Nove kineske biljne droge (radices) u 9. izdanju Europske farmakopeje

Dabo, Monika

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:545029

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-04-06

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb - Diplomski radovi Farmaceutsko-biokemijskog fakulteta
Monika Dabo

Nove kineske biljne droge (radices) u 9. izdanju Europske farmakopeje

DIPLOMSKI RAD
Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2018.
Diplomski rad je prijavljen na kolegiju Farmakognozija 1 Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta, a izrađen je na Zavodu za farmakognoziju pod stručnim vodstvom doc. dr. sc. Biljane Blažeković, mag. pharm.

Zahvaljujem se svojoj mentorici Biljani Blažeković na pruženoj prilici, stručnom vodstvu, temeljitim smjernicama i savjetima prilikom izrade i pisanja ovog diplomskog rada.

Hvala mojoj obitelji i prijateljima na podršci i strpljenju.
Sadržaj

1. **UVOD** ... 1
2. **OBRAZLOŽENJE TEME** .. 3
3. **MATERIJALI I METODE** .. 4
4. **REZULTATI I RASPRAVA** .. 5
 4.1. **Bupleuri radix (柴胡, Chai Hu)** ... 5
 4.1.1. Opis biljke ... 6
 4.1.2. Fitokemijski sastav .. 6
 4.1.3. Upotreba u TCM-u .. 7
 4.1.4. Farmakološki učinci .. 7
 4.1.5. Monografija droge u Ph. Eur. 9 .. 10
 4.2. **Codonopsis radix (党参, Dang Shen)** .. 13
 4.2.1. Opis biljke ... 13
 4.2.2. Fitokemijski sastav .. 14
 4.2.3. Upotreba u TCM-u .. 15
 4.2.4. Farmakološki učinci .. 15
 4.2.5. Monografija droge u Ph. Eur. 9 .. 17
 4.3. **Moutan cortex (牡丹皮, Mu dan pi)** ... 19
 4.3.1. Opis biljke ... 19
 4.3.2. Fitokemijski sastav .. 20
 4.3.3. Upotreba u TCM-u .. 21
 4.3.4. Farmakološki učinci .. 21
 4.3.5. Monografija droge u Ph. Eur. 9 .. 24
 4.4. **Paeoniae radix alba (白芍, Bai Shao)** ... 27
 4.4.1. Opis biljke ... 27
 4.4.2. Fitokemijski sastav .. 28
 4.4.3. Upotreba u TCM-u .. 29
 4.4.4. Farmakološki učinci .. 29
 4.4.5. Monografija droge u Ph. Eur. 9 .. 33
 4.5. **Paoniae radix rubra (赤芍, Chi Shao)** .. 35
4.5.1. Opis biljke ... 35
4.5.2. Fitokemijski sastav .. 35
4.5.3. Upotreba u TCM-u .. 36
4.5.4. Farmakološki učinci ... 36
4.5.5. Monografija droge u Ph. Eur. 9 .. 39
4.6. Platycodonis radix (桔梗, Jie Geng) ... 41
 4.6.1. Opis biljke .. 41
 4.6.2. Fitokemijski sastav ... 42
 4.6.3. Upotreba u TCM-u .. 43
 4.6.4. Farmakološki učinci ... 43
 4.6.5. Monografija droge u Ph. Eur. 9 ... 47
4.7. Polygoni cuspidati rhizoma et radix (虎杖, Hu zhang) 50
 4.7.1. Opis biljke .. 50
 4.7.2. Fitokemijski sastav ... 51
 4.7.3. Upotreba u TCM-u .. 51
 4.7.4. Farmakološki učinci ... 52
 4.7.5. Monografija droge u Ph. Eur. 9 ... 55
5. ZAKLJUČAK ... 59
6. LITERATURA ... 60
7. SAŽETAK/SUMMARY .. 74

Temeljna dokumentacijska kartica/ Basic documentation card
1. UVOD

Tradicionalna kineska medicina (TCM) važan je dio kineske kulturne baštine i jedinstven je izvor znanja za liječenje bolesti i održavanje zdravlja temeljen na stoljećima prikupljenom kliničkom iskustvu koje polazi od tradicionalne kineske filozofije. Tijekom povijesti imala je važnu ulogu u preživljavanju i rastu kineske populacije. S obzirom da u novije vrijeme prirodne metode liječenja stječu sve veću popularnost, širom svijeta jača i interes za TCM kao jedinstven susastav liječenja koji se bitno razlikuje od suvremene zapadne medicine (Zhang, 2012).

Smatra se da se Tradicionalna kineska medicina prakticira već najmanje 2500 godina, dok je moderna zapadna medicina u Kinu uvedena tek prije stotinjak godina. U prvoj polovici 20. stoljeća službene kineske vlasti započele su s popularizacijom zapadne medicine, osobito u gradovima, a u ruralnim se područjima za sprječavanje i liječenje bolesti i dalje uglavnom koristila tradicionalna medicina. Nakon osnivanja Narodne Republike Kine 1949. godine, kineska vlada donijela je niz propisa važnih za tradicionalnu medicinu, uključujući poticanje ujedinjena rada kineskih i zapadnih liječnika i uključivanje oba sustava liječenja u svakodnevnu praksu. U tom kontekstu potaknuto je osnivanje TCM bolnica, fakulteta i instituta te se na razne načine poticalo liječnike da usvoje znanja o tradicionalnoj medicini. Danas su sve brojnija znanstvena istraživanja o djelotvornošti i sigurnosti primjene tradicionalnih kineskih lijekova i metoda liječenja kao i o mogućnostima integracije TCM-a i suvremene medicine u liječenju velikog broja bolesti. Iz toga proizlazi da TCM nije samo sačuvana kroz tisućljetnu praksu, već je u novije vrijeme i uznemiravala zahvaljujući sve većem interesu znanstvene zajednice. Posljednjih godina međunarodni medicinski krugovi sve više pažnje posvećuju TCM-u, brojni pacijenti u drugim zemljama izvan Kine u liječenju koriste metode TCM-a, a pojedini liječnici u zapadnim zemljama također pokazuju zanimanje za učenje ovog jedinstvenog sustava liječenja, pa je u nekim zemljama TCM praksa već i službeno prepoznata (Zhufan, 2000).

Tradicionalna kineska medicina osnovana je na temeljnim konceptima povezanosti čovjeka i prirode, cjelovitosti ljudskog tijela i uma te održavanja dinamičke ravnoteže životnih aktivnosti pod utjecajem unutarnjih i vanjskih okruženja (Zhufan, 2000). Sve novije sastoji od različitih sila: komplementarne suprotnosti yina i yanga te pet faza. Ljudsko tijelo je mali svijet i predstavlja...
ove sile u malome. U prirodi postoje zakoni i odnosi koji imaju univerzalnu vrijednost te se koriste i u tumačenju ljudske anatomije, fiziologije i patofiziologije (Bensky i sur., 2004). U svjetlu tih koncepata, tradicionalna kineska medicina započinje proučavanje ljudskog tijela iz funkcionalnog gledišta, te je razvijen jedinstveni teorijski sustav te različite tehnike i mjere za prevenciju i kontrolu bolesti te očuvanje zdravlja (Zhufan, 2000).

Fitoterapija ili liječenje kineskim ljekovitim biljkama predstavlja najvažniji način liječenja i prevencije bolesti u tradicionalnoj kineskoj medicini (Hempen i Fischer, 2009). Broj ljekovitih tvari koje se koriste u tradicionalnoj kineskoj medicini tijekom proteklih dvije tisuće godina se neprestano povećavao, obuhvaćajući ne samo one koje potjeću iz kineske narodne medicine, već i one koje se koriste u drugim dijelovima Azije, poput zemalja Jugoistočne Azije, Indije i Bliskog Istoka. Knjiga Grand Materia Medica djelo je jednog od najvećih kineskih herbalista, Li Shi-Zhena, i smatra se jednim od klasika TCM-a koje je prevedeno na više svjetskih jezika. Po prvi puta tiskana 1596., ova knjiga pruža opise 1892 ljekovite tvari, od kojih je glavnina biljnog podrijetla, njih 1173, dok je ostalih 444 životinjskog podrijetla i 275 minerala (Bensky i sur., 2004). U Kini je danas poznato oko 7000 ljekovitih biljnih vrsta, a kako se neke od njih mogu naći i u drugim dijelovima svijeta, tradicionalno prikupljeno znanje može biti korisno i šire. Za propisivanje kineskih biljnih droga potrebno je poznavanje tradicionalne kineske farmakologije temeljene na stoljećima dugim kliničkim promatranjima i praksi (WHO, 1989). Racionalno korištenje ljekovitog bilja podrazumijeva da je biljka jasno i sigurno kategorizirana prema svom energetskom obrascu. Klasifikacija kineskih ljekovitih biljaka temeljena je na specifičnim paradigmskim svojstvima i daje nam podatke o njihovim svojstvima, kao što su temperature, okus, smjer djelovanja te odnos prema organima i kanalima (Benski i sur., 2004, Hempen i Fischer, 2009).
2. OBRAZLOŽENJE TEME

Tradicionalna kineska medicina (eng. Traditional Chinese medicine, TCM) jedan je od najstarijih sustava liječenja na svijetu, a današnje globalno zanimanje za taj jedinstveni sustav liječenja sve više raste, kako među znanstvenicima, tako i među pacijentima. Poznato je da se TCM uvelike temelji na fitoterapiji i primjeni nekoliko stotina ljekovitih biljaka u liječenju različitih bolesti. S obzirom da je Europska agencija za lijekove prepoznala sve veću popularnost i prisutnost kineskih ljekovitih biljnih droga na europskom tržištu kao i potrebu za uvođenjem normi njihove kakvoće, do danas je izrađeno i u Europsku farmakopeju uvršteno više od pedeset monografija kineskih biljnih droga.

Cilj ovog rada bio je teorijski istražiti sedam odabranih ljekovitih biljnih droga koje se tradicionalno primjenjuju u kineskoj medicini. Istražene su droge koje se dobivaju od korijena kineskih biljaka, a za koje su uspostavljene norme kakvoće u monografijama u najnovijem devetom izdanju Europske farmakopeje. Svrha rada bila je dati uvid u biljne izvore droga, njihovu tradicionalnu primjenu, fitokemijski sastav te recentne znanstvene spoznaje o djelovanju i sigurnosti primjene. Monografije Europske farmakopeje koje sadrže opis droge i postupke za ispitivanje kakvoće istraživanih biljnih droga prevedene su na hrvatski jezik kako bi se olakšala njihova primjena u ljekarničkoj praksi.
3. MATERIJALI I METODE

U ovom radu provedeno je teorijsko istraživanje biljnih droga s dugom primjenom u tradicionalnoj kineskoj medicini. Odabrano je sedam ljekovitih droga koje se dobivaju od korijena kineskih biljaka i za koje su utemeljene norme kakvoće u 9. izdanju Europske farmakopeje:

1. Bupleuri radix (Chai Hu)
2. Codonopsis radix (Dang Shen)
3. Moutan cortex (Mu Dan Pi)
4. Paeoniae radix alba (Bai Shao)
5. Paeoniae radix rubra (Chi Shao)
6. Platycodonis radix (Jie Geng)
7. Polygoni cuspidati rhizoma et radix (Hu zhang)

Rad je nastao pregledom stručne literature i pretraživanjem znanstvenih i drugih baza podataka (PubMed, ScienceDirect, Scopus, Lexicomp, Cochrane Library). Kao ključne riječi u pretraživanju su korišteni latinski nazivi biljnih droga i odgovarajućih biljnih vrsta: Bupleuri radix, Bupleurum chinense, Codonopsis radix, Codonopsis pilosula, Moutan cortex, Paeonia x suffruticosa, Paeoniae radix alba, Paeonia lactiflora, Paeoniae radix rubra, Paeonia lactiflora, Platycodonis radix, Platycodon grandiflorus, Polygoni cuspidati rhizoma et radix, Polygonum cuspidatum.
4. REZULTATI I RASPRAVA

Biljne droge koje se u Kini već stoljećima tradicionalno koriste u liječenju različitih oboljenja postaju sve popularnije i dostupnije i u drugim dijelovima svijeta. Usvajanje novih znanja iz područja etnofarmakologije nužno je kako bi se mogli pratiti suvremeni trendovi u fitofarmaciji. Sustavnim pretraživanjem i proučavanjem stručne i znanstvene literature, u nastavku se nalazi pregled biljnih izvora, tradicionalne primjene te rezultati dosadašnjih fitokemijskih istraživanja te nekliničkih i kliničkih studija za biljne droge Bupleuri radix, Codonopsis radix, Moutan cortex, Paeonieae radix alba, Paeonieae radix rubra, Platycodonis radix i Polygoni cuspidati rhizoma et radix.

4.1. Bupleuri radix (柴胡, Chai Hu)

Bupleuri radix (eng. Bupleurum root) je kineska ljekovita droga koja se dobiva od biljne vrste Bupleurum chinense (Slika 1).

Slika 1. Bupleuri radix
(preuzeto s https://tcmwiki.com)
4.1.1. Opis biljke

Bupleurum chinense DC. (Apiaceae) je višegodišnja biljka, visoka 45-85 cm (Slika 2). Korijen je čvrst, razgranat, dug 6-15 cm, promjera 3-8 cm, crno-smeđe boje. Stabljika je uspravna i savitljiva, s naizmjenično raspoređenim listovima. List je linearnog ili suličastog oblika i cijelog ruba, a vrh plojke je zašiljen. Cvat je štitast, sastavljen od brojnih žutih cvjetova. Plod je smeđi duguljasti kalavac, s istaknutim rebrima. Biljka raste u Kini i Sjevernoj Aziji na travnjacima, nasipima, na sunčanim padinama i uz putove (WHO, 1989; www.efloras.org).

4.1.2. Fitokemijski sastav

Glavne bioaktivne sastavnice biljne droge *Bupleuri radix* su (Wagner i sur., 2011):

- **triterpenski saponini**: saikosaponini A, B1-B4, C, D, E i F, monoacetilsaikosaponini i kiseli saponini
- **sapogenini**: saikogenini A,B,C,D, E,F i G
- **poliacetileni**: saikodiin A,B,C
- eterično ulje
- fitosteroli: α-spinasterol i stigmasterol
- masne kiseline: palmitinska, oleinska, linolna i stearinska kiselina
- ostale sastavnice: lignan saikokrom A, aminokiseline, šećeri
4.1.3. Upotreba u TCM-u

U tradicionalnoj kineskoj medicini biljna droga Bupleuri radix snižava tjelesnu temperaturu i djeluje protiv gorkog okusa u ustima, često u kombinaciji s drogom Scutellariae radix i Pinelliae rhizoma. Koristi se i protiv umora, iscrpljenosti, vrtoglavice, emocionalne nestabilnosti i tinitusa, također i u kombinaciji s dрогama Angelicae sinensis radix, Paeonieae radix alba ili Chuanxiong rhizoma. Ako se koristi u kombinaciji s dрогom Aurantii fructus, smanjuje bol u prsima, bol u trbuhu i povećava apetit. Koristi se i kod hepatitisa u kombinaciji s dрогom Glycyrrhizae radix (Hempen i Fischer, 2009, Bensky i sur., 2004).

4.1.4. Farmakološki učinci

Bupleuri radix jedna je od često korištenih droga u tradicionalnoj kineskoj medicini te je pregledom dosad provedenih znanstvenih istraživanja pronađen veći broj predkliničkih rezultata.

Slika 3. Bioaktivne sastavnice droge Bupleuri radix
koji ukazuju na različite biološke i farmakološke učinke. Kontrolirane kliničke studije nisu dosad provedene.

Protuupalno djelovanje

Protutumorski učinak

Antidepresivno djelovanje

Rezultati pretkliničkih istraživanja ukazuju na antidepresivni učinak droge Bupleuri radix. Vodeni ekstrakt droge (900 mg/kg) značajno je povećao fosforilaciju CREB proteina (prema engl. cAMP response element binding protein), koji regulira ekspresiju brojnih gena uključenih u patofiziologiju depresije, i povisio razine moždanog neurotrofnog BDNF čimbenika u SH-SY5Y stanicama. Time se povećala fosforilacija Akt i kinaze glikogen-sintaze-3β, što je kod štakora rezultiralo pojačanjem signalnog puta PI3K/Akt/GSK3β (Seo i sur., 2012).

Wang i suradnici (2016) su na animalnim modelima pomoću testa prisilnog plivanja i testa vješanja repova ispitivali antidepresivni učinak droge Bupleuri radix u kombinaciji s drogom Paeoniae radix alba. Utvrđeno je da ispitivana kombinacija droga smanjuje vrijeme nepokretnosti životinja djelujući tako da regulira transmisiju adrenalina i serotonina u području hipokampusa i korteksa miševa.

Hepatoprotektivni učinak

Na animalnom modelu provedena su istraživanja hepatoprotektivnog učinka srove droge Bupleuri radix, kao i droge obrađene octom. Životinje su tijekom 14 dana dobivale drogu u dozi od 5 g/kg/dan. Protektivno djelovanje na jetru pokazale su i neobrađena i obrađena droga, s tim da je snažniji učinak pokazala obrađena droga (Li i sur., 2015).

Utvrđeno je da saikosaponini izolirani iz droge mogu spriječiti oštećenje jetre regulacijom intracelularne razine kalcija (Han i sur., 2006). Također, saikosaponin D smanjuje odlaganje kolagena I u jetri i razinu alanin-aminotransferaze u serumu u štakora s fibrozom jetre. Smanjuje i razinu transformirajućeg čimbenika rasta β1 (TGF-β1) u jetri štakora koja je znatno povećana nakon oštećenja dimetilnitrozaminom. Povoljan utjecaj saikosaponina D na fibrozu jetre može biti povezan s njegovom sposobnošću smanjenja oksidativnog stresa (Fan i sur., 2007).

Antiviralni učinak

Znanstvena istraživanja pokazuju značajni antiviralni učinak droge na akutne H1N1 infekcije respiratornog trakta. Tretiranje inficiranih A549 stanica acetonskim ekstraktom droge dovodi do smanjenja virusom inducirane RANTES sekrecije, što upućuje na to da droga može biti korisna kod liječenja kroničnih upalnih stanja popraćenih virusnim infekcijama (Wen i sur., 2011). Od
svih saikosaponina koji su pokazali učinak na ljudski koronavirus-229E, najsnažnije je djelovao saikosaponin b2, utječući na rane stadije viralne replikacije (Yang i sur., 2017).

Antipiretsko djelovanje

Antibakterijski učinak

Etanolni ekstrakt droge *Bupleurum chinense* DC. pokazao je izvanredan bakteriostatski učinak na Gram-negativnu bakteriju *Helicobacter pylori*, s minimalnom inhibitornom koncentracijom od 60 mM (Li i sur., 2005). Antibakterijski učinak droge može se pripisati sadržaju saikosaponina koji su spriječili rast i razvoj bakterija, posebice sojeva *Pseudomonas aeruginosa* i *Listeria monocytogenes*. Saikosaponini primijenjeni intraperitonealno dan prije infekcije miševa bakterijom *P. aeruginosa* u dozi od 10 μg/miš su djelovali protektvno, a sam mehanizam djelovanja povezuje se s imunomodulacijskim svojstvima (Kumuzawa i sur., 1990).

4.1.5. Monografija droge u Ph. Eur. 9

04/2018:2562

KORIJEN AZIJSKOG ZVINČACA

Bupleuri radix

DEFINICIJA

Osušeni, cjevolent ili usitnjen korijen vrste *Bupleurum chinense* DC. ili *Bupleurum scorzonerifolium* Willd.
Sadržaj: najmanje 0,16 posto saikosaponina A (C_{42}H_{68}O_{13}; M_{r} 781) (suha droga).

IDENTIFIKACIJA

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija

ISPITIVANJA

Bupleurum longiradiatum Turcz. Tankoslojna kromatografija visoke djelotvornosti (2.8.25).

Ispitivana otopina. U 1,0 g praška biljne droge (355) (2.9.12) doda se 10,0 mL *metanola R* i sonicira 10 minuta. Centrifugira se i dalje se koristi supernatant.

Poredbena otopina (a). Otopi se 1,0 mg *saikosaponina A R* i 1,0 mg *saikosaponina D R* u *metanolu R* i razrijedi do 5,0 mL istim otapalom.

Poredbena otopina (b). Razrijedi se 2,5 mL poredbene otopine (a) do 10,0 mL *metanolom R*.

Marker inteziteta: saikosaponin D.

Plača: TLC silikagel F₂₅₄ ploča R (2-10 μm).

Nanošenje: 5 μL u linijama od 8 mm.

Razvijanje: 70 mm od donjeg ruba ploče.

Sušenje: na zraku.

Detekcija: poprskom se otopinom *anisaldehida R*, zagrije 3 minute na 100 °C i ispituje na dnevnom svjetlu.

Prikladnost sustava: poredbena otopina (a):
- kromatogram pokazuje 2 udaljene zone u donjem dijelu srednje trećine ploče; donja zona (saikosaponin A) je sive boje, a gornja zona (saikosaponin D) je narančasto-smeđe boje.

Rezultati: Na kromatogramu ispitivane otpine, prisutstvo sive zone neposredno iznad zone koja odgovara saikosaponinu H (koji putuje zajedno sa saikosaponinom C) dokazuje prisutstvo vrste *B. longiradiatum*.

Gubitak sušenjem (2.2.32): najviše 5,0 posto, određeno na 1,000 g praška biljne droge (355) (2.9.12) sušenjem u sušioniku 2 sata na 105 °C.

Ukupni pepeo (2.4.16): najviše 9,0 posto.

Pepeo netopljiv u klorovodičnoj kisilini (2.8.1): najviše 3,5 posto.

ODREĐIVANJE SADRŽAJA

Tekućinska kromatografija (2.2.29).

Ispitivana otopina. Dispregira se 0,250 g praška biljne droge (355) (2.9.12) u smjesi od 3 mL *koncentriranog amonijaka R* i 12 mL *metanola R1*. Sonicira se 30 minuta i centrifugira 10 minuta. Ekstrakcija se ponavlja 2 puta, supernatanti se sjedine i upare do suha pod sniženim tlakom. Ostatak se otopi u *metanolu R1* i razrijedi do 5,0 mL istim otapalom. Otopina se filtrira kroz membranski filter (nominalne veličine pora 0,45 μm).

Poredbena otopina (a). Otopi se 10,0 mg *saikosaponina A CRS* u *metanolu R1* i razrijedi do 10,0 mL istim otapalom.
Poredbena otopina (b). Otopi se 1 mg propilparahidroksibenzoata R u 1 mL poredbene otopine (a) i razrijedi do 10,0 mL s metanolom R1.

Kolona:
- veličina: l=0,25 m, Ø=4,6 mm;
- nepokretna faza: modificirani oktadecilsilil silikagel za kromatografiju R (5 μm).

Pokretna faza: acetontril R1, voda za kromatografiju R (36:64 V/V).

Brzina protoka: 1,0 mL/min.

Detekcija: spektrofotometar na 210 nm.

Injektiranje: 20 μL.

Vrijeme trajanja analize: 4 puta duže od vremena zadržavanja saikosaponina A.

Relativno vrijeme zadržavanja u odnosu na saikosaponin A (vrijeme zadržavanja = oko 16 minuta): propilparahidroksibenzoat = oko 0,9.

Prikladnost sustava: poredbena otopina (b):
- razlučivanje: najmanje 3,0 između pikova propilparahidroksibenzoata i saikosaponina A.

Izračuna se postotak saikosaponina A prema izrazu:

\[
\frac{A_1 \times m_2 \times p \times 0.5}{A_2 \times m_1}
\]

A1 = površina pika saikosaponina A u kromatogramu ispitivane otopine;
A2 = površina pika saikosaponina A u kromatogramu poredbene otopine (a);
m1 = masa biljne droge korištene za pripremu ispitivane otopine, u gramima;
m2 = masa saikosaponina A CRS korištenog za pripremu poredbene otopine (a), u gramima;
p = postotni udio sakosaponina A u saikosaponinu A CRS (EDQM, 2018).
4.2. Codonopsis radix (党参, Dang Shen)

Codonopsis radix (eng. Codonopsis root) je kineska ljekovita droga koja se dobiva od biljne vrste Codonopsis pilosula (Slika 4).

![Slika 4. Codonopsis radix](https://tcmwiki.com)

4.2.1. Opis biljke

![Slika 5. Codonopsis pilosula (Franch.) Nannf.](http://www.cfgphoto.com/)
4.2.2. Fitokemijski sastav

Glavne bioaktivne sastavnice biljne droge Codonopsis radix su (Wagner i sur., 2011):

- **fenilpropanoidi:** tangshenozid I i II, siringin, siringaldehid, koniferil alkohol, dihidrokoniferil alkohol, pinorezinol
- **derivati furana:** furan-2-karboksilna kiselina, 5-hidroksimetil-2-furaldehid
- **poliacetilenski alkanil- i alkenil- glikozidi:** etil-α-D-fruktofuranozid, n-heksil-β-D-glukopiranozid, (Z)-3-heksenil-β-D-glukopiranozid
- steroidi i triterpeni: α-spinasterol, δ-stigmasterol, tarakserol, tarakseril-acetat i fridelin
- alkaloidi: kodonopsin, perlolirin
- ostale sastavnice: šećeri i polisaharadi (glukoza, fruktoza, galaktoza, arabinoza, manzoa, , fruktoza i dr., inulin i heteroglikani) i organske kiseline (protokatehinska kiselina, 4-hidroksibenzojeva kiselina, vanilinska kiselina)

Slika 6. Bioaktivne sastavnice droge Codonopsis radix
4.2.3. Upotreba u TCM-u

Biljna droga Codonopsis radix se u kineskoj tradicionalnoj medicini upotrebljava za poboljšanje apetita te protiv dijareje, mučnine, povraćanja, umora i slabosti. Primjenjuje se kod nekih plućnih bolesti kao kroničnog kašlja, kratkoće daha i povećanog sputuma. U kombinaciji se može koristiti s drogom Atractylodis rhizoma kod nedostatka apetita i mučnine, a s drogom Astragali radix se upotrebljava kod umora, dijareje i nedostatka apetita. Zajedno s drogom Rehmanniae radix djeluje povoljno kod slabokrvnosti (Hempen i Fischer, 2009).

4.2.4. Farmakološki učinci

Pregledom dosad objavljenih radova ustanovljen je veći broj pretkliničkih dokaza, najčešće dobivenih na eksperimentalnim životinjama. Kliničkih studija nedostaje te bi ih trebalo dodatno provesti kako bi se potvrdio učinak kod ljudi.

Imunomodulatorni učinak

Antioksidativno djelovanje

U *in vitro* studiji istraživano je antioksidativno djelovanje nekoliko droga, uključujući i drogu Codonopsis radix. Dokazano je da organski ekstrakt droge slabije inhibira lipidnu peroksidaciju od ekstrakta droge Panax quinquefolium, ali je djelotvorniji od vodenog ekstrakta. Voden ekstrakt droge učinkovitije inhibira hemolizu eritrocita od ekstrakta droge Panax quinquefolium (Ng i sur., 2004).
U drugoj studiji istraživalo se **in vivo** i **in vitro** djelovanje polisaharida izoliranog iz droge *Codonopsis radix* i istog polisaharida obrađenog klorosulfonskim kiselinom tako da je dobiven sulfatirani polisaharid. Dokazano je da su se serumske razine ALT, AST i TNF-α značajno smanjile kod primjenjivanih visokih i srednjih doza sulfatiranog i nesulfatiranog polisaharida. Aktivnost SOD i GSH-Px u homogenizatu jetre je bila značajno veća. Rezultati ukazuju da i sulfatirani i nesulfatirani polisaharid imaju antioksidativno djelovanje **in vitro** i **in vivo**, ali je aktivnost sulfatiranog polisaharida veća (Liu i sur., 2015).

Učinak na probavi sustav

U **in vivo** studiji na psima je istražen utjecaj dekokta droge *Codonopsis radix* na razine želučane kiseline, serumskog gastrina i plazmatskog somatostatina. Dekokt je bio primjenjivan oralno, u dozama od 10 g, 20 g, i 40 g. Ustanovljeno je da dekokt droge ne utječe na lučenje HCl u želucu niti na koncentracije somatostatina u plazmi, ali je došlo do značajnog povećanja razine gastrina u serumu (Chen i sur., 1998).

Drugo istraživanje na animalnom modelu pokazalo je da inulinski tip fruktana CP-A, izoliran iz droge *Codonopsis radix*, može spriječiti etanolom potaknut akutni čir na želucu štakora. CP-A je značajno povećao aktivnost endgenih SOD i GSH-Px, dok su aktivnosti markera oksidativnog stresa, MDA i NO, bile smanjene, kao i aktivnost MPO u tkivu želuca. Time je dokazano da je CP-A potencijalna sastavnica koja se može koristiti u prevenciji i liječenju čira na želucu (Li i sur., 2017).

Antidijabetičko djelovanje

U studiji provedenoj na eksperimentalnim životinjama s dijabetesom dokazano je da droga može usporiti napredovanje bolesti snižavanjem razine glukoze u krvi i sprječavanjem povećanja aktivnosti serumskie aldoza reduktaze. Na taj način droga djeluje pozitivno na dijabetes i dijabetičke komplikacije (He i sur., 2011).

Chan i suradnici (2009) istražili su antioksidativna i antihiperglikemijska svojstva kombinacije droga *Astragali radix*, *Codonopsis radix* i *Lycii cortex* na animalnom modelu. Ustanovili su da kombinacija droga u kroničnoj terapiji značajno snižava razinu glukoze u krvi poboljšanjem...
funkcije β-stanica gušterače. Također se povećala i aktivnost antioksidativnih enzima, kao što su katalaza i superoksid dismutaza. Terapija nije uzrokovala nikakve neželjene učinke.

Protutumorsko djelovanje

Kiseli polisaharid (CPPA) izoliran iz droge Codonopsis radix in vitro snažno je inhibirao invazijski i migracijski potencijal HO-8910 stanica humanog epitelnog raka ovarija te pokazao snažan antiproliferacijski učinak na tumorske stanice. Tretman polisaharidom rezultirao je i smanjenjem CD44 ekspresije u HO-8910 stanica. Autori su zaključili da bi CPPA mogao biti potencijalni kandidat za prevenciju metastaze tumora, inhibicijom invazije, migracije i adhezije tumorskih stanica, kao i CD44 ekspresije (Xin i sur., 2012).

Kardiotonično djelovanje

Ekstrakti droge Codonopsis radix inhibiraju aktivnost fosfodieseteraze u stanicama miokarda štakora, a posljedica toga je povišena razina nehidroliziranog cAMP-a (Qin i sur., 1994).

4.2.5. Monografija droge u Ph. Eur. 9

01/2017:2714

KODONOPSOV KORIJEN

Codonopsis radix

DEFINICIJA

Cjelovit ili usitnjen, osušen korijen vrste Codonopsis pilosula (Franch.) Nannf., sakupljen u jesen.

IDENTIFIKACIJA

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija
ISPITIVANJA

Platycodon grandiflorus. Tankoslojna kromatografija (2.2.27).

Ispitivana otopina. U 0,500 g praška biljne droge (355) (2.9.12) doda se 5,0 mL *etanola* (70 postotni V/V) R. Sonicira se 10 minuta, a potom centrifugira ili filtrira. Supernatant ili filtrat se upari do suha pod sniženim tlakom. Ostatak se otopi u 1,0 mL vode R. Kolona za ekstrakciju na čvrstoj fazi koja sadržava 50 mg oktadecilsilil silikagela (55 μm) ispere se s 3 mL *metanola* R i 3 mL vode R i na vrh kolone se nanese 1,0 mL ispitivane otopine. Kolona se ispere s 3 mL vode R i sakupe se eluati. Eluat se upare do suha pod sniženim tlakom i ostatak se otopi u 1 mL *metanola* R.

Poredbena otopina: Otopi se 1 mg glukoze R i 1 mg ksiloze R u 2 mL *metanola* R.

Ploča: TLC silikagel ploča R (2-10 μm).

Nanošenje: 10 μL u linijama od 8 mm.

Razvijanje: u visini od 6 cm.

Sušenje: na zraku.

Detekcija: poprska se *otopinom anisaldehida* R, zagrije 3 minute na 100 °C i ispituje na dnevnom svjetlu.

Rezultati: u kromatogramu ispitivane otopine, prisustvo žuto-smeđe zone neposredno iznad ili ispod zone koja odgovara glukozi u kromatogramu poredbene otopine dokazuje prisustvo vrste *Platycodon grandiflorus*.

Gubitak sušenjem (2.2.32): najviše 12,0 posto, određeno na 1,000 g praška biljne droge (355) (2.9.12) sušenjem u sušioniku 2 sata na 105 °C.

Ukupni pepeo (2.4.16): najviše 6,0 posto.

Pepeo netopljiv u klorovodičnoj kiselin (2.8.1): najviše 2,5 posto.

Ekstraktibilne tvari: najmanje 21,0 posto.

U 4,00 g praška biljne droge (710) (2.9.12) doda se 100 g *etanola* (70 postotni V/V) R i ostavi macerirati 6 sati, uz često mijenjanje. Nakon stajanja 18 sati, otopina se filtrira. Uzme se 20 g filtrata, upari do suha na vodenoj kupalji i suši u sušioniku 3 sata na 105 °C. Ostatak teži najmanje 0,168 g (EDQM, 2018).
4.3. Moutan cortex (牡丹皮, Mu dan pi)

Moutan cortex (eng. Moutan bark) je kineska ljekovita droga koja se dobiva od biljne vrste *Paeonia x suffruticosa* (Slika 7).

Slika 7. Moutan cortex
(preuzeto s https://tcmwiki.com)

4.3.1. Opis biljke

Slika 8. *Paeonia x suffruticosa* Andrews
(preuzeto s http://www.uniprot.org)
4.3.2. Fitokemijski sastav

Glavne bioaktivne sastavnice biljne droge Moutan cortex su (Wagner i sur., 2011, Zhibi i sur., 2013):

- fenolni spojevi i glikozidi: peonol, peonizid, peonolid, peoniflorigenon, sufrutikozid A-E
- monoterpeni spojevi: peoniflorin, oksipeoniflorin, benzoil-peoniflorin, galoil-peoniflorin, galoiloksi-peoniflorin, peoniflorigenon, peonisufral, peonisufron, peonizotujon
- flavonoidi: kampferol, kvercetin, katehin
- trjeslovine: 1,2,3,4-tetragaloil-glukoza, 1,2,3,4,6-pentagaloil-glukoza
- organske kiseline: benzojeva kiselina, p-hidroksibenzojeva kiselina, galna kiselina

![Bioaktivne sastavnice droge Moutan cortex](image)

Slika 9. Bioaktivne sastavnice droge Moutan cortex
4.3.3. Upotreba u TCM-u

Moutan cortex se u tradicionalnoj kineskoj medicini koristi za snižavanje temperature kao i kod brojnih stranja koji uključuju krvarenje kao simptom, kao npr. kod subkutanog krvarenja, krvarenja iz nosa, hematurije i krvavog iskašljaja. Zanimljivo je da se također koristi i kod hormonskih poremećaja gdje krvarenje izostaje, tj. kod amenoreje, ali i kod menstrualnih tegoba, tegoba u menopauzi i iritabilnosti. Koristi se u kombinaciji s mnogim biljkama kao npr. s drogom Paeoniae radix rubra, Cinnamomi cassiae, Chrysanthemi flos i Persicae semen. Upotreba droge tijekom trudnoće je kontraindicirana (Hempen i Fischer, 2009).

4.3.4. Farmakološki učinci

Moutan cortex često je korištena droga u tradicionalnoj kineskoj medicini, a zbog toga su provedena i brojna pretklinička istraživanja kako bi se detaljnije objasnio mehanizam njezinog djelovanja. Kliničkih studija nedostaje te bi ih trebalo dodatno provesti.

Antioksidativno djelovanje

U in vitro istraživanju dokazano je da etanolni ekstrakt droge Moutan cortex inhibira produkciju reaktivnih kisikovih spojeva (ROS) u stanicama PC12 podvrgnutima oksidativnom stresu. Stanice su bile tretirane ekstraktom droge u dozi od 1 mg/mL, čime je obnovljena vitalnost stanica. Ekstrakt je povećao ekspresiju enzima hem oksigenaze te katehol-O-metiltransferaze, što upućuje da droga inhibira produkciju ROS (Rho i sur., 2005). Fenoli koji se nalaze u metanolnom ekstraktu droge posjeduju antioksidativna svojstva pa je droga potencijalan bogati izvor prirodnih antioksidansa. Ustanovljena je korelacija između antioksidativnog kapaciteta i količine ukupnih fenola, što ukazuje da su fenoli većinski doprinositelj antioksidativnoj aktivnosti droge (Li i sur., 2008).

Peoniflorin izoliran iz droge Moutan cortex pokazao je citoprotektivni učinak u endotelnim stanicama djelujući protiv oksidativnog oštećenja uzrokovanog gama zračenjem. Dokazano je da štiti EA.hy926 stanice od radiacijskog oštećenja putem Nrf2/HO-1 signalnog puta, smanjuje produkciju ROS, razine malonaldehyde i laktat dehidrogenaze, a pojačava produkciju glutationa i
superoksid dismutaze, što sve ukazuje da je peoniflorin potентан antioksidans i potенциальнlijek za лиjeченje radiјациjsких оzlјeda (Yu и sur., 2013).

Protuupalno djelovanje

U nekoliko je студија прoučавано антиоксидативно djелованje droге Moutan cortex на in vitro и in vivo modelima стимулираним lipopolисахаридима. Доказано je да droга својим protuupalnim svojstvima može побољшати станje akutnог пуљног оштећења узрокованог lipopolисахаридима у šтакора (Fu и sur., 2012). Protuupalно djелованje ispoljava putem inhibicije iNOS i COX-2 ekspresije supresijom fosforilacije I-κBα и aktivacijom NF-κB у makroфагима активираниh pomoću LPS (Chun и sur., 2007). Доказано je da peoniflorin inhibira LPS-induciranu upalu u humanim endотелним stanicama umbilikalne vene istodobnim smanjaњem ekspresije povećane mobilne skupine box-1 (HMGB1), količine mRNA и proteinske ekspresije RAGE, TLR-2 и TLR-4 te utišavanjem signalног пута NF-κB (Li и sur., 2013).

Protutumorsko djelovanje

U zadnjih nekoliko godina više skupina znanstvenika bavilo se istraživanjem protutumorskог djelovanja droге Moutan cortex i njezиних сastavника. Доказано je antiproliferativno djelovanje droге на stаничним линијама humanог karcinoma могу се primijetiti kod nekoliko malignих stanja kao npr. kod karcinoma želuča и jednjaka (Li и sur., 2010, Sun и sur., 2008). Znanstvenici smatraju da droga može poslužiti као кандидат за развој novог angiogenog agensa. Иstraživanja су тakođer pokazala да droga покажује visoku selektivnost u inhibiranju rasta stanica karcinoma mokраћног mjehura и smanja ekspresiju faktora koji стимирују angiogenezu, уključujući VEGF (Lin и sur., 2014).

Učinak na kardiovaskularni sustav

Neuroprotektivno djelovanje

promjena, uključujući morfološke, biokemijske, ali i bihevioralne promjene koje su rezultat primjene amiloid β 1-42 peptida na modelu štakora s Alzheimerovom bolesti (Zhou i sur., 2011).

Hepatoprotektivno djelovanje

Dosadašnji dokazi upućuju na to da droga Moutan cortex djeluje hepatoprotektivno. Ekstrakt droge smanjuje citotoksičnost inducirana paracetamolom umanjivanjem GSH iscrpljivanja te smanjenjem aktivnosti citokroma P4502E1 i oštećenja hepatičkog DNA in vivo (Shon i Nam., 2004). Peonol ublažava hepatotoksičnost inducirana epirubicinom kod miševa koji imaju 4T1 tumor, inhibirajući signalni put PI3K/Akt/NF-κB (Wu i sur., 2016). Prethodno tretiranje peoniflorinom štiti miševe od hepatitisa induciranog konkavalinom A putem inhibicije nekoliko upalnih medijatora i smanjenjem aktivnosti NF-κB signalnog puta (Chen i sur., 2015). Osim toga, peoniflorin djeluje i protiv fibroze jetre inhibiranjem HIF-1α signalnog puta putem mTOR-ovisnog puta (Zhao i sur., 2014).

4.3.5. Monografija droge u Ph. Eur. 9

04/2018:2474

KORA DRVENASTOG BOŽURA

Moutan cortex

DEFINICIJA

Osušena, cjelovita ili usitnjena, ostrugana ili neostrugana kora koriđena vrste Paeonia x suffruticosa Andrews, sakupljena u jesen.

Sadržaj:
- peonol (C₉H₁₀O₃; Mᵣ 166,2): najmanje 2,2 posto (suha droga);
- peoniflorin (C₂₃H₂₈O₁₁; Mᵣ 480,5): najmanje 1,1 posto (suha droga).

IDENTIFIKACIJA

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija

ISPITIVANJA
Strane primjese (2.8.2): najviše 1,0 posto.
Gubitak sušenjem (2.2.32): najviše 11,0 posto, određeno na 1,000 g prška biljne droge (355) (2.9.12) sušenjem u sušioniku 2 sata na 105 °C.
Ukupni pepeo (2.4.16): najviše 5,0 posto.
Pepeo netopljiv u klorovodičnoj kiselinii (2.8.1): najviše 1,0 posto.

ODREĐIVANJE SADRŽAJA

Tekućinska kromatografija (2.2.29).
Ispitivana otopina. U 0,200 g prška biljne droge (355) (2.9.12) doda se 3,0 mL metanola R1 i sonicira 30 minuta. Otopina se razrijedi do 10,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R i filtrira kroz membranski filter (nominalne veličine pora 0,45 μm).
Poredbena otopina (a). Otopi se 5,0 mg peoniflorina CRS u metanolu R1 i razrijedi do 5,0 mL istim otapalom.
Poredbena otopina (b): Otopi se 7,0 mg peonola CRS u metanolu R1 i razrijedi do 10,0 mL istim otapalom. Razrijedi se 3,0 mL otopine do 10,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R.
Poredbena otopina (c). Otopi se 2,5 mg 4'-hidroksiacetofenona R u 2,5 mL poredbene otopine (a), doda se 12,5 mL metanola R1 i razrijedi do 50,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R.
Poredbena otopina (d). Razrijedi se 2,5 mL poredbene otopine (a) do 7,5 mL s metanolom R1. Otopina se razrijedi do 25,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R.

Kolona:
- veličina: l=0,15 m, Ø=4,6 mm;
- nepokretna faza: modificirani oktadecilsilil silikagel za kromatografiju R (5 μm).
Pokretna faza:
- pokretna faza A: 6,8 g/L otopina natrijevog dihidrogenfosfata R;
- pokretna faza B: metanol R;

<table>
<thead>
<tr>
<th>Vrijeme (min)</th>
<th>Pokretna faza A (posto V/V)</th>
<th>Pokretna faza B (posto V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>15-18</td>
<td>70→40</td>
<td>30→60</td>
</tr>
<tr>
<td>18-25</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

Brzina protoka: 1,0 mL/min.
Detekcija: spektrofotometar na 230 nm.
Injektiranje: 10 μL ispitivane otopine i poredbene otopine (b), (c) i (d).
Vrijeme zadržavanja: peoniflorin = oko 9,5 min; 4’-hidroksiacetofenon = oko 10,5 min; peonol = oko 23 min.

Prikladnost sustava: poredbena otopina (c):
- razlučivanje: najmanje 1,5 između pikova peoniflorina i 4’-hidroksiacetofenona.
Izračuna se postotak peoniflorina prema izrazu:

\[\frac{A_1 \times m_2 \times p_i}{A_2 \times m_1 \times 5} \]

\(A_1 \) = površina pika peoniflorina u kromatogramu ispitivane otopine;
\(A_2 \) = površina pika peoniflorina u kromatogramu poredbene otopine (d);
\(m_1 \) = masa biljne droge korištene za pripremu ispitivane otopine, u gramima;
\(m_2 \) = masa peoniflorina CRS korištenog za pripremu poredbene otopine (a), u gramima;
\(p \) = postotni udio peoniflorina u peoniflorinu CRS (EDQM, 2018).
4.4. Paeoniae radix alba (白芍, Bai Shao)

Paeoniae radix alba (eng. Paeony root, white) je kineska ljekovita droga koja se dobiva od biljne vrste Paeonia lactiflora (Slika 10).

4.4.1. Opis biljke

4.4.2. Fitokemijski sastav

Glavne bioaktivne sastavnice biljne droge Paeoniae radix alba su (Zhibi i sur., 2013, Wagner i sur., 2011):

- **monoterpenski glikozidi:** peoniflorin, albiflorin, oksipeoniflorin, benzoilpeoniflorin, benzoiloksipeoniflorin, laktiflorin
- **monoterpeni:** peoniflorigenon, peonilaktoni A,B i C
- organske kiseline (p-hidroksibenzojeva kiselina, galna kiselina)
- ostale sastavnice: trjeslovine (1,2,3,6-tetra-galoil-glukoza, 1,2,3,4,6,-penta-galoil-glukoza), triterpeni, kiseli polisaharidi

Slika 12. Bioaktivne sastavnice droge Paeoniae radix alba
4.4.3. Upotreba u TCM-u

Biljna droga Paeoniae radix alba se u tradicionalnoj kineskoj medicini koristi kod problema vezanih za probavni sustav, primjerice bolova u trbuhu, grčeva i dijareje, također u kombinaciji s drugama Bupleuri radix, Glycyrrhizae radix i Saposnikoviae radix. Upotrebljava se za glavobolje i vrtoglavice, a može i u kombinaciji s drogom Uncariae ramulus cum uncis. Droga se često koristi kod ženskih hormonskih poremećaja kao npr. kod menstrunalnih tegoba i jakog krverenja u menstruaciji, a može smiriti i simptome predmenstrualnog sindroma. Snižava tlak pa djeluje povoljno i kod hipertenzije i glaukoma (Zhang, 2012, Hempen i Fischer, 2009).

4.4.4. Farmakološki učinci

Paeoniae radix alba je biljna droga s dugom tradicionalnom uporabom u kineskoj medicini te je vrlo popularna i u ostalim dijelovima svijeta. Dokazi pronađeni pretraživanjem znanstvenih baza podataka dobiveni su *in vitro* i *in vivo* istraživanjima na životinjama te su neophodna daljnja klinička ispitivanja kako bi se potvrdila djelotvornost droge kod ljudi.

Protuupalni učinak

Protutumorsko djelovanje

Antidepresivni učinak

Na animalnim modelima korištenjem testa prisilinog plivanja i testa vješanja repova istražen je antidepresivni učinak droge Paeoniae radix alba u kombinaciji s drogom Bupleuri radix (Wang i sur., 2016). Utvrđeno je da ova kombinacija droga smanjuje vrijeme nepokretnosti životinja djelujući tako da regulira transmisiju adrenalina i serotonina u području hipokampusa i korteksa miševa.

Učinak albiflorina izoliranog iz droge Paeoniae radix alba na depresiju istražen je in vivo. Utvrđeno je da se nakon 7-dnevne primjene albiflorina u dozama od 3,5, 7,0 i 14,0 mg/kg, značajno smanjuje vrijeme nepokretnosti miševa u testovima prisilnog plivanja i vješanja repova, bez učinka na njihov lokomotorni sustav. Osim toga, Western-blot analiza pokazala je da albiflorin može povećati ekspresiju neutrotrofnog faktora iz mozga (engl. BDNF) u hipokampusu. Također je istraživan učinak albiflorina na štakorima nakon što su izloženi kroničnom nepredvidljivom stresu u razdoblju od 35 dana. Utvrđeno je da duža primjena albiflorina u
dozama od 7 i 14 mg (jednom dnevno tijekom 35 dana) u štakora obnovlja želju za saharozom. Također, kronična primjena albiflorina je povećala razine neurotransmitora noradrenalina i serotoninina te njegovog metabolita 5-hidroksiindol octene kiseline, u hipokampusu (Wang i sur., 2016).

Antihipertenzivni učinak

Su-Hong i suradnici (2015) su na animalnom modelu proučavali protektivni učinak droge Paeoniae radix alba kod hipertenzije. Štakorima sa spontanom i induciranim hipertenzijom je primjenjivan ekstrakt droge u dozi od 25 i 75 mg/kg, dok je kontrolnoj grupi primjenjivan kaptopril u dozi od 15 mg/kg. Rezultati su pokazali da ekstrakt može značajno smanjiti sistolički tlak terapijom u trajanju od 9 i 4 tjedana kod štakora sa spontanom i induciranim hipertenzijom. Kod štakora s induciranim hipertenzijom, čiji je lipidni profil bio pogošan, kao i razine jetrenih enzima, ekstrakt je djelovao pozitivno na te parametre, čime se može zaključiti da droga može ublažiti oštećenje jetre. Kod štakora sa spontanom hipertenzijom pokazalo se da bi antihipertenzivni učinak droge mogao biti povezan s njezinim učinkom na regulaciju razine serumskog NO i endotelina.

U drugoj studiji na modelu štakora sa spontanom hipertenzijom primjenjivan je ekstrakt droge (30 mg/kg) u kombinaciji s metoprololom (6 mg/kg), dok su kontrolnim grupama davani zasebno ekstrakt (30 i 90 mg/kg), metoprolol (6 i 20 mg/kg) i destilirana voda. Nakon 6-ero tjedne primjene, ustanovljeno je da kombinacija ekstrakta droge i metoprolola može značajno smanjiti povišeni krvni tlak, poboljšati mikrocirkualciju, vaskularnu funkciju te patološke promjene i pojačati ekspresiju eNOS. Također je dokazano da metoprolol povećava koncentraciju peoniflorina u krvi (Li i sur., 2018).

Nefroprotektivno djelovanje

Protektivni učinak peoniflorina, izoliranog iz droge Paeoniae radix alba, istražen je in vitro te in vivo na animalnom modelu sa adriamicinom-induciranim nefrotičkim sindromom. Peoniflorin je kod štakora smanjio razine ureje u krvi, serumski kreatinin te ukupni kolesterol i trigliceride, ali je povećao razine proteina i albumina. Također su smanjene lezije na bubrezima, a povećan je broj podocita u bubreznom tkivu. Nadalje, dokazano je da peoniflorin aktivira PPARγ i deaktivira ANGPTL4 u bubregu. In vitro je utvrđeno da peoniflorin smanjuje razine kaspaze-3 i Bax, a
povećava Bcl-2, što ukazuje da se smanjila brzina apoptoze podocita. Dosadašnji rezultati upućuju na dobar terapijski učinak peoniflorina koji se temelji na aktiviranju PPARγ, a zatim inhibiranju ANGPTL4 (Lu i sur., 2017).

Neuroprotektivno djelovanje

4.4.5. Monografija droge u Ph. Eur. 9

01/2017:2424

BIJELI BOŽUROV KORIJEN

Paeoniae radix alba

DEFINICIJA

Cjelovit ili usitnjen, oguljeni korijen vrste Paeonia lactiflora Pall. s uklonjenim podankom i korjenčićima, obrađen kipućom vodom i osušen.

Sadržaj: peoniflorin (C_{23}H_{28}O_{11}; M_r 480.5): najmanje 1,6 posto (suha droga).

IDENTIFIKACIJA

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija

ISPITIVANJA

Gubitak sušenjem (2.2.32): najviše 12,0 posto, određeno na 1,000 g praška biljne droge (355) (2.9.12) sušenjem u sušioniku 2 sata na 105 °C.

Ukupni pepeo (2.4.16): najviše 4,0 posto.

Pepeo netopljiv u klorovodičnoj kiselin (2.8.1): najviše 0,5 posto.

ODREĐIVANJE SADRŽAJA

Tekućinska kromatografija (2.2.29).

Ispitivana otopina. U 30,0 mg praška biljne droge (355) (2.9.12) doda se 3,0 mL metanola R i sonicira 30 minuta. Otopina se razrijedi do 10,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R i filtrira kroz membranski filter (nominalne veličine pora 0,45 μm).

Poredbena otopina (a). Otopi se 5,0 mg peoniflorina CRS u metanolu R i razrijedi do 25,0 mL istim otapalom.

Poredbena otopina (b). Otopi se 1,0 mg 4’-hidroksiacetofenona R u 6,0 mL poredbene otopine (a). Razrijedi se 3,0 mL otopine do 10,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R.

Poredbena otopina (c). Razrijedi se 2,5 mL poredbene otopine (a) do 10,0 mL s 6,8 g/L otopinom natrijevog dihidrogenfosfata R.

Kolona:
- veličina: l=0,15 m, Ø=4,6 mm;
- nepokretna faza: modificirani oktadecilsilil silikagel za kromatografiju R (5 μm).

Pokretna faza: metanol R, 6,8 g/L otopina natrijevog dihidrogenfosfata R (30:70 V/V).

Brzina protoka: 1,0 mL/min.
Detekcija: spektrofotometar na 230 nm.

Injektiranje: 10 μL ispitivane otopine i poredbene otopine (b) i (c).

Vrijeme trajanja analize: 18 min.

Vrijeme zadržavanja: peoniflorin = oko 8 min; 4’-hidroksiacetofenon = oko 9 min.

Prikladnost sustava: poredbena otopina (b):
- razlučivanje: najmanje 1,5 između pikova peoniflorina i 4’-hidroksiacetofenona.

Izračuna se postotak peoniflorina prema izrazu:

\[
\frac{A_1 \times m_2 \times p}{A_2 \times m_1 \times 10}
\]

\(A_1\) = površina pika peoniflorina u kromatogramu ispitivane otopine;
\(A_2\) = površina pika peoniflorina u kromatogramu poredbene otopine (c);
\(m_1\) = masa biljne droge korištene za pripremu ispitivane otopine, u gramima;
\(m_2\) = masa **peoniflorina CRS** korištenog za pripremu poredbene otopine (a), u gramima;
\(p\) = postotni udio peoniflorina u **peoniflorinu CRS** (EDQM, 2018).
4.5. *Paoniae radix rubra* (赤芍，Chi Shao)

Paoniae radix rubra (eng. Paeony root, red) je kineska ljekovita droga koja se dobiva od biljne vrste *Paeonia lactiflora* (Slika 13).

![Slika 13. Paoniae radix rubra (preuzeto s https://tcmwiki.com)](image)

4.5.1. Opis biljke

Biljna vrsta *Paeonia lactiflora* Pall. (Paeoniaceae) je obrađena u poglavlju 4.4.1., s obzirom da su *Paeoniae radix alba* i *Paeoniae radix rubra* dvije različite droge tradicionalne kineske medicine koje se dobivaju od iste biljne vrste.

4.5.2. Fitokemijski sastav

Biljna droga *Paoniae radix rubra* je bogata sadržajem monoterpenjskih glikozida i ostalih monoterpena. Kvalitativni sastav glavnih bioaktivnih sastavnica je veoma sličan/identičan sastavu droge *Paoniae radix alba*, no kvantitativni omjeri tih sastavnica su kod dviju droga različiti (Slika 12). Usporedne fitokemijske studije većeg broja komercijalno dostupnih droga pokazale su da bijeli božurov korijen sadrži visok udio p-hidroksibenožijev kiseline i albiflorina, dok se crveni...
božurov korejen odlikuje visokim udjelom peoniflorina i benzojeve kiseline (Chunnian i sur., 2012).

4.5.3. Upotreba u TCM-u

Biljna droga Paeoniae radix rubra u tradicionalnoj kineskoj medicini koristi se kod glavobolja i vrtoglavicu. Pomaže kod problema s gastro-intestinalnim sustavom kao npr. kod bolova u trbuhu, grčeva i proljeva. Droga služi za jačanje krvi pa se primjenjuje kod poremećaja u menstruaciji, kao npr. kod amenoreje, dismenoreje i metroragije, a također i kod angine pectoris. Može se koristiti u kombinaciji s drogama Chuanxiong rhizoma, Persicae semen i Paeoniae radix alba (Bensky i sur., 2004, Zhufan, 2000).

4.5.4. Farmakološki učinci

Protutumorski učinak

U in vitro i in vivo studiji istraživan je učinak ekstrakta droge Paeoniae radix rubra na rak mokraćnog mjehura. Dokazano je da ekstrakt smanjuje vijabilnost stanica raka (1-3 mg/mL), a ujedno pokazuje izrazito nisku toksičnost na normalne stanice. Ekstrakt je smanjio populacije određenih faza staničnog ciklusa, najviše stanice G1 faze. Na mišjem modelu raka mokraćnog mjehura ekstrakt je smanjio veličinu tumora, bez učinka na biokemijske parametre u krvi. Navedeni rezultati upućuju na zaključak da droga ima antiproliferativna svojstva i protutumorsko djelovanje na stanice raka mokraćnog mjehura (Lin i sur., 2016).

Antitrombotski učinak

In vitro studija u kojoj je ispitivan antitrombotski učinak ekstrakta droge Paeoniae radix rubra ukazala je na antikoagulativno djelovanje. Potom je iz ekstrakta izolirano šest spojeva od kojih su četiri njih pokazivala antikoagulativnu aktivnost – peoniflorin, albiflorin, pentagaloolglukoza te protokatehinska kiselina. Na eksperimentalnim životinjama dokazano je da te sastavnice droge poboljšavaju krvni protok, antikoagulativnu aktivnost, reguliraju vazodilataciju vaskularnog endotela te pokazuju antitrombotska svojstva i in vivo (Xie i sur., 2017).

Imunomodulatorno djelovanje

U in vitro istraživanju ispitivana su imunoregulatorna svojstva ekstrakta droge na humane makrofage tijekom mikobakterijske infekcije. Rezultati su pokazali da droga inhibira produkciju IL-10 te pojačava ekspresiju IL-8, dok nema učinka na ekspresiju IL-6 i TNF-α. Ekstrakt nije utjecao na fosforilaciju staničnih protein kinaza, uključujući MAPK, Akt i GSK3β, ali je potisnuo degradaciju IκBα u citoplazmi te inhibirao translokaciju transkripcijskog fakora NF-κB1 p50 u jezgru. Inhibitorni učinak droge na ekspresiju IL-10 može biti posljedica smanjene translokacije NF-κB1 p50 čime su potvrđena imunomodulatorna svojstva droge Paeoniae radix rubra (Wang i sur., 2011).

Kardioprotektivno djelovanje

U in vivo istraživanju na animalnom modelu štakora ispitivan je protektivni učinak terpenskih glikozida, izoliranih iz droge Paeoniae radix rubra, na ishemiju miokarda. Glikozidi u dozi od 300 mg/kg/dan znacajno su smanjili serumske razine kreatin kinaze i laktat dehidrogenaze kod štakora te također ublažili oštećenje miokarda. Značajno je bila povišena ekspresija p-AKT i p-mTOR, dok su razine kaspaze-3 i Bax/Bcl-2 bile smanjene. Na temelju dobivenih obećavajućih rezultata, Ke i suradnici (2017) sugeriraju da bi terpenski glikozidi iz droge mogli biti potencijalni lijek za liječenje ishemije miokarda.

Na animalnom modelu istraživan je i protektivni učinak ekstrakta droge na akutni infarkt miokarda. U usporedbi s kontrolom zabilježeno je povećanje količine glutaminske-oksalacetatne transaminaze, kreatin kinaze, laktat dehidrogenaze, α-hidroksIBUTIRAT dehidrogenaze te razine IL-10, TNF-α i lipidne peroksidacije u štakora. Aktivnost superoksid dismutaze, trombinsko vrijeme
te aktivirano parcijalno tromboplastinsko vrijeme značajno su se smanjili. U kardiomiocitima bile su povećane razine kaspaze-3 te ekspresija Bax i Bcl-2, dok je omjer Bcl-2/Bax bio smanjen. Ovi rezultati upućuju na zaštitno djelovanje ekstrakta droge kod aktunog infarkta miokarda, a mogući mehanizam uključuje regulaciju srčanih markera, citokina, oksidativnog stresa i apoptoze (Mo i sur., 2011).

Hepatoprotektivno djelovanje

Li i suradnici (2011) se na animalnom modelu ispitali učinkovitost vodenog ekstrakta droge Paeoniae radix rubra na hepatotoksičnost izazvanu ugljikovim tetrakloridom. Životinjama je davan vodeni ekstrakt droge u dozi od 100, 200 i 300 mg/kg, a kontrolnoj grupi je istodobno davan bifendat u dozi od 100 mg/kg, tijekom 28 dana. Dokazano je da ispitivani ekstrakt ima istu učinkovitost kao i bifendat. Hepatoprotektivna svojstva droge povezuju se s njezinom antioksidativnom sposobnošću hvatanja slobodnih radikala.

Antidijabetički učinak

Učinak etanolnog ekstrakta droge i njezina moguća inzulinotropna svojstva kod dijabetesa tipa 2 ispitana su u in vivo studiji na animalnom modelu (Chang i sur., 2016). Kod štakora koji su primali etalnolni ekstrakt u dozi od 200 mg/kg tijekom 30 dana zabilježeno je postepeno smanjenje razine glukoze u krvi. Također je dokazano da etanolni ekstrakt ima višestruka hipoglikemijska svojstva, uključujući i sposobnost pojačanja sekrecije inzulina. Pentagaloilglukoza i frakcija bogata polifenolima isticale su se po inzulinotropnim svojstvima (Chang i sur., 2016).

Protektivno djelovanje na pluća

4.5.5. Monografija droge u Ph. Eur. 9

CRVENI BOŽUROV KORIJEN

Paeoniae radix rubra

DEFINICIJA

Osušeni, cijeloviti ili usitnjeni korijen vrste _Paeonia lactiflora_ Pall. ili _Paeonia veitchii_ Lynch ili njih obje, s uklonjenim podankom i korjenčićima.

Sadržaj: najmanje 1,8 posto peoniflorina (_C_{23}H_{28}O_{11}; M_r 480.5_) (suha droga).

IDENTIFIKACIJA

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija

ISPITIVANJA

Gubitak sušenjem (2.2.32): najviše 12,0 posto, određeno na 1,000 g praška biljne droge (355) (2.9.12) sušenjem u sušioniku 2 sata na 105 °C.

Ukupni pepeo (2.4.16): najviše 8,0 posto.

Pepeo netoljiv u klorovodičnoj kiselinji (2.8.1): najviše 1,0 posto.

ODREĐIVANJE SADRŽAJA

Tekućinska kromatografija (2.2.29).

Ispitivana otopina. U 30,0 mg praška biljne droge (355) (2.9.12) doda se 3,0 mL _metanola R_ i sonicira 30 minuta. Otopina se razrijedi do 10,0 mL s 6,8 g/L otopinom _natrijevog dihidrogenfosfata R_ i filtrira kroz membranski filter (nominalne veličine pora 0,45 μm).

Poredbena otopina (a). Otopi se 5,0 mg _peoniflorina CRS u metanolu R_ i razrijedi do 25,0 mL istim otapalom.

Poredbena otopina (b). Otopi se 1,0 mg _4'-hidroksiacetofenona R_ u 6,0 mL poredbene otopine (a). Razrijedi se 3,0 mL otopine do 10,0 mL s 6,8 g/L otopinom _natrijevog dihidrogenfosfata R_.

Poredbena otopina (c). Razrijedi se 2,5 mL poredbene otopine (a) do 10,0 mL s 6,8 g/L otopinom _natrijevog dihidrogenfosfata R_.

Kolona:
- _veličina:_ l=0,15 m, Ø=4,6 mm;
- _nepokretna faza:_ modificirani oktadecilisilik silikagel za kromatografiju R (5 μm).

Pokretna faza: _metanol R_, 6,8 g/L otopina _natrijevog dihidrogenfosfata R_ (30:70 V/V).

Brzina protoka: 1,0 mL/min.
Detekcija: spektrofotometar na 230 nm.
Injektiranje: 10 μL ispitivane otopine i poredbene otopine (b) i (c).
Vrijeme trajanja analize: 18 min.
Vrijeme zadržavanja: peoniflorin = oko 8 min; 4’-hidroksiacetofenon = oko 9 min.
Prikladnost sustava: poredbena otopina (b):
- razlučivanje: najmanje 1,5 između pikova peoniflorina i 4’-hidroksiacetofenona.

Izračuna se postotak peoniflorina prema izrazu:

\[
\frac{A_1 \times m_2 \times p}{A_2 \times m_1 \times 10}
\]

\(A_1\) = površina pika peoniflorina u kromatogramu ispitivane otopine;
\(A_2\) = površina pika peoniflorina u kromatogramu poredbene otopine (c);
\(m_1\) = masa biljne droge korištene za pripremu ispitivane otopine, u gramima;
\(m_2\) = masa peoniflorina CRS korištenog za pripremu poredbene otopine (a), u gramima;
\(p\) = postotni udio peoniflorina u peoniflorinu CRS (EDQM, 2018).
4.6. **Platycodonis radix** (桔梗， Jie Geng)

Platycodonis radix (*eng.* Platycodon root) je kineska ljekovita droga koja se dobiva od biljne vrste *Platycodon grandiflorum* (Slika 14).

4.6.1. **Opis biljke**

Platycodon grandiflorus (Jacq.) A.DC. (Campanulaceae) je višegodišnja uspravna biljka, visoka 30-100 cm (Slika 15). Stabljika je zeleno-plave boje, gola i sadrži obilni mliječni sok. Listovi su gotovo sjedeći, naizmjenično ili nasuprotno raspoređeni, jajastog ili jajasto-suličastog oblika sa zašiljenim vrhom plojke. Cvjetovi su pojedinačni, plave ili ljubičaste boje i zvonastog oblika. Plod je jajasti tobolac, raspuknut pri vrhu. Sjemenke su eliptičnog

![Slika 15. Platycodon grandiflorus (Jacq.) DC. (preuzeto s https://www.rhs.org.uk)](https://www.rhs.org.uk)

4.6.2. Fitokemijski sastav

Glavne bioaktivne sastavnice biljne droge Platycodonis radix su (Lee i sur., 2015, He i sur., 2013, Zhang, 2012):

- **tripterpenski saponini**: platikodini A, C i D, poligalacin D, platikozidi D, E i G
- ostale sastavnice: organske kiseline (poligalna kiselina, platikogenska kiselina), masne kiseline (linolenska kiselina, linolna kiselina, oleinska kiselina), eterično ulje (aldehidi heksanal, heptanal, nonanal, seskviterpen cedrol)

![Slika 16. Bioaktivne sastavnice droge Platycodonis radix](image-url)
4.6.3. Upotreba u TCM-u

Platycodonis radix se u tradicionalnoj kineskoj medicini najviše koristi u liječenju prehlada gdje je prisutno upaljeno, bolno grlo i kašalj. Pomože na način da razrjeđuje sluz i potiče iskašljavanje, a također djeluje blagotvorno na nadražena i promuklo grlo. Kod prethodnih simptoma može se kombinirati s drogoj Glycyrrhizae radix i Scutellariae radix, a ukoliko je također prisutna povišena temperatura, nazalna kongestija i glavobolja kombinira se s drogama Perrilae folium i Armeniacae semen (Hempen i Fischer, 2009, Bensky i sur., 2004).

4.6.4. Farmakološki učinci

Uvidom u literaturu nađen je veći broj pretkliničkih studija koje potvrđuju djelovanje droge Platycodonis radix. Uz adjuvante dijagnostike, može se zaključiti kako je droga dobar kandidat za daljnja klinička istraživanja kojih još uvijek nedostaje.

Protuupalni učinci

U studiji na animalnom modelu istraženo je protuupalno djelovanje platikodina D na masnu jetru uzrokovanu alkoholom. Liječenje platikodinom D značajno je smanjilo razine serumskih enzima ALT, AST i TBIL. Uočeno je smanjenje razine endotoksina u serumu, kao i endotoksinom posredovanih upalnih čimbenika kao što su TNF-α i IL-6. Također je bila smanjena ekspresija mRNA, TLR4 i TRAF-6 što upućuje na potiskivanje aktivnosti NF-κB. Može se zaključiti da platikodin D djeluje protuupalno na masnu jetru uzrokovanu alkoholom (Wu i sur., 2016).

U daljnjoj studiji su istraživane protuupalne aktivnosti prosapogenina D i prosapogenin D metilnog estera platikodina D. Rezultati su pokazali da metilni ester ovisno o koncentraciji inhibira lipopolisaharidom inducirano prehrambu NO i prostaglandina E2 u makrofagima, međutim sami prosapogenin D nije pokazao isti učinak. Nadalje, metilni ester je inhibirao ekspresiju iNOS i COX-2 bez značajnih citotoksičnih učinaka. U transfektatnim RAW 264.7 stanicama primijećeno je da metilni ester smanjuje aktivnost NF-κB faktora. Metilni ester također inhibira degradaciju inhibitorskog proteina nazvanog inhibitor-κB. Stoga je predloženo da metilni ester inhibira ekspresiju LPS-induciranih iNOS i COX-2 gena suprimiranjem NF-κB aktivacije.
na razini transkripcije. Može se zaključiti da prosapogenin D metilni ester platikodina D ima protuupalni učinak posredovan regulacijom NF-κB signalnog puta (Chung i sur., 2008).

Antialergijski učinak

U studiji na animalnom modelu dokazano je da primjena droge inhibira sistemsku anafilaktičku reaciju induciranu dinitrofenil-IgE protutijelom kod miševa. Droga je smanjila razinu β-heksozaminidaze i otpuštanje histamina iz RBL-2H3 stanica osjetljivih na DNP-IgE. Osim toga, droga je inhibirala povećanje produkcije IL-4 i TNF-α te njihovu ekspresiju u RBL-2H3 stanicama. Također je istražen inhibitorni mehanizam na degranulaciju mast stanica. Droga je spriječila Syk fosforilaciju induciranu DNP-IgE protutijelima, kao i fosforilaciju Akt i MAP kinaza. Može se zaključiti da droga može imati antialergijsko djelovanje inhibicijom upalnih citokina i Syk-ovisnih signalnih puteva (Han i sur., 2009).

Hepatoprotektivno djelovanje

U drugoj studiji na animalnom modelu istražen utjecaj droge na masnu jetru induciranu alkoholom i mogući mehanizam uključen u zaštitu. Primjena droge značajno je spriječila povećanje razine lipida u serumu i lipida induciranih alkoholom. Nadalje, primjena droge je normalizirala ekspresiju L-FABP i aktivnost citrokroma P450 2E1. Rezultati upućuju na to da inhibicija citrokroma i regulacije L-FAPB igraju važnu ulogu u hepatoprotektivnom učinku droge (Kim i sur., 2007).
Protutumorsko djelovanje

Antidijabetičko djelovanje

U in vivo studiji istraživan je učinak droge Platycodonis radix na miševa kojima je davana hrana s velikim udjelom masti. Dokazano je da droga aktivira AMPK/ACC fosforilaciju u C2C12 miotubama mišića i također potiskuje diferencijaciju adipocita u stanicama 3T3-L1. Droga je spriječila dobitak težine kod miša, kao i inzulinsku rezistenciju uzrokovana pretilošću. Također je smanjila povišene razine cirkulirajućih mediatora, kao npr. trigliceride, leptin, rezistin, MCP-1 i T-CHO. Ovi rezultati upućuju da droga poboljšava stanje organizma te smanjuje otpornost na inzulin kod pretilih miševa (Lee i sur., 2012).

U drugoj studiji na animalnom modelu dokazano je da platikonska kiselina izolirana iz droge povećava unos glukoze u stanice i na taj način poboljšava homeostazu glukoze u miševima koji imaju šećernu bolest tipa II, moguće kao aktivator PPAR-γ receptora (Kwon i sur., 2012).
Antihiperlipemijski učinak

U istraživanju na eksperimentalnim životinjama dokazano je da se hranjenjem masnom hranom koja sadrži 10 ili 30 g/kg saponina izoliranih iz droge Platycodonis radix sprječava porast tjelesne težine, mase masnog tkiva te jetrena steatoza u miševa u usporedbi s kontrolom. Nadalje, saponini (375 mg/kg) su inhibirali povišenje krvnog triacilglicerola u štakorima oralnom primjenom lipidne emulzije u usporedbi sa štakorima kojima je bila davana čista lipidna emulzija bez saponina. Također je ispitivana učinkovitost izoliranog platikodina D na aktivnost pankreasne lipaze i na povišenje triacilglicerola u krvi štakora. Platikodin D (0,5 i 1,0 g/štakor) je inhibirao aktivnost pankreasne lipaze in vitro i u dozi od 244 mg/kg je inhibirao povećanje krvnog triacilglicerola. Stoga se može zaključiti da antihiperlipemijski učinak saponina iz droge može biti posljedica inhibicije intestinalne apsorpcije masti pomoću platikodina D (Han i sur., 2002).

Neuroprotektivno djelovanje

In vitro je utvrđeno da vodeni ekstrakt droge štiti primarne kultivirane kortikalne stanice štakora od glutamatom-izazvane toksičnosti. Među izoliranim sastavnicama droge (platikodin A, C, i D te deapioplatikodin D), platikodin A je pokazao najjačnije djelovanje, povećavajući vijabilnost stanica za 50 % pri koncentracijama od 0,1 μM do 10 μM. Može se zaključiti da su za neuroprotektivni učinak droge odgovorni saponini koji se nalaze u drogi (Son i sur., 2007).
4.6.5. Monografiјa droge u Ph. Eur. 9

04/2018:2660

PLATIKODONOV KORIJEN

Platycodonis radix

DEFINICIJA

Osušeni, cijeli ili usitnjen korijen vrste Platycodon grandiflorus (Jaq.) A.DC., oguljen ili neoguljen, s uklonjenim korjenčićima, sakupljen u proljeće ili jesen.

Sadržaj: najmanje 0,3 posto ukupnih saponina, izraženo kao platikodin D (C_{57}H_{92}O_{28}; M_r 1225) (suha droga).

IDENTIFIKACIJA

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija

ISPITIVANJA

Codonopsis pilosula (Franch.) Nannf. Ispitaj biljnu drogu kako je opisano u B identifikaciji. Prisutstvo sklereida, izoliranih ili u grupi, i škrobnih zrnaca indicira na prisutstvo vrste Codonopsis pilosula (Franch.) Nannf.

Gubitak sušenjem (2.2.32): najviše 10,0 posto, određenih na 1,000 g praška biljne droge (355) (2.9.12) sušenjem u sušioniku 2 sata na 105 °C.

Ukupni pepeo (2.4.16): najviše 6,0 posto.

Pepeo netopljiv u klorovodičnoj kiselin (2.8.1): najviše 1,0 posto.

ODREĐIVANJE SADRŽAJA

Tekućinska kromatografija (2.2.29).

Smjesa otopala: voda R, anhidridni etanal R (30:70 V/V)

Ispitivana otopina. U 2,00 g praška biljne droge (355) (2.9.12) doda se 50,0 mL smjese otopala i sonicira 45 minuta. Ohladi se i zatim filtrira. Filter se ispere s 10 mL smjese otopala. Filtrat i ispirak se sjedine i upare do suha pod sniženim tlakom. Oстатak se otopi u smjesi otopala, prenese u volumetrijsku tikvicu i razrijedi do 10,0 mL istim otopalom. Dobro se promiješa i filtrira kroz membranski filter (nominalne veličine pora 0,45 μm).

Poredbena otopina (a). Otopi se 8,0 mg platikodina D CRS u smjesi otopala i razrijedi do 10,0 mL istim otopalom.
Poredbene otopine (b), (c), (d), (e), (f), (g). Poredbena otopina (a) razrijedi se tako da se dobije 6 poredbenih otopina platikodina D, u rasponu koncentracija koje se očekuju u ispitivanoj otopini. Poredbena otopina (h). Otopi se 5,0 mg suhog ekstrakta platikodonovog korijena za prikladnost sustava HRS u 1,0 mL metanola R.

Kolona:
- veličina: l=0,15 m, Ø=4,6 mm;
- nepokretna faza: modificirani oktadecilsilil silikagel za kromatografiju R (5 μm);
- temperatura: 30 °C.

Pokretna faza:
- pokretna faza A: voda za kromatografiju R;
- pokretna faza B: acetonitril R1;

<table>
<thead>
<tr>
<th>Vrijeme (min)</th>
<th>Pokretna faza A (posto V/V)</th>
<th>Pokretna faza B (posto V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>85–75</td>
<td>15–25</td>
</tr>
<tr>
<td>10-30</td>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>

Brzina protoka: 1,0 mL/min.

Detekcija: detektor raspršenja svjetla u uparenom uzorku; prikladne su sljedeće postavke; ako detektor ima drukčije podešene parametre, treba ih podesiti tako da zadovoljavaju kriterije prikladnosti sustava za omjer signala i šuma:
- plin nosač: dušik R;
- tlak: 350 kPa;
- temperatura evaporatora: 45 °C.

Injektiranje: 10 μL.

Identifikacija pikova: za identifikaciju pikova saponina 1, 2 (platikodin D), 3, 4 i 5 koristi se kromatogram suhog ekstrakta platikodonovog korijena HRS i kromatogram poredbene otopine (h); za identifikaciju pika platikodina D koristi se kromatogram poredbene otopine (a).

Relativno vrijeme zadržavanja u odnosu na platikodin D (vrijeme zadržavanja = oko 21 min): saponin 1 = oko 0,98; saponin 3 = 1,03; saponin 4 = oko 1,06; saponin 5 = oko 1,08. Dodatni pikovi mogu biti prisutni.

Prikloidnost sustava:
- razlučivanje: najmanje 1,5 između pikova saponina 1 i platikodina D u kromatogramu poredbene otopine (h);
- omjer signala i šuma: najmanje 50 za glavni pik u kromatogramu poredbene otopine (a).

Napravi se kalibracijska krivulja s logaritmom koncentracija (u mg/10 mL) poredbenih otopina (a), (b), (c), (d), (e), (f) i (g) (korigirano prema navedenom sadržaju platikodina D CRS) na apscis i logaritmom odgovarajućih površina pikova na ordinati.

Izračuna se postotak saponina 1, 2, 3, 4 i 5 koristeći sljedeći izraz:
\[\frac{10^A}{m \times 10} \]

\(A \) = logaritim koncentracije saponina u ispitivanoj otopini, određen iz kalibracijske krivulje;

\(M \) = masa biljne droge korištene za pripremu ispitivane otopine, u gramima.

Izračuna se postotak ukupnih saponina, izraženo kao platikodin D, uzimajući zbroj postotaka saponina 1, 2, 3, 4 i 5 (EDQM, 2018).
4.7. *Polygoni cuspidati rhizoma et radix* (虎杖, *Hu zhang*)

Polygoni cuspidati rhizoma et radix (*eng. Polygonum cuspidatum rhizome and root*) je kineska ljekovita droga koja se dobiva od biljne vrste *Polygonum cuspidatum* (Slika 17).

Slika 17. *Polygoni cuspidati rhizoma et radix*
(preuzeto s https://tcmwiki.com)

4.7.1. Opis biljke

(preuzeto s http://nyflora.us)
4.7.2. Fitokemijski sastav

Glavne bioaktivne sastavnice biljne droge Polygoni cuspidati rhizoma et radix su (Fu i sur., 2015, Zhibi i sur., 2013):

- **antrakinoni**: emodin, hidroksil aloe-emodin, emodin-O-(sulfonil)-glukozid
- **stilbeni**: resveratrol, resveratrol-O-sulfat, piceatanol-O-glukozid, polidatin
- trjeslovine: galoil-glukoza, katehin, epikatehin, procijanidin B, katehin-galat
- ostale sastavnice: flavoni, polisaharidi, organske kiseline (galna kiselina, limunska kiselina), naftalenski derivati

Slika 19. Bioaktivne sastavnice droge Polygoni cuspidati rhizoma et radix

4.7.3. Upotreba u TCM-u

Biljna droga Polygoni cuspidati rhizoma et radix se u tradicionalnoj kineskoj medicini koristi kod menstrualnih tegoba i amenoreje, a može se upotrebljavati i u kombinaciji s drogama Leonuri herba i Salviae miltiorrhizae radix. Droga pomaže kod traumatskih ili sportskih ozljeda, kao i kod
reumatskih bolova, jer ublažava bol na mjestu ozljede. U tom slučaju droga se upotrebljava topikalno, a može i u kombinaciji s drogama Carthami flos, Olibanum i Angelicae sinensis radix. Kod opeklina, infektivnih kožnih oboljenja i zmijskih ugriza droga se upotrebljava interno i topikalno jer smanjuje toksičnost, ali se kod opeklina droga topikalno koristi umočena u sezamovom ulju. Još se može koristiti kod bubrežnih i žučnih kamenaca, također i u kombinaciji s drogom Lysimachiae herba. Upotreba droge je kontraindicirana u trudnoći (Hempen i Fischer, 2009, Bensky i sur., 2004).

4.7.4. Farmakološki i klinički učinci

Droga Polygoni cuspidati rhizoma et radix istražena je u nizu in vitro i in vivo studija. U istraživanjima je ispitivana cijela droga, njezin ekstrakt, ali isto tako i njezine pojedine sastavnice, kao npr. polidatin i resveratrol. Resveratrol je vrlo popularna i istraživana molekula jer je glavna sastavnica crnog grožđa i vina, zbog koje im se pripisuje niz blagotvornih učinaka na ljudsko zdravlje. Pretkliničke studije pokazuju da resveratrol ima antioksidativna i protuupalna svojstva, te protutumorski i „anti-aging“ učinak, dok su klinički dokazi o preventivnom djelovanju na ljudsko zdravlje (kardioprotektivno, prevencija dijabetesa i raka) ograničeni zbog njegove problematične biološke raspoloživosti (Vang i sur., 2011). S obzirom na brojnost znanstvenih radova koji se bave farmakološkim i kliničkim djelovanjem resveratrola, oni nisu proučavani u ovom radu.

Antibakterijski učinak

Metanolni ekstrakt droge Polygoni cuspidati rhizoma et radix je pokazao antibakterijsko djelovanje na bakterijske sojeve Streptococcus mutans i Streptococcus sobrinus (minimalna inhibitorna kocentracija (MIC) iznosila je 0,5-4 mg/mL), što ukazuje da bi droga mogla biti korisna u kontroli formiranja Zubnog plaka i posljedičnog nastajanja zubnog karijesa (Song i sur., 2006). Kasnija studija potvrdila je značajni antibakterijski učinak metanolnog ekstrakta droge i njegove frakcije na sojeve Streptococcus cricetus, Streptococcus mutans i Streptococcus sobrinus. Ekstrakt je inhibirao glukoziltransferazu i proizvodnju glikolne kiseline u tim bakterijama (Ban i sur., 2010).
Sirovi ekstrakt droge pokazao je antibakterijski učinak i na tri od pet bakterija koje su najčešći kontaminanti u hrani, inhibirajući rast sojeva *Bacillus cereus*, *Listeria monocytogenes* i *Staphylococcus aureus* s minimalnim koncentracijama u rasponu 156,3-312,5 μg/mL, dok su minimalne baktericidne koncentracije (MBC) iznosile 312,2-1250 μg/mL (Peng i sur., 2013).

Antiviralni učinak

U nekoliko studija proučavano je djelovanje ekstrakta droge na virus humane imunodeficijencije (HIV) (Peng i sur., 2013). Dokazano je da predtretman resveratrolom povećava intracelularne razine NAD⁺ i ekspresiju proteina Sirtuins 1 nakon Tat plazmidne transfekcije i atenuirane Tat-induirane HIV-1 transaktivacije u MAGI stanicama, što ukazuje da je resveratrol potencijalni kandidat za liječenje HIV-a (Zhang i sur., 2009).

Također je dokazano da doze manje od 1 μg/mL hipericina i emodina izoliranih iz droge mogu biti potencijalni lijek protiv virusa vezikularnog stomatitisa, herpes simplex virusa, virusa parainfluence te kravljih boginja (Andersen i sur., 1991, Wang i sur., 2003).

Antioksidativni učinak

Dokazano je da polidatin u dozama od 3,2, 6,4, 12,8 i 25,6 μmol/L inhibira rani stupanj respiratornog praska polimorfonuklearnih stanica leukocita, ovisno o dozi. Osim toga, polidatin ima snažnu sposobnost uklanjanja kisikovih slobodnih radikala (Jin i sur., 1993). Na animalnom modelu štakora kojima je primjenjivan polidatin, dokazano je povećanje aktivnosti superoksid dismutaze, katalaze i glutation peroksidaze moždanih ovojnica i hipokampusa. Optimalna doza smanjenja slobodnih radikala bila je 12 mg/kg (Leung i Mo, 1996). Osim toga, ekstrakt droge pokazao je dobru sposobnost uklanjanja DPPH radikala, a najbolje u koncentraciji od 100 μg/mL (Lin i sur., 2010). Klinički podaci potvrđuju da ekstrakt koji sadrži 20% resveratrola, primijenjen tijekom 6 tjedana u dozi od 200 mg/dan, može značajno smanjiti produkciju reaktivnih kisikovih intermedijera mononuklearnih stanica (Ghanim i sur., 2010).

Protuupalno djelovanje

Pretklinička istraživanja ukazuju na protuupalna svojstva droge Polygoni cuspidati rhizoma et radix. Ekstrakt droge može inhibirati iNOS mRNA ekspresiju induciranu lipopolisaharidom kao i...
produkciju NO. Ekstrakt droge (20 i 60 μmol/L) u kombinaciji s NOS inhibitorom značajno smanjuje COX-2 mRNA ekspresiju (Kim i sur., 2007).

Na animalnom modelu ispitana je sposobnost etanolnog ekstrakta droge da spriječi upalnu reakciju na uha miševa izazvanu topikalnom primjenom tetradekanoil forbol acetatom. Lokalno primijenjen ekstrakt droge značajno smanjuje ušni edem u dozama od 0,075, 0,15, 0,3, 1,25 i 2,5 mg/uho. Doze od 0,3, 1,25 i 2,5 mg/uho su se pokazale jednako učinkovite kao i indometacin u dozi od 0,5 mg/uho. Dodatno, prikazano je da ekstrakt droge može značajno smanjiti aktivnost mijeloperoksidaze u miševa, što znači da ekstrakt može inhibirati edem i infiltraciju neutrofila u ušima miševa (Bralley i sur., 2008).

Na animalnom modelu artritisa dokazano je da etil-acetatni ekstrakt droge (200 mg/kg) značajno smanjuje oteknuće zglobova u roku 3 dana od početka terapije te inhibira odgovor na C-reaktivni faktor i reumatoidni faktor (Han i sur., 2011).

Cilj jedinog kliničkog ispitivanja bio je vrjednovati djelovanje ekstrakta droge (koji sadrži 20% resveratrola) na oksidativni i upalni stres u zdravih pojedinaca. Dvadeset zdravih pojedinaca s normalnom težinom nasumično je podijeljeno u dvije skupine od kojih je jedna primala placebo, a druga svakodnevno tijekom 6 tjedana ekstrakt droge (koji sadrži 20% resveratrola) u dozi od 40 mg resveratrola dnevno. Utvrđeno je da, za razliku od placebo, ekstrakt droge značajno smanjuje stvaranje ROS, smanjuje mRNA ekspresiju TNF-α, IL-6, C-reaktivnog proteina i aktivaciju faktora NF-κB. Dobiveni rezultati ukazuju da Polygonum cuspidatum ekstrakt koji sadrži resveratrol sveobuhvatno suzbija oksidativni i upalni stres u ljudi (Ghanim i sur., 2010).

Hepatoprotektivno djelovanje

Dokazano je da vodeni ekstrakt droge Polygoni cuspidati rhizoma et radix (400 mg/dan, p.o., tijekom 7 dana) poboljšava mikrocirkulaciju oštećenog tkiva jetre i inhibira adheziju bijelih krvnih stanica i jetrenih endotelnih stanica. Pretpostavlja se da droga može potaknuti regeneraciju jetrenih stanica i funkciju jetre (Hong i sur., 2000). Dodatno, smatra se da bi polidatin, izoliran iz droge, mogao imati funkciju zaštite hepatocita od oksidativnog oštećenja uzrokovanog vodikovim peroksidom (Mo i Shao, 2000). Također je dokazano da polidatin (50, 100 mg/kg/dan, p.o., tijekom 5 dana) ima značajni hepatoprotektivni učinak u miševa sa akutnim oštećenjem jetre, induciranim pomoću CCl₄ (Zhang i sur., 2012).
Protutumorsko djelovanje

U in vitro istraživanju testirani su etanolni i etilacetatni ekstrakti droge (0,2, 0,4, 0,6 i 0,8 mg/mL) te su ekstrakti pokazali antiproliferativni učinak kod A549 i H1650 stanica ljudskog karcinoma pluća (Lin i sur., 2010). Resveratrol (2,5, i 10 mg/kg, i.p., tijekom 5 dana) je značajno smanjio volumen i masu tumora pluća te prevenirao rast tumora i širenje metastaza u plućima inhibicijom sinteze DNA i tumorskih stanica, kao i neovaskularizacije kod miševa koji nose Lewis karcinom pluća (Kimura i Okuda, 2001). Resveratrol također ima ulogu u citotoksičnom učinku u MCF-7 stanica u dozama od 58,4 i 56,7 μg/mL (Feng i sur., 2006).

Estrogeno djelovanje

Rezultati istraživanja učinka emodina i emodin-8-O-β-D-glukopiranozida izoliranih iz metanolnog ekstrakta droge (30 i 100 μg/mL) pokazali su da iste sastavnice mogu pojačati proliferaciju MCF-7 stanica osjetljivih na estrogen. Također je dokazano da emodin inhibira vezanje 17β-estradiola na humane estrogene receptore, što ukazuje da hidroksiantraklinoni, kao što je emodin, imaju fitoestrogeno djelovanje i posjeduju afinitet vezanja za humane estrogene receptore. Rezultati istraživanja pokazuju da je nekelatirana hidroksilna skupina antrakinona odgovorna za snažni estrogeni učinak (Matsuda i sur., 2001).

4.7.5. Monografija droge u Ph. Eur. 9

01/2017:2724

PODANAK I KORIJEN JAPANSKOG DVORNIKA

Polygoni cuspidati rhizoma et radix

DEFINICIJA

Osušen, usitnjen podanak i korijen, s uklonjenim korjenčićima, vrste Reynoutria japonica Houtt. (syn. Polygonum cuspidatum Sieb. et Zucc.), sakupljen u proljeće ili jesen.

Sadržaj:
- emodin (C_{15}H_{10}O_{5}; M_r 270,2): najmanje 1,0 posto (suha droga)
- polidatin \(\text{C}_{20}\text{H}_{22}\text{O}_{8}; M_r \approx 390,4 \): najmanje 1,5 posto (suha droga).

IDENTIFIKACIJA:

A. Makroskopska obilježja
B. Mikroskopska obilježja
C. Tankoslojna kromatografija

ISPITIVANJA

Gubitak sušenjem (2.2.32): najviše 12,0 posto, određeno na 1,000 g praška biljne droge (335) (2.9.12) sušenjem u sušioniku 4 sata na 105 °C.

Ukupni pepeo (2.4.16): najviše 5,0 posto.

Pepeo netopljiv u klorovodičnoj kiselin (2.8.1): najviše 1,0 posto.

ODREĐIVANJE SADRŽAJA

Emodin. Tekućinska kromatografija (2.2.29).

Ispitivana otopina. U tikvicu okruglog dna stavi se 0,150 g praška biljne droge (355) (2.9.12). Doda se 150,0 mL 14 postotne \(\text{V/V} \) otopine \text{sulfatne kiseline} \(R \) i 150,0 mL \text{metilenklorida} \(R \). Zagrije se na vodenoj kupelji uz povratno hladilo 2 sata na 60 °C, zatim otladi i sadržaj se prenese u lijevak za odijeljivanje. Organski sloj se odbaci i ostatak se ekstrahira 3 puta sa po 15 mL \text{metilenklorida} \(R \). Sjedinjeni metilenkloridni ekstrakti upare se do suha. Ostatak se otopi u \text{metanolu} \(R \) i razrijedi do 100,0 mL istim otapalom. Otopina se filtrira kroz membranski filter (nominalne veličine pora 0,45 μm).

Poredbena otopina (a). Otopi se 5,0 mg *emodina* \(\text{CRS} \) u \text{metanolu} \(R \) i razrijedi do 50,0 mL istim otapalom. Razrijedi se 5,0 mL otopine do 20,0 mL s \text{metanolom} \(R \).

Poredbena otopina (b). Otopi se 2,5 mg *reina* \(R \) u \text{metanolu} \(R \) i razrijedi do 25,0 mL istim otapalom. Razrijedi se 1,0 mL otopine do 10,0 mL s poredbenom otopinom (a).

Kolona:
- *veličina:* \(l=0,25 \text{ m}, \bar{Ø}=4,0 \text{ mm} \);
- *nepokretna faza:* modificirani oktadecilsilil silikagel za kromatografiju \(R \) (5 μm);
- *temperatura:* 30 °C.

Pokretna faza:
- *pokretna faza A:* fosforna kiselina \(R \), voda za kromatografiju \(R \) (0,1:99,9 \(\text{V/V} \));
- *pokretna faza B:* \text{metanol} \(R \);

<table>
<thead>
<tr>
<th>Vrijeme (min)</th>
<th>Pokretna faza A (\text{posto} \ \text{V/V})</th>
<th>Pokretna faza B (\text{posto} \ \text{V/V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-11</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>11-11,1</td>
<td>15→5</td>
<td>85→95</td>
</tr>
<tr>
<td>11,1-22</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>
Brzina protoka: 1,0 mL/min.

Detekcija: spektrofotometar na 254 nm.

Injektiranje: 20 μL.

Vrijeme zadržavanja: rein = oko 4 min; emodin = oko 6 min.

Prikladnost sustava: poredbena otopina (b):
- razlučivanje: najmanje 5 između pikova reina i emodina.

Izračuna se postotak emodina prema izrazu:

\[
\frac{A_1 \times m_2 \times p}{A_2 \times m_1 \times 2}
\]

A₁ = površina pika emodina u kromatogramu ispitivane otopine;
A₂ = površina pika emodina u kromatogramu poredbene otopine (a);
m₁ = masa biljne droge korištene za pripremu ispitivane otopine, u gramima;
m₂ = masa emodina CRS korištenog za pripremu poredbene otopine (a), u gramima;
p = postotni udio emodina u emodinu CRS.

Polidatin. Tekućinska kromatografija (2.2.29). *Izvodi se zaštićeno od sunčevog svjetla.*

Ispitivana otopina. U tikvicu okruglog dna stavi se 0,200 g praška biljne droge (355) (2.9.12). Doda se 50,0 mL etanola (50 postotni V/V) R i izvaže. Zagrije se na vonedoj kupalj uz povratno hladilo 30 minuta na 95 °C, zatim ohladi i ponovno izvaže. Gubitak otapala se nadomjesti dodatkom etanola (50 postotni V/V) R i dobro promiješa. Otopina se filtrira i 3,0 mL filtrata se razrijedi do 25,0 mL s 60 postotnom V/V otapinom metanola R.

Poredbena otopina (a). Otopi se 5,0 mg polidatina CRS u metanolu R i razrijedi do 50,0 mL istim otapalom. Razrijedi se 10,0 mL otopine do 50,0 mL s 60 postotnom V/V otopinom metanola R.

Poredbena otopina (b). Otopi se 5,0 mg resveratrola R u 60 postotnoj V/V otopini metanola R i razrijedi do 50,0 mL istim otapalom. Razrijedi se 3,0 mL otopine do 25,0 mL s poredbenom otopinom (a).

Kolona:
- veličina: l=0,25 m, Ø=4,0 mm;
- nepokretna faza: modificirani oktadecilsilil silikagel za kromatografiju R (5 μm);
- temperatura: 35 °C.

Pokretna faza:
- pokretna faza A: voda za kromatografiju R;
- pokretna faza B: acetonitril za kromatografiju R;

<table>
<thead>
<tr>
<th>Vrijeme (min)</th>
<th>Pokretna faza A (posto V/V)</th>
<th>Pokretna faza B (posto V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>12-18</td>
<td>82 → 5</td>
<td>18 → 95</td>
</tr>
<tr>
<td>18-25</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>
Brzina protoka: 1,0 mL/min.
Detekcija: spektrofotometar na 306 nm.
Injektiranje: 20 μL.
Vrijeme zadržavanja: polidatin = oko 10 min; resveratrol = oko 17 min.
Prikladnost sustava: poredbena otopina (b):
- razlučivanje: najmanje 5 između pikova polidatina i resveratrola.

Izračuna se postotak emodina prema izrazu:

\[
\frac{A_1 \times m_2 \times p \times 1,67}{A_2 \times m_1}
\]

\(A_1\) = površina pika polidatina u kromatogramu ispitivane otopine;
\(A_2\) = površina pika polidatina u kromatogramu poredbene otopine (a);
\(m_1\) = masa biljne droge korištene za pripremu ispitivane otopine, u gramima;
\(m_2\) = masa polidatina CRS korištenog za pripremu poredbene otopine (a), u gramima;
\(p\) = postotni udio polidatinima polidatinu CRS (EDQM, 2018).
5. ZAKLJUČAK

Zanimanje za ljekovite biljne droge koje se koriste u tradicionalnoj kineskoj medicini sve je izraženije u europskim zemljama, stoga se farmaceutima kao stručnjacima koji se bave izradom, kontrolom kvalitete i izdavanjem fitopreparata nameće potreba usvajanja novih znanja i praćenja trendova u fitofarmaciji. Ovaj rad pruža sveobuhvatan pregled recentnih znanstvenih i stručnih podataka za sedam kineskih ljekovitih droga za koje su utvrđene norme kakvoće u obliku monografija u aktualnom 9. izdanju Europske farmakopeje. Bupleuri radix, Codonopsis radix, Moutan cortex, Paeoniae radix alba, Paeoniae radix rubra, Platycodonis radix te Polygoni cuspidati rhizoma et radix su biljne droge koje se često koriste u liječenju u okviru sustava tradicionalne kineske medicine. Unatoč njihovoj dugoj i širokoj primjeni u narodu, kliničkih dokaza koji bi potvrdili djelotvornost i sigurnu primjenu u ljudi te pružili znanstvenu osnovu za njihovu tradicionalnu primjenu uglavnom nedostaje. Većina znanstvenih dokaza o djelotvornosti predmetnih biljnih droga dobivena je istraživanjima in vitro ili in vivo na životinjskim modelima, pa oni predstavljaju važan temelj za daljnja moguća klinička ispitivanja. Proučavane kineske biljne droge aktualne su i kao izvori potencijalnih novih lijekova (npr. peonola, peoniflorina, albiflorin, resveratrola i dr.) čija su farmakološka svojstva također dosta istraživana. Ovaj rad ukazuje na potrebu za daljnjim, kvalitetnim istraživanjima kineskih ljekovitih biljaka, bilo u svrhu razumijevanja i znanstvenog utvrđivanja opravdanosti tradicionalne primjene i/ili mogućeg otkrivanja novih lijekova.
6. LITERATURA

Han XH, Gai XD, Xue YJ, Chen M. Effects of the extracts from *Bupleurum chinense* DC on intracellular free calcium concentration and vincristine accumulation in human hepatoma BEL-7402 cells. *Tumor*, 2006, 26, 314-317.

Platycodon grandiflorum, https://www.rhs.org.uk/Plants/13246/Platycodon-grandiflorus/Details, pristupljeno 15.05.2018.

Zhong SZ, Ge QH, Qu R, Li Q, Ma SP. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. *J Neurol Sci*, 2009, 277 (1-2), 58-64.

Fitoterapija predstavlja okosnicu sustava tradicionalna kineske medicina koji se već tisućljećima koristi u prevenciji i liječenju bolesti u Kini, a u novije vrijeme je zbog globalizacije sve prisutnija i u ostalim dijelovima svijeta. U cilju proširenja stručnog znanja iz područja fitofarmacije, u ovom radu je teorijski istraženo sedam biljnih droga dobivenih od korijenja kineskih biljaka: Bupleuri radix, Codonopsis radix, Moutan cortex, Paeoniae radix alba, Paeoniae radix rubra, Platycodonis radix i Polygoni cuspidati rhizoma et radix. Odabranih dрогама по први пут су израдене монографије у ваžećem деветом изданju Еuropsке farmakopeje. Пroučeni су њихови biljni izvori, primjena u okviru sustava tradicionalne kineske medicine, recentne znanstvene poznanje o fitokemijskom sastavu te farmakološkim i kliničkim učincima, kao i farmakopejski postupci za provjeru kakvoće.

Phytotherapy presents the framework of the traditional Chinese medicine system that has been used for the prevention and treatment of diseases in China for millenniums, and due to globalization it has been increasingly present in the rest of the world. For the purpose of expanding the professional knowledge in the field of phytopharmacy, in this thesis have been theoretically investigated seven herbal drugs derived from the roots of Chinese plants: Bupleuri radix, Codonopsis radix, Moutan cortex, Paeoniae radix alba, Paeoniae radix rubra, Platycodonis radix and Polygoni cuspidati rhizoma et radix. For the first time selected drugs were made monographs in the current ninth edition of the European Pharmacopoeia. Their plant sources, indication and use in the traditional Chinese medicine system, recent scientific knowledge of phytochemical composition and pharmacological and clinical effects, as well as pharmacopoeia quality control procedures have been studied fully.
NOVE KINESKE BILJNE DROGE (RADICES) U 9. IZDANJU EUROSKE FARMAKOPEJE

Monika Dabo

SAŽETAK

Fitoterapija prestavlja okosnicu sustava tradicionalna kineske medicina koji se već tisućljećima koristi u prevenciji i liječenju bolesti u Kini, a u novije vrijeme je zbog globalizacije sve prisutnija i u ostalim dijelovima svijeta. U cilju proširenja stručnog znanja iz područja fitofarmacije, u ovom radu je teorijski istraženo sedam biljnih droga dobivenih od korijenja kineskih biljaka: Bupleuri radix, Codonopsis radix, Moutan cortex, Paeoniae radix alba, Paeoniae radix rubra, Platycodonis radix i Polygoni cuspidati rhizoma et radix. Odabranim drogama po prvi puta su izrađene monografije u važećem devetom izdanju Europske farmakopeje. Proučeni su njihovi biljni izvori, primjena u okviru sustava tradicionalne kineske medicine, recentne znanstvene spoznaje o fitokemijskom sastavu te farmakološkim i kliničkim učincima, kao i farmakopejski postupci za provjeru kakvoće.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 74 stranice, 19 grafičkih prikaza i 133 literaturni navod. Izvornik je na hrvatskom jeziku.

Ključne riječi: Tradicionalna kineska medicina; ljekovite biljne droge; fitokemija; farmakološki učinci; Europska farmakopeja; znanstveni dokazi

Mentor: Dr. sc. Biljana Blažeković, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocjenjivači: Dr. sc. Biljana Blažeković, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Marija Kindl, viša asistentica-poslijedoktorandica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Željka Vanić, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta

Rad prihvaćen: rujan 2018.
NEW CHINESE HERBAL DRUGS (RADICES) IN
THE NINTH EDITION OF THE EUROPEAN PHARMACOPOEIA

Monika Dabo

SUMMARY

Phytotherapy presents the framework of the traditional Chinese medicine system that has been used for the prevention and treatment of diseases in China for millennia, and due to globalization it has been increasingly present in the rest of the world. For the purpose of expanding the professional knowledge in the field of phytopharmacy, in this thesis have been theoretically investigated seven herbal drugs derived from the roots of Chinese plants: Bupleuri radix, Codonopsis radix, Moutan cortex, Paeoniae radix alba, Paeoniae radix rubra, Platycodonis radix and Polygoni cuspidati rhizoma et radix. For the first time selected drugs were made monographs in the current ninth edition of the European Pharmacopoeia. Their plant sources, indication and use in the traditional Chinese medicine system, recent scientific knowledge of phytochemical composition and pharmacological and clinical effects, as well as pharmacopoeia quality control procedures have been studied fully.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 74 pages, 19 figures and 133 references. Original is in Croatian language.

Keywords: Traditional chinese medicine; herbal drugs; phytochemistry; pharmacological effects; European pharmacopoeia; scientific evidence

Mentor: Biljana Blažeković, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Biljana Blažeković, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Marija Kindl, Ph.D. Senior Assistant - Postdoktorand, University of Zagreb Faculty of Pharmacy and Biochemistry
Željka Vanić, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: September, 2018