmjeriti ili spremiti i čuvati na 4°C. Ostatku uzoraka dodati 20 ml deionizirane vode i mučkati 15 minuta radi ispiranja otopine B iz uzorka. Slijedi ponovno centrifugiranje 20 minuta pri 3000 G. Zatim dekanirati supernatant (vodu) i odbaciti pazeći na čestice tla.
Pripremiti otopinu C (H₂O₂ - vodik-peroksid) i ostatak uzorka preliti s 8 ml otopine C, pažljivim postupnim dodavanjem po 2 ml otopine C, te pričekati po desetak minuta prije svakog ponovnog dodavanja otopine C. Lagano poklopite posudice čepom i digerirati na sobnoj temperaturi jedan sat uz povremeno miješanje posudica rukom. Prenijeti posudice u vodenu kupelj tijekom jedan sat pri temperaturi od 85° C, te ponovno dodati ukupno 8 ml otopine C na ostatak uzorka, dodavanjem po 2 ml otopine C, pričekati po pet minuta prije svakog ponovnog dodavanja otopine C. Nastaviti digestiju u vodenoj kupelji dok ne dosegnemo volumen < 1 mL, ali se uzorci ne smiju potpuno osušiti.

Pripremiti otopinu D (amonij-acetat) te dodati 37,5 ml otopine amonij-acetata na vlažni ohlađeni ostatak uzorka. Nakon toga mučkati 16 sati, te centrifugirati dvadeset minuta pri 3000 G. Dekantirati supernatant u polietilenske bočice, izmjeriti ili čuvati na 4° C. Ostatak uzorka ponovno isprati s vodom dodavanjem 20 ml deionizirane vode i mučkanjem 15 minuta. Nakon mučkanja centrifugirati 20 minuta pri 3000 G te dekantirati supernatant (vodu) pazeći na čestice tla. Uzorak na kraju prenijeti u kivetu za mikrovalnu ekstrakciju zlatotopkom za određivanje preostalog dijela, tj. ukupne koncentracije metala u ostatku uzorka. Paralelno s ekstrakcijom uzoraka iz trostupanjske ekstrakcije estrahirati zlatotopkom iste uzorke tla bez prethodne trostupanjske ekstrakcije. Nakon razaranja uzorak filtrirati u odmjerene tikvice koje su potom dopunjene deioniziranom vodom do volumena 100 ml.

3.1.7. Jednostruka ekstrakcija pomoću zlatotopke

Odvagati 0,5 g zrakosuhog tla u teflonsku kivetu, zatim preliti s 12 ml svježe pripremljene zlatotopke odnosno 1/3 HNO₃ + 2/3 HCl. Nakon toga, ekstrakte razorenih uzoraka tla filtrirati u tikvice volumena 100 ml te potom do mjerne oznake dopuniti deioniziranom vodom (ISO 11466, 1995.).

3.1.8. Određivanje mikroelemenata ekstrahiranih s EDTA

Za ovo istraživanje korištena je jednostruka ekstrakcijska metoda mikroelemenata s otopinom EDTA odnosno etilen-diamino-tetraacetatnom kiselinom. Otopinu čini smjesa 1 M (NH₄)₂CO₃ i 0,01 M EDTA prilikom čega se pH otopine pomoću HCl ili NH₄OH podešava na
pH 8,6. EDTA metoda je najviše korištena u Hrvatskoj. Potrebno je odvagati 10 g zrakosuho
tla u plastičnu bočicu volumena 200 ml i preлити с 20 ml EDTA otopine. Zatim mučkati na
rotacijskoj mučkalici 30 minuta, te filtrirati u tikvice volumena 100 ml. Direktno izmjeriti iz
filtriranih ekstrakata koncentraciju teških metala na ICP – OES – u ili AAS – u (Trierweiler i
Lindsay, 1969.).

3.2. Statistička obrada podataka

Obavljena je statistička obrada podataka softverskim paketima Microsoft Excel i SAS for
4. Rezultati

4.1. Osnovna agrokemijska svojstva analiziranih tala

U uzorcima tla analizirana su osnovna agrokemijska svojstva, tj. pH reakcija kao trenutna i izmjenjiva kiselost tla, potom sadržaj humusa te hidrolitička kiselost ili udio karbonata. Pomoću agrokemijskih svojstava, utvrđuje se produktivnost i plodnost tla, pogodnosti za uzgoj usjeva te potrebe kondicioniranja i peporuka gnojidbe tla.

Tablica 1. Osnovna agrokemijska svojstva analiziranih tala

<table>
<thead>
<tr>
<th>uzorak</th>
<th>pH</th>
<th>pH</th>
<th>Humus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂O</td>
<td>1 M KCl</td>
<td>%</td>
</tr>
<tr>
<td>1 Sarajevo 2012</td>
<td>5,3</td>
<td>4,12</td>
<td>2,69</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>6,1</td>
<td>4,91</td>
<td>2,17</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>5,33</td>
<td>4,15</td>
<td>3,10</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>5,43</td>
<td>4,4</td>
<td>4,59</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>5,11</td>
<td>3,96</td>
<td>6,34</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>7,42</td>
<td>6,5</td>
<td>1,79</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>7,86</td>
<td>7,06</td>
<td>2,34</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>7,76</td>
<td>7,05</td>
<td>2,41</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>7,71</td>
<td>7,22</td>
<td>3,83</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>7,66</td>
<td>7,05</td>
<td>5,48</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>7,75</td>
<td>7,11</td>
<td>4,59</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>7,8</td>
<td>7,21</td>
<td>2,43</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>5,57</td>
<td>4,32</td>
<td>2,1</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>7,74</td>
<td>7,09</td>
<td>2,67</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>8,01</td>
<td>7,26</td>
<td>2,03</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>7,32</td>
<td>6,45</td>
<td>2,47</td>
</tr>
<tr>
<td>Prosjek</td>
<td>6,87</td>
<td>5,99</td>
<td>3,19</td>
</tr>
</tbody>
</table>
4.2. **pH reakcija tla**

Analizirano je 16 uzorka tla, te je utvrđen veliki raspon vrijednosti trenutne kiselosti tala od 5,11 do 8,01. Od 16 analizirana uzorka, 4 uzorka pripada jako kiselim tlima, 1 uzorak umjereno kiselim te 1 uzorak slabo kiselim tlima, 8 uzoraka slabo alkalnim i 2 uzorka jako alkalnim tlima.

Izmjenjive kiselosti analiziranih uzoraka tla kreću se od 3,96 do 7,26. Od 16 analizirana uzorka, 1 uzorak pripada izrazito kiselim tlima, 2 uzorka pripadaju slabo kiselim tlima dok jako kiselim tlima pripada 5 uzoraka. 8 uzoraka pripada slabo alkalnim tlima (*Scheffer i Schachtschabel*).

4.3. **Sadržaj humusa**

Uzorci tla se prema sadržaju humusa svrstavaju u nekoliko kategorija, 10 uzoraka pripada kategoriji slabo humoznih tala (1,79 % – 2,69 %), 4 uzoraka dosta humoznim tlima (3,10 % - 4,59 %) dok 2 uzorka priradaju kategoriji jako humoznih tala (5,48 – 6,34 %) (*Škorić, 1992.*).

![Grafikon 1. Sadržaj humusa u tlu](image-url)
4.4. Koncentracije mikroelementa ekstrahirane s EDTA

Raspoložive frakcije mikroelemenata ekstrahiraju se EDTA metodom. U odnosu na ukupne koncentracije esencijalnih teških metala dobivene razaranjem tla zlatotopkom, očekivano su koncentracije svih elemenata ekstrahirane EDTA metodom značajno nižih vrijednosti.

Tablica 2. Raspoložive frakcije Fe, Zn i Ni ekstrahirane s EDTA metodom

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>EDTA Fe</th>
<th>EDTA Zn</th>
<th>EDTA Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>562,30</td>
<td>3,41</td>
<td>1,04</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>199,30</td>
<td>3,95</td>
<td>1,89</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>468,90</td>
<td>1,66</td>
<td>1,68</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>401,40</td>
<td>2,52</td>
<td>1,04</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>309,90</td>
<td>6,30</td>
<td>8,78</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>114,60</td>
<td>1,90</td>
<td>1,55</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>36,18</td>
<td>0,99</td>
<td>1,73</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>37,21</td>
<td>1,40</td>
<td>1,81</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>109,70</td>
<td>5,04</td>
<td>4,27</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>291,00</td>
<td>3,59</td>
<td>4,19</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>252,90</td>
<td>2,44</td>
<td>3,52</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>50,04</td>
<td>1,58</td>
<td>1,55</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>1,221,00</td>
<td>4,58</td>
<td>2,10</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>42,73</td>
<td>0,93</td>
<td>1,77</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>44,10</td>
<td>1,55</td>
<td>2,20</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>70,50</td>
<td>1,79</td>
<td>2,70</td>
</tr>
<tr>
<td>Prosjek</td>
<td>263,24</td>
<td>2,73</td>
<td>2,61</td>
</tr>
</tbody>
</table>

Utrvđena je prosječna koncentracija raspoložive frakcije željeza ekstrahirane s EDTA otopinom 263,24 mg/kg s rasponom od 36,18 do 1.221,00 mg/kg. U tlu je utvrđeno znatno više raspoložive frakcije željeza od svih ostalih analiziranih elemenata.
U analiziranim uzorcima tla utvrđena je prosječna raspoloživost cinka 2,73 mg/kg. Možemo zaključiti da je u tlima prosječno manje raspoloživog cinka u odnosu na željezo. Najveća raspoloživost cinka bila je 6,30 mg/kg dok je najmanja raspoloživost bila 0,93 mg/kg. Tla koja sadrže minimalne količine raspoloživog cinka pripadaju cinkom siromašnim tlima.

Metodom ekstrakcije s EDTA utvrđeno je da je prosječna koncentracija raspoloživog nikla u tlu 2,61 mg/kg. Maksimalna raspoloživost nikla bila je 8,78 mg/kg dok je minimalna raspoloživost bila 1,04 mg/kg.

4.5. Trostupanska ekstrakcija esencijalnih teških metala u tlu

Trostupanskim postupkom ekstrahirani su esencijalni teški metali željezo, mangan, cink, bakar i nikal. Analizirane su koncentracije elemenata i udio svakog elementa po frakcijama.
4.5.1. Prva frakcija esencijalnih teških metala u tlu

Prva frakcija ekstrahirana je ledenom octenom kiselinom (0,11 mol/L). Pomoću octene kiseline iz uzoraka tla ekstrahirana je lako raspoloživa frakcija tj. koncentracija elemenata u vodenoj otopini tla.

Tablica 3. Prosječne koncentracije prve frakcije u mg/kg

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>6,25</td>
<td>222,54</td>
<td>1,89</td>
<td>0,50</td>
<td>0,65</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>2,59</td>
<td>122,70</td>
<td>2,09</td>
<td>0,64</td>
<td>1,13</td>
</tr>
<tr>
<td>3 Banja Luka 2012 A</td>
<td>2,57</td>
<td>241,12</td>
<td>1,11</td>
<td>0,20</td>
<td>0,95</td>
</tr>
<tr>
<td>4 Banja Luka 2012 B</td>
<td>3,06</td>
<td>179,37</td>
<td>1,88</td>
<td>0,14</td>
<td>0,46</td>
</tr>
<tr>
<td>5 Banja Luka 2012 C</td>
<td>11,37</td>
<td>370,95</td>
<td>2,50</td>
<td>0,36</td>
<td>4,10</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>2,11</td>
<td>67,25</td>
<td>0,63</td>
<td>0,18</td>
<td>0,95</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>0,53</td>
<td>44,52</td>
<td>0,48</td>
<td>0,16</td>
<td>0,78</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>0,74</td>
<td>87,69</td>
<td>0,33</td>
<td>0,23</td>
<td>1,45</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>0,00</td>
<td>165,79</td>
<td>0,72</td>
<td>0,37</td>
<td>1,19</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>1,49</td>
<td>134,62</td>
<td>0,89</td>
<td>0,45</td>
<td>1,15</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>5,48</td>
<td>133,08</td>
<td>0,62</td>
<td>0,43</td>
<td>1,11</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>0,73</td>
<td>110,89</td>
<td>0,79</td>
<td>0,27</td>
<td>0,84</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>5,89</td>
<td>147,96</td>
<td>1,96</td>
<td>0,77</td>
<td>1,06</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>0,32</td>
<td>90,24</td>
<td>0,15</td>
<td>0,21</td>
<td>0,54</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>0,01</td>
<td>83,22</td>
<td>0,27</td>
<td>0,20</td>
<td>0,79</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>2,26</td>
<td>91,67</td>
<td>0,72</td>
<td>0,23</td>
<td>1,10</td>
</tr>
<tr>
<td>Prosjek</td>
<td>2,84</td>
<td>143,35</td>
<td>1,07</td>
<td>0,33</td>
<td>1,14</td>
</tr>
</tbody>
</table>

Najveća je koncentracije ekstrahiranog mangana s prosječno 143,35 mg/kg, slijedi željezo s prosječno 2,84 mg/kg, zatim nikal (1,14 mg/kg) i cink (1,07 mg/kg) te je najmanja koncentracija 1. frakcije bakra (0,33 mg/kg).
4.5.2. Druga frakcija esencijalnih teških metaala u tlu

Druga frakcija predstavlja reducirajuću frakciju koja je ekstrahirana otopinom 0,5 mol/dm3 hidroksilamonij – klorida.

Tablica 4. Prosječne koncentracije druge frakcije u mg/kg

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>1.418,71</td>
<td>370,49</td>
<td>2,10</td>
<td>1,73</td>
<td>0,69</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>2.488,50</td>
<td>827,07</td>
<td>5,49</td>
<td>6,89</td>
<td>3,09</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>2.189,56</td>
<td>727,10</td>
<td>1,94</td>
<td>1,70</td>
<td>1,53</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>2.155,03</td>
<td>796,83</td>
<td>2,18</td>
<td>1,81</td>
<td>1,08</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>4.225,24</td>
<td>1.856,96</td>
<td>7,95</td>
<td>3,65</td>
<td>9,06</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>2.132,75</td>
<td>164,07</td>
<td>5,24</td>
<td>4,42</td>
<td>2,74</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>1.413,78</td>
<td>209,13</td>
<td>5,04</td>
<td>2,64</td>
<td>4,73</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>1.684,05</td>
<td>475,56</td>
<td>5,73</td>
<td>5,62</td>
<td>6,53</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>2.400,25</td>
<td>589,94</td>
<td>13,59</td>
<td>9,26</td>
<td>10,48</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>4.199,12</td>
<td>130,85</td>
<td>16,26</td>
<td>6,81</td>
<td>9,97</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>4.107,81</td>
<td>132,66</td>
<td>15,37</td>
<td>7,40</td>
<td>9,38</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>1.283,14</td>
<td>208,63</td>
<td>5,54</td>
<td>3,25</td>
<td>3,77</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>3.062,76</td>
<td>306,98</td>
<td>3,52</td>
<td>3,37</td>
<td>0,97</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>1.442,98</td>
<td>301,35</td>
<td>5,24</td>
<td>2,34</td>
<td>4,33</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>1.352,67</td>
<td>310,50</td>
<td>5,84</td>
<td>2,98</td>
<td>5,37</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>2.443,96</td>
<td>227,74</td>
<td>8,30</td>
<td>3,69</td>
<td>4,26</td>
</tr>
<tr>
<td>Prosjek</td>
<td>2.375,02</td>
<td>477,24</td>
<td>6,83</td>
<td>4,22</td>
<td>4,87</td>
</tr>
</tbody>
</table>

Za razliku od prve frakcije, željezo je u drugoj frakciji utvrđeno u najvećim koncentracijama. Prosječna koncentracija željeza iznosi 2.375,02 mg/kg dok je u ovoj ekstrakciji mangan na drugom mjestu s prosječnom koncentracijom 477,24 mg/kg. Zatim slijede cink (6,83 mg/kg) i nikal (4,87 mg/kg) te na zadnjem mjestu kao i kod prve frakcije bakar s prosječnom koncentracijom 4,22 mg/kg.
4.5.3. **Treća frakcija esencijalnih teških metala**

Treća frakcija predstavlja oksidirajuću frakciju koja je ekstrahirana pomoću 8,8 mol/L vodik peroksid.

Tablica 5. Prosječne koncentracije treće frakcije u mg/kg

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>347,45</td>
<td>48,16</td>
<td>5,94</td>
<td>0,66</td>
<td>1,03</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>354,63</td>
<td>61,89</td>
<td>5,22</td>
<td>1,63</td>
<td>2,83</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>326,42</td>
<td>70,00</td>
<td>3,91</td>
<td>0,67</td>
<td>2,09</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>756,78</td>
<td>90,10</td>
<td>3,58</td>
<td>0,76</td>
<td>1,61</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>1.693,67</td>
<td>213,88</td>
<td>14,11</td>
<td>1,79</td>
<td>17,50</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>374,66</td>
<td>27,46</td>
<td>4,34</td>
<td>1,12</td>
<td>4,17</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>366,19</td>
<td>29,41</td>
<td>5,13</td>
<td>1,04</td>
<td>7,52</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>285,19</td>
<td>31,95</td>
<td>5,19</td>
<td>1,08</td>
<td>7,12</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>389,91</td>
<td>35,38</td>
<td>14,30</td>
<td>2,09</td>
<td>17,16</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>1.446,16</td>
<td>22,87</td>
<td>28,74</td>
<td>5,40</td>
<td>24,62</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>976,65</td>
<td>21,26</td>
<td>24,90</td>
<td>4,07</td>
<td>23,38</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>501,86</td>
<td>27,98</td>
<td>8,92</td>
<td>1,57</td>
<td>8,96</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>353,04</td>
<td>27,80</td>
<td>8,04</td>
<td>1,05</td>
<td>2,48</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>656,27</td>
<td>35,72</td>
<td>8,20</td>
<td>1,45</td>
<td>8,33</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>365,82</td>
<td>35,63</td>
<td>6,32</td>
<td>1,29</td>
<td>7,51</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>474,98</td>
<td>40,42</td>
<td>5,82</td>
<td>1,44</td>
<td>7,42</td>
</tr>
<tr>
<td>Prosjek</td>
<td>604,35</td>
<td>51,25</td>
<td>9,54</td>
<td>1,69</td>
<td>8,98</td>
</tr>
</tbody>
</table>

U trećoj frakciji na prvom je mjestu prema ekstrahiranim količinama ponovo željezo s prosječnom koncentracijom 604,35 mg/kg, zatim mangan s prosječnom koncentracijom 51,25 mg/kg. Na trećem mjestu je cink (9,54 mg/kg), na četvrтом nikal (8,98 mg/kg) te slijedi bakar kao i u prve dvije frakcije na zadnjem mjestu s prosječnom koncentracijom 1,69 mg/kg.
Četrta frakcija esencijalnih teških metala ekstrahirana je zlatotopkom (1/3 HNO$_3$ + 2/3 HCl) iz ostataka uzoraka nakon trostupanjske ekstrakcije i predstavlja rezidualni ostatak.

Tablica 6. Prosječne koncentracije četvrte frakcije u mg/kg

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>13.124,75</td>
<td>80,93</td>
<td>56,73</td>
<td>6,23</td>
<td>9,69</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>25.654,61</td>
<td>184,29</td>
<td>71,14</td>
<td>17,96</td>
<td>31,26</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>28.510,00</td>
<td>241,30</td>
<td>57,06</td>
<td>10,60</td>
<td>30,03</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>32.630,42</td>
<td>264,64</td>
<td>74,88</td>
<td>15,73</td>
<td>27,11</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>38.504,61</td>
<td>237,70</td>
<td>101,96</td>
<td>49,26</td>
<td>113,75</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>28.228,71</td>
<td>200,02</td>
<td>60,62</td>
<td>16,42</td>
<td>24,02</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>34.569,26</td>
<td>207,57</td>
<td>61,45</td>
<td>18,81</td>
<td>26,64</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>32.060,76</td>
<td>211,47</td>
<td>65,62</td>
<td>21,03</td>
<td>30,25</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>42.835,73</td>
<td>164,57</td>
<td>113,61</td>
<td>41,69</td>
<td>69,83</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>37.227,01</td>
<td>134,94</td>
<td>110,41</td>
<td>35,13</td>
<td>70,37</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>38.260,00</td>
<td>141,60</td>
<td>114,60</td>
<td>35,61</td>
<td>72,11</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>33.782,70</td>
<td>210,11</td>
<td>64,94</td>
<td>21,33</td>
<td>25,83</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>25.594,41</td>
<td>251,15</td>
<td>62,61</td>
<td>12,39</td>
<td>23,53</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>32.957,04</td>
<td>226,87</td>
<td>62,81</td>
<td>21,11</td>
<td>23,39</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>34.793,04</td>
<td>270,25</td>
<td>68,42</td>
<td>23,33</td>
<td>25,87</td>
</tr>
<tr>
<td>16 Osijek 2014 Seles</td>
<td>34.701,42</td>
<td>252,55</td>
<td>65,35</td>
<td>23,34</td>
<td>27,89</td>
</tr>
<tr>
<td>Prosjek</td>
<td>32.089,65</td>
<td>205,10</td>
<td>75,76</td>
<td>23,12</td>
<td>39,47</td>
</tr>
</tbody>
</table>

U rezidualnoj četvrtoj frakciji ponovo su utvrđene najveće koncentracije željeza s prosječnom koncentracijom 32.089,65 mg/kg. Koncentracije mangana, koji je na drugom mjestu, znatno su veće nego u prethodnim frakcijama (205,10 mg/kg), kao i rezidualne frakcije preostala tri elementa. Po koncentracijama nakon željeza i mangana slijede cink (75,76 mg/kg), zatim nikal (39,47 mg/kg) te na zadnjem mjestu ponovo bakar s prosječnom koncentracijom 23,12 mg/kg.
4.6. Usporedba jednostrukih i trostupanjskih ekstrakcija esencijalnih teških metala

4.6.1. Jednostruka ekstrakcija željeza zlatotopkom

Tablica 7. Suma frakcija Fe (frakcije 1-4) i jednostruka ekstrakcija zlatotopkom

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Fe suma frakcija 1-4 (mg/kg)</th>
<th>Fe zlatotopka (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>14.897,16</td>
<td>13.350,00</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>28.500,33</td>
<td>24.330,00</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>31.028,55</td>
<td>28.900,00</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>35.545,29</td>
<td>33.350,00</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>44.434,87</td>
<td>38.270,00</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>30.738,23</td>
<td>27.760,00</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>36.349,76</td>
<td>30.720,00</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>34.030,74</td>
<td>31.180,00</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>45.625,90</td>
<td>36.060,00</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>42.873,79</td>
<td>33.230,00</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>43.349,95</td>
<td>34.310,00</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>35.568,44</td>
<td>27.750,00</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>29.016,11</td>
<td>29.500,00</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>35.056,61</td>
<td>27.710,00</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>36.511,54</td>
<td>28.610,00</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>37.622,62</td>
<td>32.300,00</td>
</tr>
<tr>
<td>Prosjek</td>
<td>35.071,87</td>
<td>29.833,12</td>
</tr>
</tbody>
</table>

Suma sve četiri frakcije željeza trebala bi biti jednaka ukupnoj količini ekstrahiranoj jednostrukom ekstrakcijom sa zlatotopkom. Kod prvih 8 uzoraka su mala odstupanja. Možemo vidjeti velika odstupanja kod željeza od 9 do 12 uzorka, a kod ostalih uzoraka su ponovo manja odstupanja.
4.6.2. Jednostruka ekstrakcija mangana zlatotopkom

Tablica 8. Suma frakcija Mn (frakcije 1-4) i jednostruka ekstrakcija zlatotopkom

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Mn suma frakcija 1-4 (mg/kg)</th>
<th>Mn zlatotopka (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>722,11</td>
<td>659,00</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>1.195,95</td>
<td>666,90</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>1.279,52</td>
<td>1.077,00</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>1.330,94</td>
<td>1.112,00</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>2.679,49</td>
<td>2.594</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>458,81</td>
<td>558,20</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>490,63</td>
<td>451,30</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>806,68</td>
<td>793,20</td>
</tr>
<tr>
<td>9 Mostar 2012 Krušev</td>
<td>955,68</td>
<td>941,80</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>423,28</td>
<td>388,00</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>428,60</td>
<td>398,50</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>557,60</td>
<td>493,10</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>733,90</td>
<td>670,80</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>654,19</td>
<td>633,30</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>699,60</td>
<td>663,60</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>612,38</td>
<td>647,50</td>
</tr>
<tr>
<td>Prosjek</td>
<td>876,83</td>
<td>796,76</td>
</tr>
</tbody>
</table>

Kod mangana je veliko odstupanja samo kod drugog uzorka (Sarajevo 2014), a kod ostalih uzoraka odstupanja su mala.
4.6.3. Jednostruka ekstrakcija cinka zlatotopkom

Tablica 9. Suma frakcija Zn (frakcije 1-4) i jednostruka ekstrakcija zlatotopkom

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Zn suma frakcija 1-4 (mg/kg)</th>
<th>Zn zlatotopka (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>66,67</td>
<td>57,78</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>83,93</td>
<td>70,70</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>64,03</td>
<td>57,35</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>82,54</td>
<td>75,47</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>126,52</td>
<td>104,30</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>70,83</td>
<td>60,97</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>72,10</td>
<td>58,23</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>76,87</td>
<td>66,01</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>142,22</td>
<td>94,48</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>156,30</td>
<td>98,63</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>155,49</td>
<td>101,60</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>80,19</td>
<td>50,74</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>76,11</td>
<td>56,62</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>76,39</td>
<td>49,73</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>80,85</td>
<td>52,41</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>80,20</td>
<td>56,31</td>
</tr>
<tr>
<td>Prosjek</td>
<td>93,20</td>
<td>69,46</td>
</tr>
</tbody>
</table>

Usporedbom sume sve četiri frakcije cinka sa uzorcima jednostruko ekstrahiranih zlatotopkom, možemo zaključiti kako su kod 7 uzoraka (uzorci 5, 9, 10, 11, 12, 15, 16) odstupanja veća, dok su kod ostalih uzorka odstupanja manja.
4.6.4. Jednostruka ekstrakcija bakra zlatotopkom

Tablica 10. Suma frakcija Cu (frakcije 1-4) i jednostruka ekstrakcija zlatotopkom

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Cu Suma frakcija 1-4 (mg/kg)</th>
<th>Cu Zlatotopka (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>9,12</td>
<td>8,17</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>27,12</td>
<td>23,81</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>13,17</td>
<td>11,96</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>18,44</td>
<td>16,81</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>55,06</td>
<td>45,60</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>22,15</td>
<td>20,42</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>22,64</td>
<td>20,26</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>27,95</td>
<td>26,30</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>53,41</td>
<td>42,68</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>47,80</td>
<td>40,01</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>47,52</td>
<td>40,16</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>26,42</td>
<td>21,84</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>17,57</td>
<td>16,30</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>25,11</td>
<td>21,80</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>27,81</td>
<td>22,65</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>28,70</td>
<td>24,11</td>
</tr>
</tbody>
</table>

Prosjek

<table>
<thead>
<tr>
<th></th>
<th>Cu Suma frakcija 1-4 (mg/kg)</th>
<th>Cu Zlatotopka (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29,37</td>
<td>25,18</td>
</tr>
</tbody>
</table>

Kod bakra su veća odstupanja samo kod 3 uzorka (9, 10 i 11), a kod ostalih uzoraka su mala odstupanja.
4.6.5. Jednostruka ekstrakcija nikla zlatotopkom

Tablica 11. Suma frakcija Ni (frakcije 1-4) i jednostruka ekstrakcija zlatotopkom

<table>
<thead>
<tr>
<th>Uzorci</th>
<th>Ni Suma frakcija 1-4 (mg/kg)</th>
<th>Ni Zlatotopka (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sarajevo 2012</td>
<td>12,06</td>
<td>10,53</td>
</tr>
<tr>
<td>2 Sarajevo 2014</td>
<td>38,31</td>
<td>32,10</td>
</tr>
<tr>
<td>3 Banja Luka 2012A</td>
<td>34,60</td>
<td>31,47</td>
</tr>
<tr>
<td>4 Banja Luka 2012B</td>
<td>30,27</td>
<td>27,81</td>
</tr>
<tr>
<td>5 Banja Luka 2012C</td>
<td>144,41</td>
<td>120,70</td>
</tr>
<tr>
<td>6 Novi Sad 2012</td>
<td>31,89</td>
<td>27,76</td>
</tr>
<tr>
<td>7 Novi Sad 2012 Vašice</td>
<td>39,68</td>
<td>32,68</td>
</tr>
<tr>
<td>8 Novi Sad 2012 Neredin</td>
<td>45,36</td>
<td>40,13</td>
</tr>
<tr>
<td>9 Mostar 2012 Kruševo</td>
<td>98,66</td>
<td>69,06</td>
</tr>
<tr>
<td>10 Mostar 2013</td>
<td>106,11</td>
<td>72,22</td>
</tr>
<tr>
<td>11 Mostar 2013 Višići</td>
<td>105,97</td>
<td>74,21</td>
</tr>
<tr>
<td>12 Osijek 2012</td>
<td>39,41</td>
<td>27,55</td>
</tr>
<tr>
<td>13 Osijek 2012 Josipovac</td>
<td>28,03</td>
<td>22,80</td>
</tr>
<tr>
<td>14 Osijek 2012 Banovci</td>
<td>36,59</td>
<td>26,55</td>
</tr>
<tr>
<td>15 Osijek 2014 Klisa</td>
<td>39,54</td>
<td>28,67</td>
</tr>
<tr>
<td>16 Osijek 2014 Seleš</td>
<td>40,67</td>
<td>30,94</td>
</tr>
<tr>
<td>Prosjek</td>
<td>54,47</td>
<td>42,20</td>
</tr>
</tbody>
</table>

Usporedbom sume sve četiri frakcije nikla s uzorcima ekstrahiranih sa zlatotopkom možemo zaključiti da su kod 6 uzorka (5, 8, 10, 11, 15, 16) velika odstupanja, a ostali uzorci su malih odstupanja.
5. Rasprava

Rezultati analiza pokazuju da se u analiziranim uzorcima pH reakcija tla u vodi kretala u rasponu od 5,11 do 8,01, tj. u rasponu od jako kiselnih do jako alkaličnih tala. Najviše uzoraka (8) pripada slabo alkalnim tlima, dok 4 uzorka pripadaju jako kiselim tlima. Zatim, jedan uzorak pripada umjereno kiselim tlima, 1 slabo kiselim tlima, a 2 uzorka jako alkalnim tlima. Sumarno, ukupno 6 uzoraka pripada kiselim tlima dok 10 uzoraka pripada alkalnim tlima. Vrijednosti izmjene kiselosti tla kreću se od 3,96 do 7,26. Najviše uzoraka (8) pripada slabo alkalnim tlima, 5 uzoraka pripada jako kiselim, 2 slabo kiselim, a 1 uzorak pripada izrazito kiselim tlima. (Scheffer i Schachtschabel). Utvrđen je širok raspon sadržaja humusa od 1,79 do 6,34 %. Utvrđen je čitav niz statistički značajnih korelacija između pH reakcije tla i humoznosti s koncentracijama pojedinih frakcija analiziranih teških metala.

Niz koncentracija ukupnih teških metala je Fe>Mn>Zn>Ni>Cu, u očekivanom nizu opadajuće koncentracije, što je u skladu s prethodnim istraživanjima (Lončarič i sur., 2012.). Frakcija raspoloživog željeza ekstrahirana EDTA metodom pokazala je da je raspoloživost bila najveća u umjereno kiselom tlu (1,221,00 mg/kg), a najmanja raspoloživost željeza bila je u jako alkalnom tlu i iznosila je 36,18 mg/kg. Prosječno je raspoloživa frakcija željeza utvrđena EDTA metodom bila 263,24 mg/kg što je 0,88 % prosječne ukupne koncentracije željeza u analiziranim tlima (29.833 mg/kg). U alkalnom tlu s najmanjom koncentracijom raspoloživog željeza (36,18 mg/kg) uz pH$_{KCl}$ = 7,06, ta je frakcija činila samo 0,12 % ukupne koncentracije željeza (30.720 mg/kg), dok je u kiselom tlu s pH$_{KCl}$ = 4,32 najveća koncentracija Fe ekstrahiranog s EDTA (1,221 mg/kg) bila 4,14 % ukupne koncentracije željeza (29.500 mg/kg). Prikazani rezultati pokazuju da raspoloživost željeza značajno ovisi o kiselosti tla.

Prosječno je frakcija cink ekstrahirana EDTA metodom bila 2,73 mg/kg što je 3,93 % prosječnih ukupnih koncentracija cinka (69,46 mg/kg) u analiziranim tlima. Najveća je raspoloživost (6,3 mg/kg Zn) utvrđena u jako kiselom tlu (pH$_{KCl}$ = 3,96), što iznosi 6,04 % ukupne koncentracije Zn (104,3 mg/kg). Najmanja raspoloživost Zn (0,93 mg/kg) bila je 1,87 % ukupne koncentracije Zn (49,73 mg/kg) i utvrđena je u slabo alkalnom tlu (pH$_{KCl}$ = 7,09). Prema Trierweiler and Lindsay (1969.), opskrbljenost cinkom je srednja do visoka.
Prosječne koncentracije raspoloživog nikla ekstrahiranog EDTA otopinom bile su 2,61 mg/kg od ukupnih 42,2 mg/kg, što čini 6,19 %. Najveća koncentracija raspoloživog nikla (8,78 mg/kg) utvrđena je u jako kiselim tlu (pH\textsubscript{KCl} = 3,96), a iznosi 7,27 % ukupno utvrđenog nikla (120,7 mg/kg). Međutim, najmanja koncentracija raspoloživog nikla (1,04 mg/kg) također je utvrđena u jako kiselim tlu (pH\textsubscript{KCl} = 4,12), a iznosila je 9,88 % ukupno utvrđenog nikla (10,53 mg/kg).

Za željezo legislativom nije propisana maksimalno dopuštena koncentracija (MDK) u gnojivima i tlu. Željezo je esencijalni element, a ujedno i teški metal najvećih koncentracija u tlima, kako ukupnih tako i biljci raspoloživih frakcija. Ukupne prosječne koncentracije željeza u analiziranim tlima iznosile su 29.833,12 mg/kg (raspon 13.350-38.270 mg/kg), što je znatno više u odnosu na ukupne koncentracije drugog po redu teškog metala odnosno mangana.

Prema ukupnim i raspoloživim koncentracijama u tlu, mangan je drugi po redu teški metal. Ukupne koncentracije mangana su znatno manje nego koncentracije željeza. Ukupne prosječne koncentracije mangana iznosile su 796,76 mg/kg uz znatno uži raspon koncentracija nego željezo (388-1.112 mg/kg). Kao i željezo, mangan je esencijalni element kojemu legislativom nije propisana maksimalna dopuštena koncentracija (MDK) u tlu i gnojivima.

Esencijalni teški metal je i cink (Zn), ali su njegove količine u tlu znatno manje u odnosu na željezo i mangan. Prema Pravilniku o zaštiti poljoprivrednog zemljišta od onečištenja (NN 9/2014), radi potencijalno velikog unosa cinka u tlo, propisane su MDK za poljoprivredna tla, i to za praškasto – ilovasta tla 150 mg/kg, a za glinasta tla 200 mg/kg. Prosječna koncentracija cinka utvrđenih jednostrukom ekstrakcijom sa zlatotopkom u svim analiziranim tlima je manje od vrijednosti MDK (69,46 mg/kg), s rasponom 49,73 do 104,30 mg/kg. Samo je u dva uzorka tla ukupna koncentracija cinka nešto iznad 100 mg/kg, što je još uvijek znatno niže od MDK vrijednosti za ilovasta tla. Možemo zaključiti da se sva analizirana tla prema koncentracijama cinka mogu koristiti u poljoprivrednoj proizvodnji.

Bakar je esencijalni teški metal, kao i kod cinka, ukupne količine u tlima su značajno manje nego količine željeza i mangana, ali bakar je na zadnjem mjestu od analiziranih teških metala jer su njegove koncentracije manje i od koncentracija nikla. Bakar može biti toksičan ako su primijenjene prevelike količine. Stoga su za bakar također propisane MDK za praškasto- ilovasta 90 mg/kg te za glinasta tla 120 mg/kg. Prosječna koncentracija ukupnog bakra u analiziranim tlima 25,18 mg/kg s rasponom 8,17-45,60 mg/kg. Dakle, sve vrijednosti su značajno ispod propisanih vrijednosti MDK. Niti jedan uzorak nema veću koncentraciju od
Nikal je prema ukupnim koncentracijama u tlu nakon Fe, Mn i Zn. Također je esencijalni teški metal za biljke koje ga trebaju u malim količinama te niskim koncentracijama, dok za ljude i životinje može biti toksični metal. Za nikl su propisane MDK za praškasto-ilotovasta tla 50, te za glinasta tla 75 mg/kg. Prosječna koncentracija ukupnog nikla (42,20 mg/kg) bila je ispod vrijednosti MDK. Međutim, u tri je uzorak utvrđeno ukupnog nikla > 50 mg/kg (MDK za praškasto-ilotovasta tla), ali manje od 75 mg/kg (MDK za glinasta tla). Ipak, u jednom je uzorku utvrđeno 120,77 mg/kg što je iznad MDK za glinasta tla i možemo zaključiti da je analizirano tlo zagađeno, dok su tla ostalih površina pogodna za poljoprivrednu proizvodnju.

U analiziranim tlima utvrđene koncentracije pojedinih frakcija esencijalnih teških metala ukazuju na značajan utjecaj pH reakcije tla i humoznosti. Utvrđena je statistički vrlo značajna (r=-0,706**) negativna korelacija između pH tla i 1.frakcije Fe u tlu te je utvrđena i statistički značajna (r=0,56*) pozitivna korelacija između pH tla i 4.frakcije Fe u tlu, dok između pH vrijednosti i 2. i 3. frakcije nije utvrđena korelacija. Kada govorimo o humoznosti tla, utvrđena je statistički vrlo značajna pozitivna korelacija između humoznosti tla i 1. (r=0,757**) i 2. (r=0,906**) frakcije Fe u tlu te značajna korelacija između humoznosti i 1. (r=0,518*) i 4. (r=0,482*) frakcije Fe u tlu. U tlima najniže pH reakcije utvrđen je najveći postotni udio prve frakcije Fe, što ukazuje na značajan utjecaj povećane kiselosti tla (niža pH vrijednost) na povećanu raspoloživost Fe.

Za Mn je utvrđena statistički vrlo značajna negativna korelacija između pH tla i 1. (r=-0,732**), 2. (r=-0,619**) i 3. (r=-0,617**) frakcije Mn u tlu dok za 4. frakciju nije utvrđena korelacija. Statistički vrlo značajna pozitivna korelacija utvrđena je između humoznosti tla i 1. (r=0,666**) frakcije Mn, te je utvrđena značajna korelacija između humoznosti i 2. (r=0,537*) i 3. (r=0,602*) frakcije Mn u tlu. Za 4. frakciju nije utvrđena korelacija. Zaključujemo također da niža pH vrijednost značajno povećava raspoloživost i topivost mangana u tlu.

Za Zn je utvrđena statistički vrlo značajna (r=-0,889**) negativna korelacija pH tla i 1.frakcije Fe u tlu dok kod 3. i 4. frakcije nije utvrđena korelacija. Između pH tla i 2. frakcije utvrđena je značajna (r=0,538*) pozitivna korelacija Zn u tlu. U 1. frakciji između Zn i humoznosti nema korelacije, dok je utvrđena vrlo značajna pozitivna korelacija između humoznosti i 3. (r=0,683**) i 4. (r=0,788**) frakciju Zn u tlu. Također je utvrđena i značajna
pozitivna korelacija između humoznosti i 2. frakcije (r=0,533*) Zn u tlu. Zaključujemo da kiselost tla na topivost cinka utječe u manjoj mjeri nego na željezo i mangan, ali je taj utjecaj vrlo značajan na najtopiviju prvu frakciju cinka u tlu.

Između pH tla i frakcija Cu nije utvrđena korelacija. Utvrđena je statistički vrlo značajna pozitivna korelacija između humoznosti tla i 4. (r=0,719**) frakcije Cu u tlu te je značajna korelacija između humoznosti i 3. (r=0,580*) frakcije Cu u tlu. Zaključujemo da pH reakcija ne utječe značajno na topivost bakra, ali na raspoloživost bakra značajno utječe humoznost tla.

Kod Ni je utvrđena statistički značajna (r=0,527*) pozitivna korelacija između pH tla i 2. frakcije Ni u tlu dok kod 1., 3. i 4. frakcije nije utvrđena korelacija. Također je utvrđena statistički vrlo značajna pozitivna korelacija između humoznosti i 3. (r=0,694**) i 4. (r=0,853**) frakcije Ni u tlu dok je utvrđena statistički značajna korelacija između humoznosti i 1. (r=0,591*) i 2. (r=0,597*) frakcije Ni u tlu. Zaključujemo da kiselost u maloj mjeri utječe na topivost nikla, a humoznost ipak nešto značajnije utječe na frakcije Ni u tlu.

Značajan utjecaj humoznosti i kiselosti tla utvrđen je i statistički značajnom multiregresijom između frakcija Fe, Mn, Zn, Cu i Ni, te ukupnih koncentracija Fe, Mn, Zn, Cu i Ni, humoznosti i pH reakcije tla. Tako je uz pomoć podataka o ukupnim koncentracijama teškog metala, pH vrijednosti i sadržaja humusa, moguće predvidjeti koncentraciju sve četiri frakcije određenog teškog metala:

Multiregresijske jednadžbe za izračun koncentracija izmjnjive prve frakcije:

\[
\begin{align*}
\text{Fe (mg/kg)} &= 1,66 \times 10^{-5} \text{Fe}_{\text{Ukupni}} - 0,456 \text{pH}_{\text{KCl}} + 1,48 \text{humus} \\
\text{Mn (mg/kg)} &= 0,051 \text{Mn}_{\text{Ukupni}} - 25,191 \text{pH}_{\text{KCl}} + 23,13 \text{humus} \\
\text{Zn (mg/kg)} &= 0,009 \text{Zn}_{\text{Ukupni}} - 0,557 \text{pH}_{\text{KCl}} - 0,081 \text{humus} \\
\text{Cu (mg/kg)} &= 0,012 \text{Cu}_{\text{Ukupni}} - 0,111 \text{pH}_{\text{KCl}} - 0,102 \text{humus} \\
\text{Ni (mg/kg)} &= 0,029 \text{Ni}_{\text{Ukupni}} - 0,361 \text{pH}_{\text{KCl}} - 0,389 \text{humus}
\end{align*}
\]

\[
\begin{align*}
\text{Fe (mg/kg)} &= 0,048 \text{Fe}_{\text{Ukupni}} - 115,25 \text{pH}_{\text{KCl}} + 427,89 \text{humus} \\
\text{Mn (mg/kg)} &= 0,799 \text{Mn}_{\text{Ukupni}} + 13,696 \text{pH}_{\text{KCl}} - 5,819 \text{humus} \\
\text{Zn (mg/kg)} &= 0,145 \text{Zn}_{\text{Ukupni}} + 0,698 \text{pH}_{\text{KCl}} - 0,705 \text{humus} \\
\text{Cu (mg/kg)} &= 0,188 \text{Cu}_{\text{Ukupni}} - 0,148 \text{pH}_{\text{KCl}} - 0,95 \text{humus} \\
\text{Ni (mg/kg)} &= 0,078 \text{Ni}_{\text{Ukupni}} + 0,972 \text{pH}_{\text{KCl}} - 0,134 \text{humus}
\end{align*}
\]
Multiregresijske jednadžbe za izračun koncentracija oksidirajuće treće frakcije:

\[
\begin{align*}
\text{Fe (mg/kg)} &= -0,0047 \text{Fe} - 11,966 \text{pH}_{\text{KCl}} + 268,1 \text{humus} \quad (r^2 = 0,93) \\
\text{Mn (mg/kg)} &= 0,075 \text{Mn} - 0,504 \text{pH}_{\text{KCl}} + 3,736 \text{humus} \quad (r^2 = 0,95) \\
\text{Zn (mg/kg)} &= 0,213 \text{Zn} + 0,326 \text{pH}_{\text{KCl}} - 0,006 \text{humus} \quad (r^2 = 0,86) \\
\text{Cu (mg/kg)} &= 0,015 \text{Cu} + 0,423 \text{pH}_{\text{KCl}} + 0,521 \text{humus} \quad (r^2 = 0,62) \\
\text{Ni (mg/kg)} &= 0,123 \text{Ni} + 2,44 \text{pH}_{\text{KCl}} + 1,559 \text{humus} \quad (r^2 = 0,94) \\
\end{align*}
\]

Multiregresijske jednadžbe za izračun koncentracija rezidualne četvrte frakcije:

\[
\begin{align*}
\text{Fe (mg/kg)} &= 0,957 \text{Fe} + 127,68 \text{pH}_{\text{KCl}} - 697,43 \text{humus} \quad (r^2 = 0,999) \\
\text{Mn (mg/kg)} &= 0,075 \text{Mn} + 11,99 \text{pH}_{\text{KCl}} - 21,05 \text{humus} \quad (r^2 = 0,30) \\
\text{Zn (mg/kg)} &= 0,632 \text{Zn} - 0,466 \text{pH}_{\text{KCl}} + 0,793 \text{humus} \quad (r^2 = 0,98) \\
\text{Cu (mg/kg)} &= 0,785 \text{Cu} - 0,165 \text{pH}_{\text{KCl}} + 0,531 \text{humus} \quad (r^2 = 0,97) \\
\text{Ni (mg/kg)} &= 0,769 \text{Ni} - 3,051 \text{pH}_{\text{KCl}} - 1,04 \text{humus} \quad (r^2 = 0,99). \\
\end{align*}
\]

Analizirano je 5 esencijalnih teških metala te se oni značajno razlikuju prema udjelima četiri analizirane frakcije u ukupnoj količini (koncentraciji) određenog teškog metala.

Bez obzira na pH reakciju tla, ukupnu koncentraciju Fe te humoznost, u svim analiziranim uzorcima frakcije Fe raspoređene su redoslijedom: (4-2-3-1), dakle rezidualna (4) frakcija > reducirajuća (2) frakcija > oksidirajuća (3) frakcija > izmjenjiva (1) frakcija.

Redoslijed frakcija kod Zn u većini uzoraka slijedi pravilko da je ekstrahirana koncentracija uvijek veća od koncentracije prethodne frakcije, te je raspored frakcija 4-3-2-1, dakle rezidualna (4) frakcija > oksidirajuća (3) frakcija > reducirajuća (2) frakcija > izmjenjiva (1) frakcija. Kod Zn su utvrđena odstupanja od ovog pravila kod 2., 6., 8., i 16. uzorka.

Kod Mn frakcije su raspoređene sljedećim redoslijedom 2-4-1-3, reducirajuća (2) frakcija > rezidualna (4) > izmjenjiva (1) frakcija > oksidirajuća (3) frakcija, ali su utvrđena odstupanja kod nekoliko uzoraka. Kada govorimo o Cu on ima najčešći odnos frakcija 4-2-3-1, dok je kod Ni redoslijed 4-3-2-1 kao i kod Zn.
Odnose frakcija pojedinih elemenata u ovom istraživanju možemo prikazati:

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>-</th>
<th>2</th>
<th>-</th>
<th>3</th>
<th>-</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Mn</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Zn</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Cu</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ni</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
6. Zaključak

Analizama tla trostupanjskom ekstrakcijom i jednostrukom ekstrakcijom zlatotopkom utvrđen je najveći ukupni sadržaj Fe, zatim slijedi Mn, Zn, Ni te Cu koji je imao najnižu koncentraciju.

Odnosi ekstrahiranih količina prve frakcije esencijalnih teških metala, koja predstavlja biljci raspoložive oblike jer uključuje metale iz otopine tla te izmjenjive oblike, značajno se razlikuju u odnosu na ukupno ekstrahirane količine. Prema ekstrahiranim koncentracijama prve frakcije na prvom je mjestu Mn, na drugom mjestu je Fe, a slijede Ni, Zn i Cu na zadnjem mjestu.

U drugoj, reducirajućoj frakciji redoslijed je također drugačiji u odnosu na ukupne količine. Sada je Fe na prvom, a Mn na drugom mjestu, zatim slijedi Zn, pa Ni i Cu opet na zadnjem mjestu kao i u prvoj i drugoj frakciji.

Slijed treće ili oksidirajuće frakcije te četvrte ili rezidualne frakcije u jednakom je nizu kao i ukupne koncentracije, dakle Fe – Mn – Zn – Ni – Cu.

Možemo zaključiti kako se udio ispitivanih esencijalnih teških metala mijenja po frakcijama.

U analiziranim poljoprivrednim površinama (Sarajevo, Banja Luka, Novi Sad, Mostar, Osijek) od 16 uzoraka samo je u jednom uzorku utvrđena koncentracija nikla iznad maksimalno dopuštenih koncentracija, a sve su ostale vrijednosti nikla te sve koncentracije cinka i bakra bile manje od maksimalno dopuštenih koncentracija.

Koncentracije željeza ekstrahirane EDTA otopinom značajno ovise o kiselosti tla jer je u kiselijem tlu ekstrahirano više željeza nego u alkalnom tlu, slično je najviše raspoloživog cinka u kiselom, a najmanje u alkalnom tlu, dok kiselost tla nije značajno utjecala na koncentracije nikla ekstrahirane EDTA otopinom.

Istraživanja su potvrdila da se koncentracija svake pojedine frakcije analiziranih esencijalnih teških metala može proračunati multiregresijskim jednadžbama pomoću ukupnih koncentracija određenog teškog metala u tlu, te pH reakcije i sadržaja humusa u tlu.
7. Literatura

17. Ministarstvo poljoprivrede ribarstva i ruralnog razvoja (2014.): Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja, NN 9/14 (Narodne novine, br 9/14.).

24. Ure, A.M., Quevauviller, Ph., Muntau, H., Griepink, B. (1993.): Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of

8. Sažetak

Cilj istraživanja bio je utvrditi utjecaj svojstava tla na koncentraciju ukupnih, raspoloživih te teže topivih frakcija esencijalnih teških metala u tlu, usporediti iste s rezultatima jednostruke ekstrakcije, te procijeniti pogodnost trostupanjske ekstrakcije za analizu poljoprivrednih tala u poljoprivredi. U istraživanju je korištena modificirana trostupanjska BCR metoda koja se u EU uvodi kao standardna metoda za istraživanje frakcija teških metala u tlima.

Analizama tla trostupanjskom ekstrakcijom i jednostrukom ekstrakcijom zlatotopkom utvrđen je najveći ukupni sadržaj Fe, zatim slijedi Mn, Zn, Ni te Cu koji je imao najnižu koncentraciju. Odnosi ekstrahiranih količina prve frakcije esencijalnih teških metala značajno se razlikuju u odnosu na ukupno ekstrahirane količine jer je na prvom mjestu Mn, na drugom mjestu je Fe, a slijede Ni, Zn i Cu na zadnjem mjestu. U drugoj, reducirajućoj frakciji redoslijed je također drugačiji, sada je Fe na prvom, a Mn na drugom mjestu, pa slijede Zn, Ni i Cu. Slijed treće ili oksidirajuće frakcije te četvrte ili rezidualne frakcije u jednakom je nizu kao i ukupne koncentracije, dakle Fe – Mn – Zn – Ni – Cu. Možemo zaključiti kako se udio ispitivanih esencijalnih teških metala mijenja po frakcijama.

U analiziranim poljoprivrednim površinama od 16 uzoraka samo je u jednom uzorku utvrđena koncentracija nikla iznad maksimalno dopuštenih koncentracija, a sve su ostale vrijednosti nikla te sve koncentracije cinka i bakra bile manje od maksimalno dopuštenih koncentracija.

Istraživanja su potvrdila da se koncentracija svake pojedine frakcije analiziranih esencijalnih teških metala može proračunati multiregresijskim jednadžbama pomoću ukupnih koncentracija određenog teškog metala u tlu, te pH reakcije i sadržaja humusa u tlu.
9. Summary

Analyzed 16 soil samples from the area of Sarajevo, Banja Luka, Novi Sad, Mostar and Osijek. Implemented basic agrochemical soil analysis, single-extraction of available essential heavy metals EDTA solution, single-stage extraction of total essential heavy metals aqua regia, and the three-stage extraction laying down 4 fractions of essential heavy metals: interchangeable, reducing, oxidizing and a residual fraction.

The aim of this study was to determine the effect of soil properties on the concentration of total, available and weight of soluble fraction of essential heavy metals in the soil, comparable to the results of single extraction, then assess the convenience of triple-phase extraction for analysis of agricultural soils in organic farming. In the study was used a modified three-stage BCR method in the EU introduced as a standard method for researching fraction of heavy metals in soils.

Analyses of the soil three-stage extraction and a single extraction with aqua regia was determined the highest total content of Fe, followed by Mn, Zn, Ni and Cu which had the lowest concentration.

The relations of the extracted amount of the first fraction of essential heavy metals differ significantly in relation to the total amount extracted as the first Mn, second Fe, followed by Ni, Zn and Cu in last place. In the second, the reducing fraction of the order is also different, now is the first Fe and Mn in second place, then following Zn, Ni and Cu. The sequence of the third or oxidizing fractions and fourth or residual fractions in the same row as the total concentration, ie Fe - Mn - Zn - Ni - Cu. We can conclude that the proportion of tested essential heavy metals changed by fractions.

In the analyzed agricultural areas of the 16 samples, only one sample showed concentrations of nickel above the maximum residue levels, and all other values of nickel and all concentrations of zinc and copper were less than the maximum allowed concentration.

Studies have confirmed that the concentration of each fraction analyzed essential heavy metals can calculate multi regression equations using the total concentrations of heavy metals in the soil and the pH of the reaction and the amount of humus in the soil.
10. Popis tablica

Tablica 1: Osnovna agrokemijska svojstva analiziranih tala
Tablica 2: Raspoložive frakcije Fe, Zn, Ni ekstrahiranih s EDTA
Tablica 3: Prosječne koncentracije prve frakcije u mg/kg
Tablica 4: Prosječne koncentracije druge frakcije u mg/kg
Tablica 5: Prosječne koncentracije treće frakcije u mg/kg
Tablica 6: Prosječne koncentracije četvrte frakcije u mg/kg
Tablica 7: Suma frakcija Fe (frakcija 1-4) i jednostruka ekstrakcija zlatotopkom
Tablica 8: Suma frakcija Mn (frakcija 1-4) i jednostruka ekstrakcija zlatotopkom
Tablica 9: Suma frakcija Zn (frakcija 1-4) i jednostruka ekstrakcija zlatotopkom
Tablica 10: Suma frakcija Cu (frakcija 1-4) i jednostruka ekstrakcija zlatotopkom
Tablica 11: Suma frakcija Ni (frakcija 1-4) i jednostruka ekstrakcija zlatotopkom
11. Popis grafikona

Grafikon 1. Sadržaj humusa u tlu
Usporedba trostupanjske i jednostruke ekstrakcije esencijalnih teških metala u
poljoprivrednim tlima
Magdalena Rajković

Sažetak:

Analizirano je 16 uzoraka tla iz područja Sarajeva, Banja Luke, Novog Sada, Mostara i Osijeka. Provedene su osnovne agrokemijske analize tla, jednostupanjska ekstrakcija raspoloživih esencijalnih teških metala EDTA otopinom, jednostupanjska ekstrakcija ukupnih esencijalnih teških metala zlatotopkom, te trostupanjska ekstrakcija kojom su utvrđene 4 frakcije esencijalnih teških metala: izmjenjiva, reducirajuća, oksidirajuća i rezidualna frakcija. Cilj istraživanja bio je utvrditi utjecaj svojstva tla na koncentraciju ukupnih, raspoloživih te teže topivih frakcija esencijalnih teških metala u tlu, usporediti iste s rezultatima jednostruke ekstrakcije, te procijeniti pogodnost trostupanjske ekstrakcije za analizu poljoprivrednih tala u poljoprivredi. U istraživanju je korištena modificirana trostupanjska BCR metoda koja se u EU uvodi kao standardna metoda za istraživanje frakcija teških metala u tlima. Analizama tla trostupanjskom ekstrakcijom i jednostrukom ekstrakcijom zlatotopkom utvrđen je najveći ukupni sadržaj Fe, zatim slijedi Mn, Zn, Ni te Cu koji je imao najnižu koncentraciju. Odnosi ekstrahiranih količina prve frakcije esencijalnih teških metala značajno se razlikuju u odnosu na ukupno ekstrahirane količine jer je na prvom mjestu Mn, na drugom mjestu je Fe, a slijede Ni, Zn i Cu na zadnjem mjestu. U drugoj, reducirajućoj frakciji redoslijed je također drugačiji, sada je Fe na prvom, a Mn na drugom mjestu, pa slijede Zn, Ni i Cu. Slijedi treće ili oksidirajuće frakcije te četvrte ili rezidualne frakcije u jednakom nizu kao i ukupne koncentracije, dako Fe – Mn – Zn – Ni – Cu. Možemo zaključiti kako se udio ispitivanih esencijalnih teških metala mijenja po frakcijama. U analiziranim poljoprivrednim površinama od 16 uzoraka samo je u jednom uzorku utvrđena koncentracija nikla iznad maksimalno dopuštenih koncentracija, a sve su ostale vrijednosti nikla te sve koncentracije cinka i bakra bile manje od maksimalno dopuštenih koncentracija. Istraživanja su potvrdila da se koncentracija svake pojedine frakcije analiziranih esencijalnih teških metala može proračunati multiregresijskim jednadžbama pomoću ukupnih koncentracija određenog teškog metala u tlu, te pH reakcije i sadržaja humusa u tlu.

Rad je izrađen pri: Poljoprivredni fakultet u Osijeku
Mentor: prof. dr. sc. Zdenko Lončarić

Broj stranica: 38
Broj grafikona i slika: 1
Broj tablica: 11
Broj literaturnih navoda: 28
Broj priloga: 0
Jezik izvornika: hrvatski

Ključne riječi: teški metali, frakcije, mikroelementi

Datum obrane:

Stručno povjerenstvo za obranu:
1. doc. dr. sc. Vladimir Ivezic, predsjednik
2. prof. dr. sc. Zdenko Lončarić, mentor
3. doc.dr. sc. Brigita popović, član
4. doc. dr. sc. Krunoslav Karalić, član

Rad je pohranjen u: Knjižnica Poljoprivrednog fakulteta u Osijeku, Sveučilištu u Osijeku, Kralja Petra Svačića 1d
Abstract:

Analyzed 16 soil samples from the area of Sarajevo, Banja Luka, Novi Sad, Mostar and Osijek. Implemented basic agrochemical soil analysis, single-extraction of available essential heavy metals EDTA solution, single-stage extraction of total essential heavy metals aqua regia, and the three-stage extraction laying down 4 fractions of essential heavy metals: interchangeable, reducing, oxidizing and a residual fraction. The aim of this study was to determine the effect of soil properties on the concentration of total, available and weight of soluble fraction of essential heavy metals in the soil, comparable same to the results of single extraction, then assess the convenience of triple-phase extraction for analysis of agricultural soils in organic farming. In the study was used a modified three-stage BCR method in the EU introduced as a standard method for researching fraction of heavy metals in soils. Analyses of the soil three-stage extraction and a single extraction with aqua regia was determined the highest total content of Fe, followed by Mn, Zn, Ni and Cu which had the lowest concentration. The relations of the extracted amount of the first fraction of essential heavy metals differ significantly in relation to the total amount extracted as the first Mn, second Fe, followed by Ni, Zn and Cu in last place. In the second, the reducing fraction of the order is also different, now is the first Fe and Mn in second place, then following Zn, Ni and Cu. The sequence of the third or oxidizing fractions and fourth or residual fractions in the same row as the total concentration, ie Fe - Mn - Zn - Ni - Cu. We can conclude that the proportion of tested essential heavy metals changed by fractions. In the analyzed agricultural areas of the 16 samples, only one sample showed concentrations of nickel above the maximum residue levels, and all other values of nickel and all concentrations of zinc and copper were less than the maximum allowed concentration. Studies have confirmed that the concentration of each fraction analyzed essential heavy metals can calculate multi regression equations using the total concentrations of heavy metals in the soil and the pH of the reaction and the amount of humus in the soil.