Marija Mišković

Terapijski potencijal kanabinoida u neurološkim oboljenjima

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2016.
Ovaj diplomski rad prijavljen je na kolegiju Farmakognozija 2 Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen na Zavodu za farmakognoziju pod stručnim vodstvom prof. dr. sc. Sande Vladimir-Knežević.

Dragoj mentorici, dr. sc. Sandi Vladimir-Knežević hvala na pomoći i savjetima prilikom izrade diplomskog rada. Bez prijatelja studiranje ne bi bilo isto, a bez obitelji ništa ovo ne bi bilo moguće, stoga im od srca hvala. U znak svoje ljubavi i zahvalnosti ovaj rad sam posvetila njima.
SADRŽAJ

1. UVOD ... 1

1.1. Botanički podaci o vrsti Cannabis sativa L. (Cannabinaceae) 1

1.2. Primjena konoplje i uloga sekundarnih metabolita .. 3

1.3. Zakonska regulativa primjene konoplje u medicinske svrhe ... 6

2. OBRAZLOŽENJE TEME ... 8

3. MATERIJALI I METODE ... 9

4. REZULTATI I RASPRAVA .. 10

4.1. Fitokemijski sastav konoplje .. 10

4.1.2. Nekanabinoidne sastavnice ... 13

4.2. Mehanizam djelovanja kanabinoida na središnji živčani sustav 14

4.2.1. Kanabinoidni receptori ... 14

4.2.2. Učinak kanabinoida na neurotransmisiju ... 15

4.2.3. Interakcija fitokanabinoida s kanabinoidnim receptorima ... 16

4.3. Terapijski potencijal medicinske konoplje u neurološkim oboljenjima 17

4.3.1. Multipla skleroza ... 17

4.3.2. Epilepsija .. 23

4.4. Posebnosti primjene kanabisa .. 26

4.4.1. Farmakokinetička svojstva .. 26

4.4.2. Nuspojave i interakcije .. 27

4.4.3. Psihijatrijska upozorenja i intoksikacija .. 28

5. ZAKLJUČAK .. 29

6. LITERATURA ... 30

7. SAŽETAK/SUMMARY ... 34

8. TEMELJNA DOKUMENTACIJSKA KARTICA/BASIC DOCUMENTATION CARD 35
1. UVOD

1.1. Botanički podaci o vrsti *Cannabis sativa* L. (Cannabinaceae)

Konoplja (*Cannabis sativa* L., Cannabinaceae) je jednogodišnja dvodomna zeljasta biljka podrijetlom iz Južne Azije. Jedina je vrsta roda *Cannabis*, a prema nekim autorima dijeli se na dvije podvrste i dva varijeteta (slika 1):

1. *Cannabis sativa* L. subsp. *indica* (Lam.) E. Small & Cronquist - indijska konoplja (slika 2)
2. *Cannabis sativa* L. subsp. *sativa* - industrijska konoplja (slika 3)
 a) *Cannabis sativa* L. subsp. *sativa* var. *sativa*

Slika 1. Prikaz nižih svojih vrste *Cannabis sativa* L. (www.leafscience.com)

Kemotipovi konoplje prema sastavu i sadržaju kanabinoida

Kvalitativna karakterizacija konoplje uključuje određivanje omjera kanabinoida tetrahidrokanabinola i kanabidiola (THC/CBD) u biljci i pridruživanje istog određenom kemijskom fenotipu (kemotipu). Fetterman i suradnici (1971) razlučili su dva kemotipa. Jednom kemotipu pripadaju biljke za medicinsku primjenu i rekreaciju u kojima je omjer THC/CBD veći od 1, dok je u industrijskom kemotipu omjer THC/CBD manji od 1. Small i Beckstead (1973) su u ovu podjelu uvrstili i treći kemotip u kojem je THC/CBD omjer približno 1. Količina kanabinoida ovisi o brojnim biotičkim i abiotičkim čimbenicima uključujući spol i starost biljke, duljinu dana, temperaturu, UV intenzitet kojem je biljka izložena i tlo u kojem se uzgaja. Udio CBD-a i THC-a u zreloj ženskoj biljci može doсеći do 10% suhe mase, dok je u mladim listovima ta količina manja od 1 % (www.plants.usda.gov; Hillig i Mahlberg, 2004; Barni-Comparini i sur., 1984).

1.2. Primjena konoplje i uloga sekundarnih metabolita

Najstariji sačuvani drevni kineski, indijski, grčki i rimski zapisi navode ljekovita svojstva konoplje. Biološki učinak konoplje bio je podloga za njenu primjenu u religijske, medicinske i rekreacijske svrhe preko 4800 godina, no tek su u posljednjih stotinjak godina identificirani kemijski spojevi odgovorni za te učinke. Te su tvari nazvane fitokanabinoidima, a predstavljaju sekundarne metabolite sintetizirane u trihomima.
Kanabinoidi nisu ravnomjerno raspoređeni u biljci. Ousušeni listovi ženske biljke sadrže najveću količinu THC-a i to uglavnom 2-3%, zatim slijede donji listovi gdje je sadržaj manji od 1% i stabiljka s udjelom ≤ 0,3%, dok u sjemenkama i korijenju kanabinoidi nisu prisutni. Razlike u koncentracijama posljedica su prisutnosti žljezdanih dlaka (Potter, 2004).

U ženskoj biljci razlikujemo tri vrste žljezdanih dlaka: papilozne koje su najmanje i čija uloga nije razjašnjena te glavičaste sa stalkom i bez stalka (sjedeće). One se međusobno razlikuju prema rasporedu u biljci i sastavu kanabinoida koje proizvode. U muškoj biljci još susrećemo i četvrti tip žljezdane dlake nazvan anterijalni.

Sjedeće žljezdanе dlake (slika 4) sastoje se od smolaste glavice sa sekretnim stanicama i slabo vidljivog stalka kojim se veže za pokrovno tkivo. U mezofilu lista fotosintezom se proizvodi šećer koji se doprema do sekretornih stanica dlaka gdje služi kao polazna supstanca za sintezu kanabinoida i terpena (Mahlberg i sur., 1984). Pretpostavlja se da je uloga sekundarnih metabolita zaštita od predatora. Kanabigerolna i tetrahidrokanabinolna kiselina uzrokuju apoptozu stanic u insektima, a osim kanabinoida, u dlakama se sintetiziraju i seskviterpeni koji gorkim okusom odbijaju nametnike.

Glavičaste dlake s višestaničnim stalkom nalazimo na čaški, laticama, peteljkama i listovima ženske biljke, dok su manje prisutne kod muških oblika. Nezrelu dlaku teško je razlučiti od sjedećeg oblika sve dok se ne razvije višestanični stalk. Zrela glavičasta dlaka s višestaničnim stalkom dva puta je šira te osam puta većeg volumena od sjedećeg oblika, što omogućuje puno veću pohranu kanabinoida (slika 5).
Sadržaj u smolastim glavicama žljezdanih dlaka mijenja boju tijekom razvoja. Tako je na početku proziran, na vrhuncu razvoja mliječno bijeli i pred kraj posmeđi te se glavica postupno odvaja od stalka. Tijekom proizvodnje hašiša, smolaste glavice potpuno se odvaju od stalka, a pripravci s najslaganijim djelovanjem sadrže samo smolaste glavice žljezdanih dlaka. One su gusto poredane i služe kao fizička barijera nametnicima te biljku mehanički štite od hladnoće, vjetra i štetnog zračenja (slika 6).

Različiti omjeri i sastav kanabinoida i terpena u glavičastim dlakama na cvijetu i listovima ukazuju na potrebu kontrole biljnog materijala za medicinsku primjenu (Pertwee, 2014).
1.3. Zakonska regulativa primjene konoplje u medicinske svrhe

Konoplja je zbog svojeg psihooaktivnog djelovanja od davnina korištena u religijske i medicinske svrhe. No unatoč toj činjenici oduvijek je bila zanemarena od strane medicinskog zdanja u znanju o solastima poput spazama, boli, epilepsije, mučnine, nesanice i nedostatka apetita pada u drugi plan otkrićem sintetskih molekula koje je farmaceutska industrija svakodnevno izbacivala na tržište. Zapadna medicina nije pokazivala interes ni znanje o primjeni konoplje u terapijske svrhe sve dok irski liječnik William O´Shaughnessy nije 1840-ih objavio svoje rezultate istraživanja primjene konoplje u smanjenju boli, spazama, mučnine i vrtoglavice. Nakon toga, popularnost konoplje počinje se širiti po Europi i Sjevernoj Americi. Kako se radi o biljnom materijalu, bilo je vrlo teško identificirati farmakološki aktivne tvari, pogotovo kada one djeluju sinergistički. Tako su pripravci često bili nestandardizirani i nestabilni, a pacijentov odgovor na pripravak bio je nepredvidiv i individualan, što je već ionako skeptične liječnike udaljavalo od propisivanja takvih pripravaka.

Tijekom 20. stoljeća sve više pozornosti privlačila je primjena opijuma, a zatim i konoplje pa je nakon brojnih internacionalnih konvencija i pokušaja ograničavanja primjene tih pripravaka 1961. godine donesena Jedinstvena konvencija UN-a o opojnim drogama koja je psihooaktivne supstance svrstavala u četiri nivoa, od kojih je četvrto bio najstrože reguliran. U četvrti nivo smješten je i kanabis, odnosno smolaste cvjetne glavice kanabisa, kao droga s vrlo visokim rizikom zloupotrebe, velikom opasnosti za javno zdravlje, a s vrlo malom ili beznačajnom terapijskom vrijednosti. Ekstrakti i tinkture našli su se u prvom nivou i bili su dozvoljeni za upotrebu u medicinske i znanstvene svrhe, međutim nisu bili u fokusu medicinskog zdanja. Tako da je njihova upotreba bila fiktivno dozvoljena. Nakon Jedinstvene konvencije donesene 1961., godine 1971. slijedila je nova Konvencija UN-a o psihotropnim tvarima u kojoj su droge također podijeljene u četiri nivoa, ali sada je prvi bio najstrože reguliran (Pertwee, 2014).

Kanabis ili marihuana se i dalje nalazi u prvom nivou kontrolišanih sustanci dok su sintetski analogi THC-a za oralnu primjenu poput dronabinola (3. nivo kontrolišanih sustanci) i nabilona (2. nivo kontrolišanih sustanci) 1985. dopušteni kao antiemetska terapija u onkoloških bolesnika koji ne odgovaraju na konvencionalnu terapiju. Godine 1992. dronabinol je indiciran za liječenje anoreksije povezane s gubitkom težine u bolesnika s AIDS-om (Borgel i sur., 2013).

Radna skupina Ministarstva zdravlja Republike Hrvatske za medicinsku marihuanu detaljno je proučila građu o uporabi i dobrobiti uporabe medicinske marihuane, te je u ljeto 2015. izašla sprej u javnost sa svojim prijedlozima za koje simptome biti potreban lijek i za koje postoji dovoljna količina kliničkih istraživanja. Tako je nakon provedene javne rasprave, 15. listopada 2016. godine na snagu stupio Pravilnik o mjerilima za razvrstavanje lijekova te o propisivanju i izdavanju lijekova na recept kojim je Hrvatska postala 13. zemlja Europske unije u kojoj će se omogućiti propisivanje lijekova baziranih na indijskoj konoplji. Stupanjem Pravilnika na snagu, lijekove koji sadržavaju THC ili nabilon (sintetski kanabinoid) mogu propisivati izabrani liječnici u djelatnosti opće/obiteljske medicine te zdravstvene zaštite predškolske djece i zdravstvene zaštite žena, doktori medicine specijalista neurologije, internista onkologije, onkologije i radioterapije, infektologije i specijalista pedijatora sa specijalizacijom iz neuropatiologije i to na neponovljivi recept na teret bolesnika. Liječnik na recept smije propisati količinu potrebnu za liječenje najviše do 30 dana, a ukupna količina propisanog THC-a ne smije biti veća od 7,5 g. Pripravci koji sadrže navedene psihotropne tvari mogu se propisivati za ublaživanje tegoba kod multiple skleroze, karcinoma, epilepsije i AIDS-a (www.hljk.hr).
2. OBRAZLOŽENJE TEME

Primjena konoplje u medicinske svrhe danas je sve popularnija tema koja izaziva podijeljena mišljenja. Terapijski potencijal fitokanabinoida još nije u potpunosti razjašnjen niti dokazan, no činjenice govore u korist primjene kod olakšavanja simptoma spastičnosti, boli i konvulzija. Na taj način se kvaliteta života neurološkim bolesnicima može značajno poboljšati.

Ovaj rad donosi pregled najnovijih kliničkih ispitivanja o primjeni medicinske konoplje u bolesnika s neurološkim oboljenjima koja su često progresivne prirode te uzrokuju nepovratno oštećenje motoričkih i kognitivnih funkcija.

Činjenica je da teško oboljeli ilegalno nabavljaju kanabist i time ugrožavaju svoje zdravlje i krše zakon. Legalizacijom medicinske konoplje u Republici Hrvatskoj napravljen je korak naprijed u pružanju potpunije zdravstvene skrbi. Na taj način bolesnicima je omogućeno da dobiju standardizirani pripravak provjerene kakvoće, a medicinskoj struci da takvu primjenu kontroliraju.
3. MATERIJALI I METODE

4. REZULTATI I RASPRAVA

4.1. Fitokemijski sastav konoplje

Tijekom posljednjih nekoliko desetljeća broj identificiranih i izoliranih sastavnica kanabisa kontinuirano je rastao. Danas je u biljci identificirano 545 sastavnica koje smo podijelili u dvije kemijske skupine: kanabinoidne (104) i nekanabinoidne sastavnice (441) (Pertwee 2014). Sadržaj glavnih kanabinoida u biljnom materijalu značajno varira ovisno o sortama konoplje, starosti biljke i uvjetima uzgoja, stoga je identifikacija sastavnica i standardizacija pripravka na sadržaj glavnih kanabinoida ključna kako bi lijekoviti biljni pripravak udovoljavao kriterijima farmaceutske kvalitete (www.hljk.hr).

4.1.1. Kanabinoidi

Kanabinoidi su jedinstveni ciklički terpenski spojevi s 21 ugljikovim atomom u strukturi. U tu se skupinu ne ubrajaju samo spojevi izolirani iz vrste Cannabis sativa L., već i njihovi derivati i metaboliti. Stotinu i četiri fitokanabinoida izolirana iz konoplje možemo podijeliti u 11 tipova: (-)-delta-9-trans-tetrahidrokanabinol (Δ9-THC), kanabidiol (CBD), (-)-delta-8-trans-tetrahidrokanabinol (Δ8-THC), kanabigerol (CBG), kanabikromen (CBC), kanabinodiol (CBND), kanabinol (CBN), kanabitriol (CBT) i dr. Uglavnom se u povišenim koncentracijama nalaze u vršnim dijelovima ženske biljke. Sintetiziraju se u žljezdanim dlakama, kondenzacijom optički aktivnog monoterpena i olivetola (slika 7). Položaj dvostrukih veza ovisi o izboru monoterpena i uzjetima u kojima dolazi do reakcije (Razdan, 2007).

Slika 7. Shematski prikaz kondenzacije kanabinoida (Razdan, 2007)
Kanabigerol (CBG)

Prva je sastavnica koja je u čistom obliku izolirana iz konoplje. Nastaje kondenzacijom geraniola i olivetola (slika 8). Svi tipovi kanabinoida dolaze od kanabigerolnog tipa i razlikuju se po načinu ciklizacije tog prekursora, a u prirodi dolaze u obliku kiselina koje dekarboksilacijom pod utjecajem topline, lužine ili svjetla prelaze u svoje aktivne oblike (Gaoni i Mechoulam, 1964).

![Diagram sinteze kanabigerola](image)

Slika 8. Sinteza kanabigerola (Razdan, 2007)

(-)-Δ-9-trans-tetrahidrokanabinol

To je najzastupljeniji i glavni psihoaktivni fitokanabinoid koji utječe na raspoloženje, emociju i percepciju i zbog kojeg se konoplja našla na popisu opojnih droga. Lipofilna je i lako hlapljiva viskozna tekućina, slabo topljiva u vodi, pKa vrijednosti 10,6.

![Diagram (-)-Δ-9-trans-tetrahidrokanabinol](image)

Slika 9. (-)-Δ-9-trans-tetrahidrokanabinol (Razdan, 2007)
Psihoaktivno djelovanje ostvaruje se aktivacijom kanabinoidnih receptora, a osim tetrahidrokanabinola (Δ^9 THC), njih mogu aktivirati: kanabinol (CBN), Δ-8-tetrahidrokanabinol (Δ^8 THC), Δ-9-tetrahidrokanabivarin (Δ^9 THCV) i seskviterpen (E)-β-kariofilen (E-BCP) (slika 10).

Slika 10. Kemijski prikaz značajnijih psihoaktivnih sastavnica konoplje (Pertwee, 2014)

Ostali fitokanabinoidi uglavnom ne pokazuju psihoaktivna svojstva, a među njima se biološkom aktivnošću i udjelom ističe kanabidiol (CBD) (slika 11). Iako ne posjeduje psihoaktivna svojstva, njegov je terapijski potencijal značajan. Neuroprotektivna, protuupalna i antioksidativna uloga čini ga neizostavnom sastavnicom pripravaka (Pertwee, 2014).

Slika 11. Kanabidiol i kanabidiolna kiselina (Pertwee, 2014)
4.1.2. Nekanabinoidne sastavnice

Osim kanabinoida, u konoplji pronalazimo različite skupine molekula koje doprinose terapijskom učinku biljke, tzv. "entourage" efektom gdje svaka od sastavnica svojim djelovanjem upotpunjuje i zaokružuje djelovanje druge. Stotinu nekanabinoidnih sastavnica izoliranih iz konoplje možemo svrstati u osam fitokemijskih skupina, a to su: flavonoidi, steroli, fenantreni, masne kiseline, spiroindani, ksantoni, dušični spojevi i bifenili.

4.2. Mehanizam djelovanja kanabinoida na središnji živčani sustav

4.2.1. Kanabinoidni receptori

U potrazi za farmakološkom pozadinom psihooaktivnog djelovanja kanabisa znanstvenici su 1990-ih došli do otkrića dvaju novih G-protein spregnutih receptora, nazvanih kanabinoidni receptori, CB1 i CB2 (slika 12). Kanabinoidni receptori građeni su od sedam transmembranskih domena (heliksa) spregnutih s G-proteinom do čije aktivacije dolazi nakon vezanja liganda (kanabinoida/endokanabinoida) s ekstracelularne strane receptora, što pokreće daljnju unutarstaničnu signalizaciju.

Slika 12. Kanabinoidni receptori (www.pubs.rsc.org)

CB1 receptori nalaze se na presinaptičkim završecima središnjih i perifernih neurona gdje posreduju u inhibiciji oslobađanja mnogobrojnih neurotransmitora, kako ekscitacijskih tako i inhibicijskih. U središnjem živčanom sustavu nalazimo ih u područjima odgovornim za motoričku aktivnost (bazalni ganglij), motoričku koordinaciju (mali mozak), kratkoročno pamćenje (hipokampus), razmišljanje (neokorteks), apetit, raspoloženje i sedaciju (hipotalamus i limbički sustav). U manjoj mjeri CB1 receptore pronalazimo u dorzalnom rogu ledne moždine i stanicama imunosnog sustava kao i perifernim tkivima; srcu, jetri, masnom tkivu, želucu i testisima. U usporedbi s ostalim G-protein spregnutim receptorima u mozgu, CB1 receptori su najzastupljeniji.
Nakon sinteze u somatodendritičkoj regiji neurona, receptori su prebačeni do završetka aksona, na čijoj membrani su pronadeni u visokoj koncentraciji. CB2 receptori su primarno pronadjeni u stanicama i tkivima imunosnog sustava (tonzile, slezena, koštana srž) pa aktivirani posjeduju protuupalnu i imunosupresivnu aktivnost. Također, novija istraživanja pokazuju njihovu prisutnost i u neuronima, ali u malim koncentracijama (Pertwee, 2014; Borgelt i sur., 2013).

Kanabinoidne receptore, osim egzogenih, mogu aktivirati i endogeni kanabinoidi poput N-arahidonoiletanolamina (anandamid) i 2-arahidonoil glicerola (2-AG) koji se sintetiziraju u neuronima, a utječu na niz fizioloških funkcija, od kontrole apetita do regulacije imunosnog sustava (www.hljk.hr).

4.2.2. Učinak kanabinoida na neurotransmisiju

Aktivacijom CB1 receptora u središnjem i perifernom živčanom sustavu dolazi do inhibicije sinaptičke transmisije. Smanjeno je oslobađanje glutamatne i gama-aminobutervne kiseline (GABA), a dolazi do inhibicije kolinergičke te noradrenergičke neurotransmisije. Inhibicija se temelji na smanjenju oslobađanja neurotransmitora iz vezikula u presinaptičkim aksonima kao posljedica inhibicije voltažnih Ca²⁺ kanala, direktnje inhibicije oslobađanja iz vezikula ili hiperpolarizacije presinaptičkog aksona (slika 13).

Slika 13. Inhibicija sinaptičke transmisije egzogenim (Δ⁹ THC, sintetski kanabinoid WIN55212-2) i endogenim kanabinoidima (2-AG) (Pertwee, 2014)
Nakon vezanja liganda dolazi do aktivacije CB1 receptora spregnutim s α_i proteinom i inhibicije adenilat ciklaze, što za posljedicu ima smanjenu koncentraciju cAMP u stanici. Odvojena Gβ/γ podjedinica inhibira voltažne Ca$^{2+}$ kanale te tako inhibira oslobađanje glutamatne kiseline iz presinaptičkog aksona. Endokanabinoidi su proizvedeni u postsinaptičkom neuronu i kroz sinaptičku pukotinu dolaze do presinaptičkog aksona aktivirajući tako CB1 receptore. Sinteza endokanabinoida potencirana je povišenjem unutarstanične koncentracije Ca$^{2+}$ iona, koji ulaze u stanicu preko voltažnih Ca$^{2+}$ kanala ili NMDA receptora (glutamatni receptor), ili $\alpha_{i\gamma}$ glutamatnog receptora (Szabo, 2004).

Uloga CB2 receptora u sinaptičkoj inhibiciji još nije razjašnjena, ali se pretpostavlja da je vrlo slična ulozi CB1 receptora (Atwood i sur., 2012).

4.2.3. Interakcija fitokanabinoida s kanabinoidnim receptorima

Učinak Δ^9-THC-a

Učinak je ispitivan u hipokampalnom tkivu i hipokampalnim neuronskim kulturama, a rezultati su pokazali kako je Δ^9-THC, kao i Δ^8-THC, parcijalni agonist CB1 i CB2 receptor, jer je njegov učinak na te receptore značajno manji u usporedbi s pravim agonističkim djelovanjem kojeg pokazuju njegov metabolit 11-hidroksi-Δ^9-THC, endokanabinoidi i sintetički kanabinoidi, poput nabilona. Δ^9-THC može istovremeno aktivirati i blokirati kanabinoidne receptore, ovisno o količini u kojoj je prisutan u stanici. Maksimalno djelovanje Δ^9-THC proizvodi u tkivima gdje su kanabinoidni receptori ekprimirani u velikoj mjeri, dok u tkivima smanjene ekspresije učinak Δ^9-THC-a izostaje ili antagonizira djelovanje pravih agonista. Posljedično, Δ^9-THC djeluje kao pravi agonist u GABAergičkim sinapsama, ali kao parcijalni agonist u glutamatnim sinapsama. Djelovanje Δ^9-THC-a na periferni živčani sustav je inhibicijsko, blokirajući neurotransmisiju između simpatičkih i parasimpatičkih neurona i inerviranih tkiva (Pertwee, 2014).

Učinak kanabidiola i Δ^9-THCV-a

Kanabidiol (CBD) kao glavna nepsihotropna komponenta djeluje antagonistički na CB1, odnosno kao inverzni agonist na CB2 receptore, umanjujući tako psihotropni učinak Δ^9-THC. Također, CBD djeluje antagonistički na G-protein spregnut receptor 55(GPR55), receptor čija je funkcija nerazjašnjena, ali je mjesto djelovanja nekoliko fitokanabinoida, endokanabinoida i sintetskih kanabinoida.
Delta-9-tetrahidrokanabivarin (Δ⁹-THCV) antagonizira inhibiciju GABAeričke neurotransmisije uzrokovane sintetskim kanabinoidnim agonistom (WIN 55,212-2) pa se smatra da je učinak ovog kanabinoida na receptore antagonistički (Pertwee, 2014).

Fitokanabinoidi posjeduju afinitet za mnoge druge receptore, ionske kanale, transportere i enzime. Dalja istraživanja pokušavaju razotkriti mjesto vezanja onih fitokanabinoida koji ne pokazuju afinitet za CB1 i CB2 receptore, a GPR55, G-protein receptori spregnuti s opioidnim receptorima, kanali prolaznih receptorskih potencijala pokazali su se kao potencijalna mjesta djelovanja nepsihotropnih sastavnica konoplje (Borgelt i sur., 2013).

4.3. Terapijski potencijal medicinske konoplje u neurološkim oboljenjima

4.3.1. Multipla skleroza

Multipla skleroza je upalna, demijelinizirajuća bolest središnjeg živčanog sustava i najčešći uzrok netraumatske nepokretnosti među mladim ljudima. Karakteriziraju ju relapsirajuće epizode u kojima dolazi do propadanja neurološke funkcije i koje s vremenom prelaze u kroničnu progresivnu fazu bez razdoblja remisije. Kronična progresivna faza rezultat je atrofije središnjeg živčanog sustava. Kako bolest napreduje, leukociti i makrofagi infilriraju kroz oštećenu živčano-moždanu barijeru u moždani parenhim i uništavaju mijelinsku ovojnicu, što dovodi gubitka neuronalnih aksona i prekida normalne neurotransmisije. To sve dovodi do nastanka spastičnosti poput inkontinencije, tremora, seksualne disfunkcije, boli, spazama, spastičnosti i umora, te na kraju ozbiljne onesposobljenosti čime je kvaliteta života ovih bolesnika jako narušena. Progresija bolesti posljedica je gubitka neurona. Tijekom upalnih epizoda zabilježene su povećane koncentracije glutamata kojega neuroni povećano proizvode kako bi kompenzirali nedostatak neuronima i rezultira glutamatnom ekscitotoksičnosti koja dovodi do daljnjeg gubitka preostalih neurona. Funkcija kanabinoidnog sustava je kontrola neurotransmisije preko CB1 receptora, što ostavlja prostor terapijskoj intervenciji za kontrolu navedenih simptoma.

Spastičnost je najučestaliji simptom kojeg osjeća 50% bolesnika, ponekad u toj mjeri koja onemogućuje normalno funkcioniranje u svakodnevnom životu. Trenutne terapije za spastičnost uključuju lijekove poput agonista GABA receptora baklofen a ili benzodiazepina koji povećavaju osjetljivost GABA receptora za γ-aminomasačku kiselinu te tiazidina kao agonista središnjih α2 adreneričnih receptorima. Kliničke studije su pokazale učinkovitost antikonvulziva gabapentina i lokalne primjene botulina u olakšanju spastičnosti.
Eksperimentalni podaci u MS mišjim modelima dokazali su antispastične i antitremorske učinke kanabinoida i agonista CB1 receptora, što su antagonisti kanabinoidnih CB1 receptora pokazali su pogoršanje gore navedenih simptoma. Sativex®, prvi lijek baziran na ekstraktu medicinske konoplje, dokazao je smanjenje spastičnosti (Pertwee, 2014). Djelatna tvar je nabiksimol, odnosno ekstrakt s definiranim omjerom THC-a i CBD-a. Indiciran je za liječenje i poboljšanje simptoma kod odraslih bolesnika sa srednje do teškim spasticitetom zbog multiple skleroze i to u onih bolesnika koji nisu adekvatno odgovorili na drugu antispastičku terapiju te u onih kod kojih dođe do značajnog poboljšanja u liječenju spasticiteta za vrijeme inicijalne terapije (Trkulja, 2015).

Klinički dokazi

Spastičnost povezujemo s bolnim spazmima, poremećajem spavanja i povećanim morbiditetom. Pretpostavljen mehanizam patofiziologije spastičnosti objašnjava se gubitkom inhibitorne sprege u kralješničkoj moždini kao rezultat pretjeranog djelovanja ekscitacijskih molekula.

Stošezdeset pacijenata oboljelih od MS sa simptomima spastičnosti, inkonitencije, tremora i boli bili su uključeni u dvostruko slijepo, randomizirano, placebo kontrolirano ispitivanje. Oromukozački sprej, placebo i biljni ekstrakt koji sadržava jednake količine THC-a i CBD-a (2,5-120 mg/dan), svakodnevno je primjenjivan u podijeljenim dozama. Vizualna analogna ljestvica za individualno najteži simptom korištena je kao rezultat pretjeranog djelovanja ekscitacijskih molekula.

Stošezdeset pacijenata oboljelih od MS sa simptomima spastičnosti, inkonitencije, tremora i boli bili su uključeni u dvostruko slijepo, randomizirano, placebo kontrolirano ispitivanje. Oromukozački sprej, placebo i biljni ekstrakt koji sadržava jednake količine THC-a i CBD-a (2,5-120 mg/dan), svakodnevno je primjenjivan u podijeljenim dozama. Vizualna analogna ljestvica za individualno najteži simptom korištena je kao procjena djelotvornosti. Spastičnost terapijske skupine u odnosu na placebo bila je značajno smanjena. Nisu zapaženi značajni učinci na percepciju i raspoloženje. U drugom dvostruko slijepom randomiziranom ispitivanju bilo je uključeno 189 MS pacijenata sa spasticitetom. Tijekom šest tjedana, 124 pacijenta dobivalo je nabiksimol, a 65 pacijenata placebo. Četrdeset posto pacijenata koji su odgovorili na inicijalnu terapiju nabiksimolom osjetili su poboljšanje za više od 30%. Osam ispitanika se povuklo zbog nuspojava, šestero koji su primili aktivnu supstancu, a dvoje koji su primali placebo (Borgelt i sur., 2013).

Opravdanost korištenja oromukozačnog spreja potvrdila je 3. faza kliničkog ispitivanja. Prvih mjesec dana svi sudionici su dobivali djelatnu tvar kako bi se utvrdilo koji od njih odgovara na početnu terapiju (responder). Kriterij je bio da postignu poboljšanje ≥ 20% na numeričkoj ljestvici procjene spastičnosti. Pacijenti koji su ispunili kriterij pristupili su randomiziranom, dvostruko slijepom, placebo kontroliranom ispitivanju u trajanju od 12 tjedana.
Smanjene spastičnosti prema numeričkoj ljestvici značajno je išlo u korist terapijskoj skupini. Klinički značajni rezultati uključivali su poboljšanje simptoma spastičnosti za ≥ 30% na numeričkoj ljestvici, i taj je rezultat zapažen u 74% pacijenata terapijske skupine te u 51% pacijenata kontrolne skupine. Najčešće nuspojave bile su: vrtoglavica, umor, mišićni spazmi i urinarne infekcije (Novotna i sur., 2012).

Novija opservacijska istraživanja na ljudima potvrdila je djelotvornost i opravdanost svakodnevnog korištenja THC:CBD spreja (Sativex®-a). Takve studije nose naziv "MOVE-2" (MObility ImproVEment - poboljšanje mobilnosti), a svrha im je procijeniti poboljšanje simptoma spastičnosti praćenjem pacijenata kroz tri mjeseca korištenja Sativex®-a. Studija je osmišljena tako da odabrani pacijenti dolaze na pregled nakon jednomjesečne terapije i ukoliko postignu zadovoljavajuće rezultate (smanjene spastičnosti za 20% na numeričkoj ljestvici) promatraju se tijekom tri mjeseca. Prva takva studija provedena je u Njemačkoj i uključivala je 300 pacijenata iz 42 specijalizirana MS centra diljem Njemačke. Nakon jednomjesečne terapije 237 pacijenata nastavilo je koristiti THC:CBD sprej, dok je nakon trećeg mjeseca korištenja klinički značajno smanjenje od 30% zabilježeno u 40% pacijenata. To je za pacijente značilo poboljšanje kvalitete sna zbog smanjena bolnih spazama, smanjenje boli, bolja kontrola mokraćnog mjehura i veća mogućnost samostalnog obavljanja uobičajenih aktivnosti koje uključuju mobilnost. Naposljetku, 55% početnih ispitanika ispunilo je uvjet za nastavak terapije Sativex®-om (Flachenecker i sur., 2014).

U travnju 2015., 322 pacijenta diljem Italije uključeno je u MOVE-2 studiju. Važno je napomenuti da se THC:CBD sprej koristio kao dodatak standardnoj terapiji te da je polovica ispitanika (49,8%) odlučila na fizikalnu terapiju. Nakon jednomjesečne kontrole, 82,9% pacijenata osjetilo je poboljšanje za ≥ 20% na numeričkoj ljestvici procjene spastičnosti te nastavilo terapiju. Nakon tri mjeseca terapije spastičnost je smanjena od 6,8 na 5,5 prema numeričkoj ljestvici procjene spastičnosti (0-10), što je značilo poboljšanje od 19,1%, dok je 24,6% pacijenata postiglo klinički značajno smanjenje ≥ 30%. Za vrijeme analize 37% rezultata, odnosno 119 pacijenata još nije bilo obrađeno, stoga se u završnoj analizi očekuju još bolji rezultati. Nuspojave koje su uključivala vrtoglavicu, mučninu, povraćanje i somnolenciju prijavilo je 41 (13,1%) ispitanik. U odnosu na studiju iz 3. faze kliničkog ispitivanja, u MOVE-2 studijama korištene su manje doze (za 1/3 manje) te su sukladno tome nuspojave bile manje. Dosljednost rezultata ovih opservacijskih studija dokazuje kako uporaba manjih doza postiže bolju podnošljivost i jednako djelotvorne učinke, što je vrlo važno kod svakodnevne uporabe.
U tijeku je MOVE-2 studija koja se provodi u Europskoj uniji i uključivat će preko 1000 pacijenata, a rezultati se očekuju tijekom 2017. godine (Trojano, 2016).

Svrha sljedećeg ispitivanja bila je ustanoviti sigurnost i učinkovitost dugotrajnog korištenja oromukozaalnog spreja, Sativex®, koji je sadržavao ekstrakt kanabisa s 27 mg/mL THC i 25 mg/mL CBD. Svaka aktivacija pumpice dostavljala je 0,1 mL (2,7 mg THC i 2,5 mg CBD). Inicijalna doza individualno se titrirala, a maksimalno korištenje pumpice je 48 puta na dan. U ispitivanju je sudjelovalo 137 MS pacijenata refraktornih na standardnu terapiju, a placebo kontrolirano ispitivanje trajalo je 10 tjedana. Pacijenti su se procjenjivali svakih 8 tjedana koristeći vizualne analogne ljestvice u kojima su opisivali simptome te su bili praćeni prosječno 434 dana. Ukupno 53 bolesnika (42,3%) povuklo se iz ispitivanja zbog neučinkovitosti (24), nuspojava (17), povlačenja pristanka (6) i drugih razloga. Pacijenti su prijavili 292 neželjena učinka koji su uključivali vrtoglavicu, proljev i povraćanje. Troje pacijenata imalo je pet ozbiljnih nuspojava koji su uključivali napadaje, pad i aspiracijsku pneumoniju. Planirani prekid terapije na dva tjedna u 25 pacijenata (62 uključeno) nije uzrokovao simptome apstinencije, dok je 11 pacijenata prijavilo barem jedan od simptoma kao što su umor, valunzi, emocionalna labilnost, poteškoće sa spavanjem i smanjen apetit. Dvadeset dva pacijenata je nastavilo terapiju Sativex-om, jer su osjećali olakšanje simptoma. Dugotrajnom uporabom spreja zadržavao se učinak u pacijenata koji su inicijalno osjećali simptome olakšanja spastičnosti, mišićnih spazama i drugih simptoma poput neuropatske boli i inkontinencije (Wade i sur., 2006).

Oralni ekstrakt medicinske konoplje koji je evaluiran u smislu ublažavanja boli središnjeg porijekla i bolnih spazama u MS jest Cannador (1 želatinska kapsula sadrži ekstrakt kanabisa s 2,5 mg THC-a i 0,8-1,8 mg CBD-a, najčešće deklarirano kao 1,25 mg CBD-a). Jedina studija koja je ciljano ispitala učinak pripravka Cannador na mišićne spazme bila je mala, 2x2 križna i uključivala je 57 bolesnika u kojih su mišićni spazmi bili istaknuti simptom. Subjektivni osjećaj „poboljšanja“ boli nakon 12-14 tjedana liječenja zabilježen je u 30-50% bolesnika na Cannadoru i oko 20-30% bolesnika na placebo. Za bolne spazme, „poboljšanje“ je uočeno u 30-50% bolesnika na Cannadoru i oko 15-40% bolesnika na placebo (Zajicek i sur., 2012).
Lijek Sativex® je zbog svoje cijene nedostupan većini pacijenata, stoga je Povjerenstvo za analizu i preporuke primjene indijske konoplje i kanabinoida u RH u medicinske svrhe na temelju obrađivanja dosadašnjih studija odobrilo korištenje „magistralnog pripravka ekstrakta kanabisa“ kao alternativa Sativex®-u. „1. Pripravak treba biti za oralnu primjenu, po mogućnosti kapsulirana uljna otopina ekstrakta, 2. Biljna droga treba biti standardizirana na način da jedinična doza (kapsula) sadrži 2.5 mg THC (u rasponu +/- 10%), i CBD oko 1,25 mg (prihvatljiv je širi raspon). Ostalih kanabinoida treba biti <5% (w/w).“ (Trkulja, 2015).

Prikazane studije pokazuju djelotvornost Sativex®-a u ispitanika koji odgovaraju na terapiju, no za refraktorne pacijente i dalje se traži djelotvoran lijek koji će im olakšati simptome i poboljšati kvalitetu života. Retrospektivna opsvrjecijska studija provedena u Italiji uključivala je pacijente koji nakon 28 dana terapije nabiksimolom ne postižu smanjenje spasititeta za 20% na numeričkoj ljestvici (tzv.˝non-responderi˝). Trinaest pacijenata iz specijaliziranih centara odgovaralo je tom kriteriju i dobivali su tijekom 28 dana Bedrocan® koji sadrži 22 % THC-a i manje od 1% CBD-a. Jedanaest pacijenata lijek je uzimalo oralnim putem, usitnjen i konzumiran s nekim masnim medijem (maslac, kikiriki maslac, kondenzirano mlijeko), dok se troje pacijenata odlučilo za pušenje kao način primjene. Pacijenti su se procjenjivali svaka tri mjeseca, tijekom 205±182 dana. Nakon 28 dana, 11 pacijenata (85%) odgovorilo je na terapiju Bedrocan®-om, dok je učinkovitost zadržana u 9 pacijenata (70%) tijekom praćenja. Veći inicijalni odgovor na terapiju u odnosu na nabiksimol pripisuje se većem udjelu THC-a i smanjenjem antagonističkom djelovanju CBD-a. Oralni put primjene zadržava THC u obliku kiseline koja nema psihoaktivne učinke čineći tako Bedrocan® podnošljivijim za primjenu. Od ostalih sastavnica, u većoj koncentraciji zastupljeni su kanabigerol (CBG) i terpen mircen, čije uloge nisu u potpunosti razjašnjene. Smatra se da kanabigerol posjeduje analgetički i antidepresivni učinak, dok se za mircen pretpostavlja da djeluje analgetski, miorelaksirajuće i sedativno. Prve studije daju obećavajuće rezultate, no potrebno je puno više kontroliranih studija s većim brojem ispitanika kako bi medicinska konoplja postala terapijska opcija za refraktorne pacijente (Sacca i sur., 2016).
Neuroprotektivno djelovanje kanabinoida u MS

Neurotoksični mehanizmi koji dovode do oštećenja i gubitka neurona su: oksidativno oštećenje mitohondrija, otpuštanje prouupalnih citokina, otpuštanje dušičnog oksida iz aktiviranih makrofaga te ekscitotoksičnost uzrokovana pretjeranim otpuštanjem glutamata, što dovodi do toksičnih razina influksa iona Ca^{2+} u stanicu. Već opisana uloga kanabinoida u regulaciji neurotransmisije i inhibicije ekscitotoksičnosti nagnala je znanstvenike da istraže može li korištenje kanabinoida usporiti progresiju bolesti (Pertwee, 2014).

Klinički dokazi

Mnoge studije rađene su na ljudima gdje je bolest već uznapredovala, stoga primjena THC-a u smislu neuroprotekcije nije dala pozitivnu promjenu. Pitanje može li ranija terapijska intervencija usporiti progresiju bolesti ostavljeno je za daljnja istraživanja. Lijekovi bazirani na medicinskoj konoplji, zbog cijene i neželjenih učinaka, prvenstveno psihotropnih, nisu poželjni niti dostupni pacijentima. To je dovelo do hipoteze koja se ispituje i pokušava naći odgovor na pitanje može li spastičnost biti endogeno regulirana povišenjem koncentracije endokanabinoida, odnosno inhibicijom ponovnog unosa u sinapsi ili inaktivacijom enzimske razgradnje, jer bi se na taj način izbjeglo psihotropno djelovanje egzogenih kanabinoida. Sljedeća strategija je razviti agonist CB1 receptora čije je djelovanje ograničeno na aktivaciju perifernih kanabinoidnih receptor, poput onih na neuromuskularnim sinapsama, za kontrolu spastičnosti. Eksperimentalni dokazi pokazuju učinkovitost takvih pripravaka, no potrebno ih je temeljito kliničkih ispitati (Pertwee, 2014).
4.3.2. Epilepsija

Epilepsija je ozbiljan neurološki poremećaj koji pogađa 1% svjetske populacije. Karakterizirana je rekurentnim, spontanim napadajima ili konvulzijama koje dovode do gubitka svijesti i oštećenja neurona, a rezultat su pretjerane neuralne aktivnosti uslijed poremećene ravnoteže između inhibicijske i ekscitacijske transmisije. Iako korišten tisućama godina za kontrolu napadaja, kanabis je tek 1840-te dobio “znanstveni dokaz” za to djelovanje. Irski liječnik William O’Shaughnessy objavio je publikaciju u kojoj opisuje kako je uspješno kontrolirao napadaje u dojenčadi tinkturom kanabisa. Nažalost danas imamo samo brojna pretklinička ispitivanja (na životinjama) koja potvrđuju to djelovanje, a vrlo malo kliničkih studija koje bi potvrdile učinkovitost i uvrstile kanabisa u antikonvulzivnu terapiju. Postojeća terapija uključuje više od 20 antikonvulzivnih lijekova kojima pacijenti uspješno postižu remisiju, no čak 30% pacijenata doživi napadaje bez obzira na korištenu terapiju. Upravo zbog toga, velika je potreba za otkrićem i razvojem novih lijekova koji će biti učinkovitiji i bolje podnošljivi (Pertwee, 2014).

Klinički dokazi

Kanabidiol je jedini fitokannabinoid čija je antikonvulzivna učinkovitost ispitana klinički. U prvoj studiji, iz 1980-ih, 15 bolesnika koji su imali barem jedan generalizirani napad tjedno tijekom barem jedne godine, nasumično je primilo CBD (200 ili 300 mg u suncokretovom ulju/dan) (n=8) ili placebo (n=7) svakodnevno tijekom 4,5 mjeseca. Od 8 bolesnika na CBD-u, 4 ih nije imalo napade. Slični rezultati proizašli su iz desetomjesečne terapije s dozama od 900-1200 mg/dan. S druge strane, 12 bolesnika s nekontroliranom epilepsijom primalo je CBD 300 mg/dan ili placebo u 2x2 križnoj studiji, uz svoju standardnu terapiju, tijekom 6 mjeseci. Nisu uočene razlike u učestalosti napada. Postojeće studije su stare i ispitane na malom broju bolesnika da bi mogli apsolutno zaključiti o učinkovitosti CBD kao antikonvulziva, no potencijal postoji i potrebno ga je opsežnije istražiti (Pertwee, 2014; Trkulja, 2015).

Subjektivna izvješća pokazuju pozitivan učinak na smanjenje napadaja u dječjoj epilepsiji. Prikupljeni su podaci upitnika u koje je bilo uključeno 19 roditelja djece od 2 do 16 godina s epilepsijom refraktornom na standardnu terapiju. Djeci su oralno davani CBD u dozi od 0,5-28,6mg/kg/dan i THC u dozi od 0,0-0,8mg/kg/dan.

Iako pokazuju pozitivne rezultate, podaci koji su prikupljeni često su subjektivni i nepotpuni, stoga sve veća popularnost CBD-a u liječenju dječje epilepsije iziskuje veći broj ispitanika i kontroliranih ispitivanja koji će te rezultate znanstveno poduprijeti. Tijekom 2014. godine u centrima za epilepsiju u Izraelu provedeno je retrospektivno opsegsko ispitivanje. Ispitivanje je uključivalo 74 pacijenta u dobi od 1 do 18 godina koji su prethodno klinički praćeni najmanje 12 mjeseci. Nakon što antikonvulzivna terapija (5-7 lijekova), ketogena dijeta i/sa vagusa nije dala rezultata, liječnik im je ponudio uljni ekstrakt medicinske konoplje obogaćen CBD-om. Tijekom tri mjeseca pacijenti su uzimali medicinsku konoplju pod liječničkom kontrolom. Pripravak je bio dokazane kakvoće s jasno deklariranim sastavom, pripremljen prema farmakocejskim smjernicama. Omjer CBD/THC iznosio je 20:1. Dnevne doze CBD-a iznosile su od 1 do 20 mg/kg, dok dnevna doza THC-a nije prelazila 0,5 mg/kg. Pojedine doze za pacijente titirane su ovisno o učinkovitosti i nuspojavama. Osamdeset devet posto pacijenata prijavilo je smanjenje učestalosti napadaja, od toga 18% ocijenilo je smanjenje za 75-100%. Sedmomjesečna beba sa stečenom hipoksično-ishemijskom ozljedom, neprestanim spazmima i parcijalnim kompleksnim napadajima, dnevnom dozom od 2 mg/kg riješila se napadaja. Napredak je kod bebe potvrđen elektroencefalogramom, što je omogućilo smanjenje doza ostale antikonvulzivne terapije. Nuspojave su prijavila 34 pacijenta. Pet pacijenata osjetilo je pojačanje napadaja tijekom korištenja konoplje i prestalo s terapijom. Od ostalih nuspojava zabilježene su somnolencija, umor i gastrointestinalne tegobe. Važno je napomenuti kako je medicinska konoplja bila dodatak terapiji koja je uključivala najmanje dva antikonvulzivna lijeka pa se ne može isključiti mogućnost interakcije kao uzrok nuspojava.
Osim smanjenja učestalosti napada, 44 pacijenta su prijavila pozitivne učinke na ponašanje i budnost kao i na poboljšanje sna te komunikacijskih i motoričkih vještina (Tzadok i sur., 2016).

4.4. Posebnosti primjene kanabisa

4.4.1. Farmakokinetička svojstva

Farmakokinetička svojstva kanabinoida opisana su u malim kliničkim farmakološkim ispitivanjima. Poluvrijeme distribucijske faze iznosi 0,5 sati, a poluvrijeme eliminacijske faze iznosi 30 sati. THC i CDB su slične lipofilnosti, ali t\textsubscript{1/2} CBD-a iznosi 9 sati. Postoje dokazi da se THC akumulira u mozgu jer serumske koncentracije ne koreliraju s učinkom koji u mozgu traje duže nego što su povišene serumske koncentracije i učinak na periferni kardiovaskularni sustav. Pušenje kanabisa pretvara 50% THC-a u dim, a većina udahnutog dima opet se izdahne ili prolazi lokalni metabolizam u plućima. Bioraspoloživost THC nakon takve primjene iznosi 0,10-0,25. Apsorpcija udahnutog THC događa se unutar par minuta. Iako je pušenje najučestaliji način primjene medicinske konoplje, vaporizirani ekstrakti biljne druge postaju sve popularniji. Kako su kanabinoidi hlapljivi, temperatura pri kojoj isparavaju manja je od temperature sagorijevanja biljke te tako mogu biti inhalirani bez stvaranja dima. Bioraspoloživost oralno primijenjenog THC-a iznosi 5-20% u kontroliranim uvjetima, ali je u stvarnosti manja zbog varijacija u želučanoj razgradnji i ekstenzivnom metabolizmu prvog prolaza. Bioraspoloživost CBD-a također varira, 13-19%. Vršne koncentracije postižu se 1-3 sata kasnije oralnom primjenom THC-a, u odnosu na intravensku primjenu ili inhalaciju. Oralna primjena kanabisa predstavlja izazov zbog individualnih razlika u apsorpciji, koja može biti nepotpuna ili odgođena, zbog čega je vrlo teško pronaći odgovarajuću dozu za pojedinog bolesnika. Dugotrajno i uzastopno korištenje THC-a dovodi do stvaranja tolerancije uslijed smanjena broja receptora na površini aksona na koji kanabinoidi djeluju. Postoje dokazi da je velika vjerojatnost nastanka tolerancije već nakon uzastopnog korištenja tijekom 4 dana. Doze THC-a potrebne za dobivanje učinka u središnjem živčanom sustavu iznose: manje od 7 mg (niska doza), 7-18 mg (srednja doza) i više od 18 mg (visoka doza) (Agurell i sur., 1986; Borgelt i sur., 2013).
4.4.2. Nuspojave i interakcije

Sistematskim pregledom 31 studije prijavljeno je 4779 nuspojava u pacijenata koji su uzimali kanabinoide tijekom 8-12 mjeseci. Većina (96,6%) nuspojava nije bila ozbiljna, a najčešće su prijavljivane mučnine. Od ozbilnjijih nuspojava bio je relaps MS, povraćanje i infekcije urinarnog trakta.

Mali broj informacija dostupan je o interakcijama i kontraindikacijama vezanih uz primjenu medicinske konoplje. Primjena dronabinola kontraindicirana je kod hipersenzitivnosti na lijek. Poznata je interakcija s antiretrovirotikom ritonavirom gdje dolazi do povišenja serumskih koncentracija dronabinola, što može dovesti do potencijalne toksičnosti. Kontraindikacije za primjene nabiksimola su sljedeće: alergija ili sumnja na alergiju na pomoćne tvari i sastavnice, ozbiljne kardiovaskularne bolesti (ishemijska bolest srca, aritmije, nekontrolirana hipertenzija, zatajenje srca), povijest shizofrenije ili bilo kojeg drugog psihičkog poremećaja, primjena kod djece mlade od 18 godina, žena i muškaraca koji planiraju imati djecu, trudnica i dojilja. Ozbiljno upozorenje potrebno je bolesnicima koji koriste sedative, droge sa sedirajućim i psihotropnim učinkom i hipnotike, jer istodobna primjena s nabiksimolom rezultira kumulativnim učinkom. Primjena alkohola s nabiksimolom može dovesti do poremećaja u koordinaciji i koncentraciji te do usporenih reakcija. Iako nema klinički dokazanih interakcija, postoji potencijalni rizik istodobne primjene nabiksimola kao CYP inhibitora s lijekovima koji su supstrati CYP3A4 i CYP2C19 enzima (Borgelt i sur., 2013).
Psihotropni učinak ovisi o dozi, vrsti i učestalosti korišćenja medicinske konoplje. Većina korisnika osjeća blagu euforiju, relaksaciju, povećan apetit, pojačanu senzornu osjetljivost, ali oslabljenu kognitivnu sposobnost te poremećaj pažnje i pamćenja. Neki osjećaju anksioznost, disorijentaciju, paranoju i psihozu. Vrste s većim udjelom CBD-a umanjuju navedene psihotropne učinke. Psihijatrijska upozorenja i intoksikacija

Hiperaktivnost endokanabinoidnog sustava povezuje se s povećanom impulzivnosti i suicidalnosti. Kronična i neregulirana uporaba nosi rizik nastanka ovisnosti, koji je nizak (8-10% korisnika), ali ipak prisutan. Povećana dostupnost kanabinoida u državama koje su legalizirale medicinski kanabis povećava mogućnost intoksikacije, posebice u djece.

Akutna toksičnost manifestira se smanjenom koordinacijom, smanjenom mišićnom snagom, letargijom, sedacijom, usporenim govorom i vremenom reagiranja te problemima s koncentracijom. Ostali učestali simptomi intoksikacije su tahikardija i suhoća usta. Uzimajući u obzir gore navedene simptome i upozorenja, uporaba kanabisa treba biti kontrolirana i sigurna, kako bi se nuspojave i nesretni slučajevi sveli na minimum (Pertwee, 2014; Borgelt i sur., 2013).
5. ZAKLJUČAK

U ovom radu opisan je fitokemijski sastav biljne vrste *Cannabis sativa* L. i njezino djelovanje na središnji živčani sustav. Proučavajući ulogu kanabinoidnog sustava i patofiziologiju neuroloških oboljenja dolazimo do zaključka kako je uloga kanabinoida, kao i endokanabinoida, još nedovoljno istražena, ali ima veliki terapijski potencijal.

Od neuroloških oboljenja detaljnije su opisane multipla skleroza i epilepsija, jer za iste postoje klinički dokazi. Eksperimentalni dokazi pokazuju potencijalno neuroprotektivno djelovanje fitokanabinoida koji svojom antioksidativnom i protuupalnom aktivnošću te smanjenjem ekscitacijske citotoksičnosti usporavaju neurodegeneraciju u Alzheimerovoj, Parkinsonovoj, Huntingtonovoj bolesti i ALS-u. No, potrebno je provesti klinička ispitivanja na puno većem broju bolesnika. Načini dostave kanabinoida i intraindividualni odgovori na terapiju također su područja koja zahtijevaju više istraživanja kako bi pripravci bili bolje podnošljivosti i kvalitete.

Tijekom posljednjih nekoliko desetljeća broj identificiranih sastavnica konoplje kontinuirano se povećavao, međutim, učinak je ispitao samo manjem broju fitokanabinoida. Široki raspon sastavnica daju ovoj biljci veliki terapijski potencijal i zasigurno veliki farmakološki značaj koji će tek biti otkriven.
6. LITERATURA

GW Pharmaceuticals 2016.,

Pertwee RG, Cascio MG. Known pharmacological actions of delta-9 tetrahydrocannabinol and of four other chemical constituents of cannabis that activate cannabinoid receptors. U: Handbook of cannabis, Pertwee RG, Oxford University, 2014, str. 115-124.

7. SAŽETAK/SUMMARY

Konoplja (Cannabis sativa L., Cannabinacae) je biljka koja se tisućama godina koristi u ljekovite svrhe. Dosadašnja istraživanja identificirala su nekoliko stotina bioaktivnih sastavnica, među kojima se ističu kanabinoidi. Aktivacijom CB1 i CB2 kanabinoidnih receptora kanabinoidi ostvaruju brojne učinke. U ovom radu pozornost je usmjerena na njihovo djelovanje u središnjem živčanom sustavu gdje regulacijom sinaptičke transmisije pomažu u olakšavanju teških simptoma u pacijenata oboljelih od MS i epilepsije. Iako su dosadašnji eksperimentalni podaci o terapijskom potencijalu kanabinoida u drugim neurološkim oboljenjima pozitivni, potrebna su daljnja klinička istraživanja.

Cannabis (Cannabis sativa L., Cannabinacae) is a plant used thousands of years for medicinal purposes. Previous studies have identified hundreds of bioactive components, including prominent cannabinoids. By activating CB1 and CB2 cannabinoid receptors, cannabinoids generate numerous effects. In this work the focus is on their activity in the central nervous system where regulation of synaptic transmission helps relieve severe symptoms in patients suffering from MS and epilepsy. Although the current experimental data on the therapeutic potential of cannabinoids in other neurological disorders are positive, further clinical trials are needed.
Temeljna dokumentacijska kartica

Sveučilište u Zagrebu
Farmaceutsko-biokemijski fakultet
Zavod za farmakognoziju
Marulićev trg 20/II, 10000 Zagreb, Hrvatska

Diplomski rad

Terapijski potencijal kanabinoida u neurološkim oboljenjima

Marija Mišković

SAŽETAK

Konoplja (Cannabis sativa L., Cannabinaceae) je biljka koja se tisućama godina koristi u ljekovite svrhe. Dosadašnja istraživanja identificirala su nekoliko stotina bioaktivnih sastavnica, među kojima se ističu kanabinoidi. Aktivacijom CB1 i CB2 kanabinoidnih receptora kanabinoidi ostvaruju brojne učinke. U ovom radu pozornost je usmjerena na njihovo djelovanje u središnjem živčanom sustavu gdje regulacijom sinaptičke transmisije pomažu u olakšavanju teških simptoma u pacijenata oboljelih od MS i epilepsije. Iako su dosadašnji eksperimentalni podaci o terapijskom potencijalu kanabinoida u drugim neurološkim oboljenjima pozitivni, potrebna su daljnja klinička istraživanja.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 36 stranica, 13 grafičkih prikaza i 35 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: Cannabis sativa, medicinska konoplja, multipla skleroza, epilepsija, neurološka oboljenja

Mentor: Dr. sc. Sanda Vladimir-Knežević, redovita profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocjenjivači: Dr. sc. Sanda Vladimir-Knežević, redovita profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Dr. sc. Biljana Blažeković, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Dr. sc. Željka Vanić, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

The therapeutic potential of cannabinoids in neurological diseases

Marija Mišković

SUMMARY

Cannabis (Cannabis sativa L., Cannabinaceae) is a plant used thousands of years for medicinal purposes. Previous studies have identified hundreds of bioactive components, including prominent cannabinoids. By activating CB1 and CB2 cannabinoid receptors, cannabinoids generate numerous effects. In this work the focus is on their activity in the central nervous system where regulation of synaptic transmission helps relieve severe symptoms in patients suffering from MS and epilepsy. Although the current experimental data on the therapeutic potential of cannabinoids in other neurological disorders are positive, further clinical trials are needed.