
Preprocessing Algorithm for the Generalized SVD on
the Graphics Processing Units

Flegar, Goran

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:008225

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-19

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:008225
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:5268
https://repozitorij.unizg.hr/islandora/object/pmf:5268
https://dabar.srce.hr/islandora/object/pmf:5268

UNIVERSITY OF ZAGREB

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Goran Flegar

PREPROCESSING ALGORITHM FOR
THE GENERALIZED SVD ON THE
GRAPHICS PROCESSING UNITS

Diploma Thesis

Advisor:
prof. dr. sc. Sanja Singer

Zagreb, 2016

Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom
u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

To Jelena

Contents

Contents vii

Introduction 1

1 Preprocessing Algorithm for the Generalized SVD 3
1.1 The Generalized SVD and the Preprocessing Decomposition 3
1.2 Finding the Preprocessing Decomposition 6

2 Computing the Preprocessing Step on the GPU 9
2.1 The CUDA Programming Model . 9
2.2 Computing the QR Decomposition . 11
2.3 Computing the Complete Orthogonal Decomposition 16
2.4 Putting It All Together . 20

3 Numerical Testing 21
3.1 Test Matrices . 21
3.2 Speed . 22
3.3 Rank Detection . 23
3.4 Backward Error . 24
3.5 Effect on the Generalized Singular Values 25

Bibliography 29

vii

Introduction

Generalized singular value decomposition (GSVD) has proved to be a useful tool in many
areas, some of them being comparative analysis of the genome-scale expression data sets,
incomplete singular boundary element method and ionospheric tomography. It has also
found it’s use in other problems from the linear algebra domain, such as the generalized
eigenvalue problem, the generalized total least squares and the linear equality or inequality
constrained least squares.

Paige’s algorithm [12] is the most widely used method for computing the GSVD. The
method consists of two steps: a preprocessing step where each of the matrices from the
matrix pair (A, B) is reduced to triangular form, followed by an iterative method based
on the implicit Kogbetliantz SVD procedure. This method is implemented in LAPACK’s
xGGSVD routine, with the preprocessing step implemented in xGGSVP. The same prepro-
cessing step has been proposed in [11] in case B is not of full column rank. In this thesis
we will study a parallel modification of this algorithm.

Around 2006 Dennard scaling [7], which roughly states that smaller transistors can
operate on higher frequencies using the same amount of power, started to fail [8] and
prevented further increases in CPU frequencies. This forced the CPU manufacturers to
explore new venues in processor design. Graphics processing units (GPUs) became one of
those venues resulting in the release of the CUDA programming platform in 2007, which
enabled general-purpose processing on GPUs (GPGPU) manufactured by Nvidia. Since
then the GPGPU popularity increased and is now widely used in scientific computing and
industry with libraries available in a wide spectrum of domains including linear algebra,
signal processing, data mining and many others. The wide-spread and efficiency of GPUs
is precisely the reason for studying the GSVD preprocessing algorithm in the context of
GPGPU and the CUDA platform.

The rest of this thesis is organized into three chapters. In Chapter 1 we examine the
generalized SVD decomposition and the upper triangular decomposition of a matrix pair
resulting from the preprocessing algorithm. Chapter 2 deals with the implementation of
this algorithm using the CUDA programming platform. Finally, the algorithm is tested on
a variety of matrix pairs of different dimensions and the results of these tests are presented
in Chapter 3.

1

Chapter 1

Preprocessing Algorithm for the
Generalized SVD

In this chapter we define the generalized singular value decomposition and the upper tri-
angular decomposition resulting from the preprocessing algorithm. We also describe the
steps required to obtain this upper triangular decomposition.

1.1 The Generalized SVD and the Preprocessing
Decomposition

Before diving into the preprocessing step of the GSVD algorithm, the following theorem
and remark state some facts about the generalized SVD and show its connection to the
standard singular value decomposition.

Theorem 1.1 (Generalized SVD [1]). Let A ∈ Rm×n and B ∈ Rp×n be matrices and let
r = rank([AT BT]T). Then there exist orthogonal U ∈ Rm×m, V ∈ Rp×p and Q ∈ Rn×n and
nonsingular upper triangular R ∈ Rr×r such that

UT AQ = ΣA

[
0 R

]
, VT BQ = ΣB

[
0 R

]
,

where ΣA and ΣB are of the following form:

3

4 CHAPTER 1. PREPROCESSING ALGORITHM FOR THE GENERALIZED SVD

1. If m ≥ r:

ΣA =

k l
k I 0

l 0 C
m − r 0 0

,

ΣB =

k l[]l 0 S
p − l 0 0

.

2. If m < r:

ΣA =

k m − k r − m[]k I 0 0
m − k 0 C 0

ΣB =

k m − k r − m
m − k 0 S 0

r − m 0 0 I
p − l 0 0 0

Here l = rank(B), k = r − l and C and S are nonnegative diagonal matrices such that
C2 + S 2 = I.

Remark 1.2. The decomposition from Theorem 1.1 is sometimes referred to as the “Tri-
angular Form” of the GSVD [3]. There is also an alternative decomposition called the
“Diagonal Form”:

UT AX = ΣA

[
0 Ir×r

]
, VT BX = ΣB

[
0 Ir×r

]
,

where U, V, ΣA and ΣB are as in Theorem 1.1 and X is a nonsingular matrix of order n.
The diagonal form can be obtained from the triangular form by defining X as

X =

[
I 0
0 R−1

]
.

Let ΣT
AΣA = diag(α2

1, . . . , α
2
r) and ΣT

BΣB = diag(β2
1, . . . , β

2
r) where 0 ≤ αi, βi ≤ 1 for

i = 1, . . . , r. The pairs (αi, βi) are called the generalized singular value pairs and the

1.1. THE GENERALIZED SVD AND THE PREPROCESSING DECOMPOSITION 5

quotients σi = αi/βi, which may be infinite if βi = 0, are called the generalized singular
values.

The final remark regarding the GSVD is the justification of its name. Suppose that B is
square and nonsingular. Then we have

UT (AB−1)V = (UT AQ)(VT BQ)−1 = (ΣAR)(ΣBR)−1 = ΣAΣ−1
B

so the SVD of the matrix AB−1 can be computed from the GSVD of the pair (A, B). The
generalized singular values of the pair (A, B) are the singular values of AB−1. In particular,
if B = I then the GSVD of (A, B) is equal to the SVD of A.

Now we turn to the preprocessing step for the GSVD. The following theorem introduces
the goal of the preprocessing step, the triangular decomposition of the matrix pair (A, B).

Theorem 1.3 (GSVD preprocessing step [5]). Let A ∈ Rm×n, B ∈ Rp×n and r, k and l be as
in Theorem 1.1. Then there exist orthogonal U ∈ Rm×m, V ∈ Rp×p and Q ∈ Rn×n such that

UT AQ = Ã, VT BQ = B̃,

where

B̃ =

n − r k l[]l 0 0 B13

p − l 0 0 0 ,

and Ã is of one of the following forms:

1. If m ≥ r:

Ã =

n − r k l
k 0 A12 A13

l 0 0 A23

m − r 0 0 0
.

2. If m < r:

Ã =

n − r k l[]k 0 A12 A13

m − k 0 0 A23 .

6 CHAPTER 1. PREPROCESSING ALGORITHM FOR THE GENERALIZED SVD

B13 and A12 are nonsingular upper triangular and A23 is upper trapezoidal.

From this theorem it is obvious that after finding the GSVD of the triangular pair (Ã, B̃)
we also get the GSVD of (A, B). Furthermore, if we have a GSVD of (A23, B13)

ŨA23Q̃T = ΣA23R̃, ṼB13Q̃T = ΣB13R̃,

we can also get the GSVD of (Ã, B̃):[
I 0
0 Ũ

]
Ã

[
I 0
0 Q̃T

]
=

[
0 A12 A23Q̃T

0 0 ŨA23Q̃T

]
=

[
I 0
0 ΣA23

] [
0 A12 A23Q̃T

0 0 R̃

]
,[

Ṽ 0
0 I

]
B̃

[
I 0
0 Q̃T

]
=

[
0 0 ṼB13Q̃T

0 0 0

]
=

[
0 ΣB13

0 0

] [
0 A12 A23Q̃T

0 0 R̃

]
.

Thus, we have reduced the GSVD of a general matrix pair to the GSVD of an upper tri-
angular pair with nonsingular B, which can be computed using the implicit Kogbetliantz
[12, 4] or the implicit Hari–Zimmerman [11] algorithm.

1.2 Finding the Preprocessing Decomposition
In this section we will prove Theorem 1.3 by constructing the method to compute the
triangular decomposition. The building blocks of this algorithm will be the well-known
QR decomposition and QR decomposition with column pivoting as well as the complete
orthogonal decomposition (URV), whose existence is proved below.

Proposition 1.4 (Complete orthogonal decomposition). Given a matrix A ∈ Rm×n of rank
r there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

UT AV =

n − r r[]r 0 R
m − r 0 0

,

where R is nonsingular upper triangular.

Proof. In order to obtain the complete orthogonal decomposition it is necessary to find the
rank of the matrix A. An efficient method of doing that, which also brings the structure of
the resulting matrix closer to our goal, is the QR decomposition with column pivoting

QT AP = R̃,

1.2. FINDING THE PREPROCESSING DECOMPOSITION 7

where Q is orthogonal, P is a permutation matrix (which is also orthogonal) and R̃ is upper
triangular with the additional property that the absolute value of each diagonal element R̃ii

is larger than the Euclidian norm of each of the columns of R̃(i+1):m,(i+1):n. Here, R̃(i+1):m,(i+1):n

is the lower right submatrix of R̃ starting at position (i + 1, i + 1). This means that if a
diagonal entry of R is zero, then the whole trailing matrix is also a zero matrix, so R̃ is of
the form

R̃ =

r n − r[]r R11 R12

m − r 0 0
.

where r ≤ min{m, n} and R11 is upper triangular with nonzero diagonal entries. From
this it is obvious that R̃ has exactly r linearly independent columns, i.e. rank(R̃) = r.
Since orthogonal transformations preserve rank, the rank of the matrix A is also r. Let
R̃ = [r̃1, . . . , r̃m]T , where r̃i are column vectors, i.e. r̃T

i are the rows of R̃. The next step is to
find an orthogonal matrix V1 such that VT

1 r̃r = ‖r̃r‖2en. This can be achieved by a series of
Givens rotations or by a Householder reflection. Then we apply V1 to R̃ from the right side
obtaining

R̃V1 =

n − 1 1
r − 1 R(1)

11 R(1)
12

1 0 R(1)
22

m − r 0 0
,

with R(1)
22 , 0. Note that we can chose V1 in such a way that R(1)

11 keeps its upper trapezoidal
structure, but this is not necessary. We continue with the same procedure recursively on
R(1)

11 obtaining

R(1)
11 V2 =

n − r r − 1[]
r − 1 0 R(2)

12
m − r 0 0 ,

with V2 orthogonal and R(2)
12 upper triangular, and

R̃V1

[
V2 0
0 1

]
=

n − r r − 1 1
r − 1 0 R(2)

12 R(1)
12

1 0 0 R(1)
22

m − r 0 0 0
,

8 CHAPTER 1. PREPROCESSING ALGORITHM FOR THE GENERALIZED SVD

which gives us the required factorization, where U = Q and V = PV1V2. �

Note that in some literature the right side of the URV decomposition is written as

r n − r[]r R 0
m − r 0 0

,

but this is clearly a matter of a simple cyclic column permutation which can be “absorbed”
by the matrix V . With this proposition in our arsenal we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We begin by forming the block-matrix [AT BT]T and by doing the
URV decomposition of B obtaining

[
A
B

]
=

[
AQ1QT

1
V1RQT

1

]
=

[
I 0
0 V1

] [
AQ1

R1

]
QT

1 ,

[
AQ1

R1

]
=

n − l l
m A(1)

11 A(1)
12

l 0 B(1)
12

p − l 0 0
,

where B(1)
12 is nonsingular upper triangular and l = rank(B). Now we calculate the URV

decomposition of A(1)
11 = U2R2QT

2 and getA
(1)
11 A(1)

12
0 B(1)

12
0 0

 =

[
U2 0
0 I

] R2 UT
2 A(1)

12
0 B(1)

12
0 0

[
QT

2 0
0 I

]
,

R2 UT
2 A(1)

12
0 B(1)

12
0 0

 =

n − k − l k l

k 0 A(2)
12 A(2)

13
m − k 0 0 A(2)

23
l 0 0 B(2)

13
p − l 0 0 0

,

with A(2)
12 and B(2)

13 nonsingular upper triangular. From that we can see that the last k + l rows
of the matrix are linearly independent and since orthogonal transformations preserve the
rank of the matrix it follows that r = rank([AT BT]T) = k + l. The only step left to do is the
QR decomposition A(2)

23 = U3A(3)
23 which gives us the required decomposition if we set

U = U2

[
I 0
0 U3

]
, V = V1, Q = Q1

[
Q2 0
0 I

]
.

�

Chapter 2

Computing the Preprocessing Step on
the GPU

After seeing how to compute the preprocessing step for the GSVD in the previous chapter
we focus on the details of implementing this algorithm on the GPU. The algorithm consists
of the QR and URV decompositions. The URV decomposition can be broken up into
QR with column pivoting and a QR-like decomposition with orthogonal transformations
applied from the right, giving the decomposition A = RQT , where R and Q are as in the QR
decomposition. We will call this decomposition the RQ decomposition. In the following
sections we analyze the computation of each of these steps on a CUDA-enabled GPU in
detail.

2.1 The CUDA Programming Model
Before explaining the inner workings of our algorithm we briefly summarize the CUDA
programming model to justify the decisions made when designing the algorithm. The sys-
tem modeled by CUDA is a heterogeneous system comprised of a general purpose proces-
sor (called the host) and a specialized graphics processor (called the device). The program
execution is controlled by the host, which groups the computation into a sequence of tasks
and instructs the device to compute them.

The device executes multiple threads (sequences of instructions) in parallel. These
threads are grouped into blocks, which is the largest group of threads that can be syn-
chronized. The entire task is computed by a group of blocks called a grid. Since threads
belonging to different blocks cannot be synchronized the task should consist of multiple
independent subtasks so each of them can be executed by a single block. There is an-
other group of threads in the thread hierarchy called the warp, which can be safely ignored
from the point of program correctness, but is very important from the perspective of ef-

9

10 CHAPTER 2. COMPUTING THE PREPROCESSING STEP ON THE GPU

ficiency. The warp is a group of 32 threads belonging to the same block which always
execute the same instruction, but possibly on different data — effectively forming a SIMD
multiprocessor. These threads are always synchronized, so there is no need for implicit
synchronization, but there is a problem with branching instructions, which can lead to the
so called “thread divergence” if after this kind of instruction some of the threads end up on
one and the others on another point in the program. This problem is solved by serialization
— the first group of threads execute their sequence of instructions while the other group
waits, and then the roles are swapped so the other group executes their sequence. The
groups are diverged until they again end up on the same instruction in which case they are
merged and continue to execute together. Of course, this behavior should be avoided since
it results in slowdowns of up to a factor of 32 if every thread in a warp ends up executing a
different instruction.

The device and the host have separate memories, so the data has to be copied to the
device before the computation. This can be done simultaneously with the computation but
since the order of the size of our data is O(n2) and the order of the required computation
O(n3) the improvements on larger matrices are negligible. Therefore, we first copy all the
data to the device, run our algorithm, and finally copy the results back to the host. The de-
vice memory hierarchy closely follows the thread hierarchy. It consists of the global mem-
ory which is accessible to all threads and persists between different tasks, shared memory
which is shared among the threads of a single block, and finally, the local memory and a
small amount of registers which are local to a single thread. The registers are the fastest,
followed by the shared memory and finally the local and global memory, so the registers
and the shared memory should be used in favor of the global and local memory whenever
possible. Access to the global memory is cached in blocks of 128 bytes when using the
L1 and L2 caches or 32 bytes when using only the L2 cache. The best performance can
therefore be achieved if all threads in a warp are accessing memory that is a part of the
same 128 byte wide block. There are also more specialized memories such as constant
memory which can only be changed by the host and achieves the best performance when
all blocks of a warp access the same memory location.

Different GPU architectures have some additional limitations which we should be aware
of when developing our algorithm. The GPU that will be used to test our algorithm is a
Tesla S2050, of compute capability 2.0. On this device the size of the block is limited to
1024 threads with a maximum of 1536 threads per streaming multiprocessor (SM), which
is the basic building block of a GPU. Multiple blocks can be allocated to the SM at the
same time, but not partial blocks. This means that by using a block size of 1024 we waste
512 threads. Since the performance of the SM increases by using as many threads as possi-
ble, blocks of this size are usually not the best strategy. There is also a limit on the number
of blocks per SM, which is 8, so the minimal number of threads per block should be at
least 192 in order to use all the available threads. The size of the warp is also a limiting

2.2. COMPUTING THE QR DECOMPOSITION 11

factor as block size should be a multiple of warp size in order to split it into multiple full
warps. Otherwise, some of the warps have less than 32 threads, which degrades perfor-
mance. From this analysis we can deduce that the candidate block sizes are 256, 512, 192,
384 and 768 threads.

2.2 Computing the QR Decomposition
In this section we describe a way to efficiently compute the required QR decompositions.
A simple algorithm would be to mimic the sequential algorithm which computes the first
column of the R factor, updates the trailing matrix and then proceeds to the next column,
until the entire matrix is transformed to the R factor and the transformations are accumu-
lated to form the Q factor. The problem with this approach is that it uses the device memory
in an inefficient way. One step of the update requires the entire matrix to be read from the
global memory and written back. This then accumulates to roughly 2mn2/3 memory reads
and writes for the QR decomposition of an m × n matrix, which is the same as the number
of computational operations required for the decomposition, so we expect this algorithm to
be memory-bounded.

A better algorithm can be constructed by calculating the R factor of a block of columns
before proceeding with the update of the trailing matrix. This method was used in [2]
and significant speedups over other QR implementations were observed for tall and skinny
matrices. In the rest of this section we describe a variant of this algorithm using Givens
rotations.

Let b be the desired width of the block column and A ∈ Rm×n be the input matrix,

A =
[
A1 A2

]
where A1 is the first block column, i.e. A1 has b columns. The overall idea is to compute the
decomposition A1 = Q1R1 where R1 = [RT

11 0]T and R11 is b × b upper triangular obtaining

A = Q1

[
R1 QT

1 A2

]
= Q1

[
R11 R12

0 Ã

]
and then compute the QR decomposition of Ã in the same manner.

To do this, we need a way to efficiently compute the QR decomposition of A1 on the
GPU, i.e. we need to split the computation to a series of independent subtasks that can be
computed by a single thread block. We do this by partitioning the matrix into b × b blocks
and computing the QR decomposition of each of the blocks:

A1 =

A11
...

Ak1

 =

Q11R(1)

11
...

Qk1R(1)
k1

 =

Q11 0

. . .

0 Qk1

R(1)

11
...

R(1)
k1

 ,

12 CHAPTER 2. COMPUTING THE PREPROCESSING STEP ON THE GPU

where k = dm/be. It is obvious that theses are independent tasks, so each of them can
be computed by a single thread block. The next step is to group the blocks in pairs and
use orthogonal transformations to annihilate one of them using the other. For simplicity
suppose k is even, if it is odd, we ignore the last block. We compute the QR decomposition
of each of the pairs [(R(1)

(2i−1),1)T (R(1)
2i,1)T]T , i = 1, . . . , k/2, which annihilates the even blocks

of the matrix:

R(1)
11

R(1)
21
...

R(1)
(k−1),1

R(1)
k1

=

Q11

[
R(2)

11
0

]
...

Q(k/2),1

[
R(2)

(k−1),1
0

]

=

Q11 0

. . .

0 Q(k/2),1

R(2)
11
0
...

R(2)
(k−1),1
0

.

We repeat this process on pairs of non-zero blocks until only the first block remains. Again,
the QR decompositions of different block pairs are independent operations, so each of them
can be computed by a single thread block. By performing the initial QR decomposition on
the blocks we have ensured that the matrix pairs used in subsequent QR decompositions
are of special form (two triangular matrices stacked on top of each other), which can be
used to reduce the number of steps required for the decomposition of a single block pair.
Additionally, the trailing matrix update can be computed in parallel with the next step of
the block pair reduction, obtaining slightly better GPU utilization in the final stages of
the algorithm, when the number of non-zero blocks is small. The overall procedure is
described in more detail in Algorithm 2.1 and the QR decomposition of a single block in
Algorithm 2.2. The process is also visualized on Figure 2.1.

The benefit of this approach over the naive parallelization is its memory use. The
savings come from the fact that each thread block can first read all of its inputs to shared
memory, perform the computation using only shared memory and finally write the results
back to the global memory. For block size b this method requires roughly n/b steps, since
each step computes b columns of the final R factor. One step consists of the initial QR
decomposition and the trailing matrix update, which requires mn global memory reads
and writes, and log2 k steps to get a single triangular block, which requires additional 2mn
reads and writes (as every step uses half of the matrix used in previous step). The entire
step needs 3mn global memory reads and writes, which sums up to mn2/b reads and writes
for the whole computation if we take into account that each step operates on a slightly
smaller matrix. This reduces the global memory accesses by a factor of 2b/3.

The only thing remaining to show is how to compute the QR decomposition of a single
block and of two triangular blocks. To compute the QR decomposition of a b × b matrix
with a single thread block we split up its threads into b/2 groups of 2b threads. Each of
the groups is instructed to perform one Givens rotation on a pair of matrix rows and to
update the Q factor (half of the group updates the R factor and the other half the Q factor).

2.2. COMPUTING THE QR DECOMPOSITION 13

A11

A21

A31

A41

1

R
(1)
11

R
(1)
21

R
(1)
31

R
(1)
41

2 3

R
(2)
11

R
(2)
31

4 5

R
(3)
11

6

Figure 2.1: QR factorization of a single column block. First, the QR factorization of
individual blocks is computed (1) and the trailing matrix is updated (2). Next, pairs of
triangular blocks are reduced to a single triangular block (3) and the trailing matrix is
updated again (4). The process continues until a single triangular block remains (5, 6).

The order of rotations is chosen to minimize the number of required parallel steps using
the procedure introduced in [10]. This procedure uses a greedy algorithm to determine the
maximal number of pairs of rows available for computation in each step. The algorithm
chooses the bottom half of available rows and annihilates the first non-zero element in
that row using the upper half of available rows. This makes sense since more elements of
the bottom rows will have to be annihilated in subsequent steps. The algorithm is better
illustrated by an example — the matrix displayed below shows the order in which the
elements should be annihilated in case of an 8×8 block. The entries in the matrix designate
the parallel step in which the annihilation of the corresponding block element should be

14 CHAPTER 2. COMPUTING THE PREPROCESSING STEP ON THE GPU

Algorithm 2.1: Blocked QR decomposition — host part
Blocked QR(inout :: A, out :: Q, in :: b);
Description: Computes the QR decomposition of the matrix A ∈ Rm×n using a block

size of b. On exit, A is overwritten with the R factor of the
decomposition.

begin
Q← I ;
A(1) ← A, Q(1) ← Q ;
for i← 1 to dn/be do
Blocked QR step(A(i), Q(i), b);

partition A(i) →

[
R11 R12

0 A(i+1)

]
, where R11 is b × b;

partition Q(i) →
[
Q1 Q(i+1)

]
, where Q1 has b columns ;

end
end

computed.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 5 ∗ ∗ ∗ ∗ ∗ ∗

2 4 7 ∗ ∗ ∗ ∗ ∗

1 3 6 8 ∗ ∗ ∗ ∗

1 3 5 7 9 ∗ ∗ ∗

1 2 4 6 8 10 ∗ ∗

1 2 3 5 7 9 11 ∗

This Givens ordering can be precomputed once on the host, stored in the constant memory
and then read by the device when needed.

Once we obtain a triangular structure of b× b submatrices we can reduce pairs of those
blocks to one triangular block with b groups of 2b threads to “peel off” the diagonals of the
second matrix using the first matrix. This can be done in b steps as shown in the following

2.2. COMPUTING THE QR DECOMPOSITION 15

Algorithm 2.2: Single step of blocked QR decomposition — host part
Blocked QR step(inout::A, inout::Q, in::b) ;
begin

partition A(i) →

A11 A12
...

...
Ak1 Ak2

, where Ai1 are b × b;

partition Q(i) →
[
Q1 · · · Qk

]
, where Qi have b columns;

device do Device QR(Ai1, Q̃i), i = 1, . . . , k;
device do Qi ← QiQ̃

T
i , Ai2 ← Q̃iAi2, i = 1, . . . , k;

l← 1;
while l < k do

device do Device QR triangular([AT
i,1 AT

i+l,1]T , Q̃i),
i = 1, 1 + 2l, 1 + 4l, . . . ;

device do
[

Ai,2

Ai+l,2

]
← Q̃i

[
Ai,2

Ai+l,2

]
,
[
Qi,2 Qi+l,2

]
←

[
Qi,2 Qi+l,2

]
Q̃T

i

i = 1, 1 + 2l, 1 + 4l, . . .;
l← 2l;

end
end

8 × 8 matrix.

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7

1 2 3 4 5 6
1 2 3 4 5

1 2 3 4
1 2 3

1 2
1

The method for computing the QR decomposition of a single b × b block is outlined in
Algorithm 2.3. The method for the QR decomposition of a pair of blocks is analogous, it
only uses a different Givens ordering table and a double amount of groups of threads.

16 CHAPTER 2. COMPUTING THE PREPROCESSING STEP ON THE GPU

Algorithm 2.3: QR decomposition of a single block — device part
Device QR(inout :: A, out :: Q);
Description: Computes the QR decomposition of the matrix A ∈ Rb×b. On exit, A is

overwritten with the R factor of the decomposition.
Global : A table T with steps rows and b/2 columns where each entry (i, j)

consists of a triplet (r1, r2, c) which designates that in the i-th step
thread group j should apply Givens rotation to rows r1 and r2 to
annihilate the element at position (r2, c). In case the group should wait
this particular step and do nothing, every element of the triplet is set to
−1.

begin
Q← I ;
parallel idx← 1 to b2 do

gid ← GroupId(idx);
for i← 1 to steps do

r1, r2, c← Ti,gid ;
if r1 , −1 then

Apply rotation to rows r1 and r2 of A and Q to annihilate Ar2c ;
end
synchronize threads;

end
end

end

2.3 Computing the Complete Orthogonal Decomposition

To compute the complete orthogonal decomposition we first need an efficient algorithm
for the QR decomposition with column pivoting. The classical algorithm performs column
pivoting by permuting the column with the largest norm to the beginning of the matrix
and then performing one step of the normal QR factorization. This gives a factorization
where the absolute value of each diagonal element rii of matrix R is larger than each of
the column norms of the bottom-right block of R starting at position (i + 1, i + 1). The
rank is determined by stopping the algorithm once the diagonal element rii drops under
some small threshold as this means that the norm of the trailing matrix is small enough
to be discarded and the rank is declared to be i − 1. However, this algorithm suffers from
bad memory use on the GPU for the same reasons as the classical algorithm for the QR
decomposition. The reason for this is the inability to compute the QR decomposition of a
column block because the second column cannot be selected before the computation with

2.3. COMPUTING THE COMPLETE ORTHOGONAL DECOMPOSITION 17

the first column is completed and the trailing matrix updated. To alleviate this problem new
algorithms have been developed recently, which forfeit the decrease of absolute values of
diagonal matrix entries in exchange for the ability to select multiple linearly independent
columns at once, while retaining (and some of them even boosting) the ability to detect the
rank of the matrix. Some of the strategies used by these algorithms include randomization
[9] and tournament selection [6]. We will use the ideas from [6] to develop a variation of
the algorithm suitable for the GPU.

Say we want to find min{r, b} linearly independent columns of a matrix A ∈ Rm×n,
where r is the rank of A and b is the block size used in Algorithm 2.1. First define A(0) = A.
We divide the matrix A(0) into m × 2b blocks, A(0) = [A1 . . . Ak], and compute the QR
with column pivoting of each of the tall and skinny matrices Ai = QiRiPT

i . We apply the
permutation Pi to the matrix Ai and select the first b blocks of the resulting matrix. This is
done to extract the maximal amount of independent columns from the matrix A, as these
columns tend to end up in the beginning of the matrix. We do this for each of the matrices
Ai and from them create a new matrix A(1), which has roughly n/2 columns. We repeat
this process, selecting the columns of matrices A(i) and obtaining matrices A(i+1), until we
end up with a matrix that has b columns. We use these b columns for the next step of the
Algorithm 2.1. This procedure is described by Algorithm 2.4 and illustrated in Figure 2.2.
In the absence of round off errors it will always find the largest possible set of independent
columns, as shown by Theorem 2.1.

Theorem 2.1. If A ∈ Rm×n has rank r, then the last of the matrices A(i) has rank min{r, b}.

Proof. We prove this theorem by induction on the number of required matrices A(i).
If n ≤ b and no steps are required it is obvious that the matrix A(0) = A has min{r, b}

independent columns.
Suppose that the theorem holds for all matrices which require at most i steps of Al-

gorithm 2.4 to compute the final matrix A(i). Let A be a matrix such that i + 1 steps are
required to compute the final matrix A(i+1). A(i+1) is obtained by applying one step of the
algorithm on two matrices A(i)

1 and A(i)
2 (A(i) = [A(i)

1 A(i)
2]) with at most b columns which are

obtained from the two “halves” A1 and A2 of the original matrix A using at most i steps.
From the induction hypothesis it follows that matrices A(i)

1 and A(i)
2 have ranks min{r1, b}

and min{r2, b}, respectively, where r1 = rank(A1) and r2 = rank(A2), r1 + r2 ≥ r. If either
one of r1 and r2 is greater or equal to b it is obvious that r ≥ b and, since the matrix A(i+1) is
constructed by selecting b independent columns from [A(i)

1 A(i)
2], it has rank b = min{r, b}.

If both of the ranks r1 and r2 are smaller than b, then matrices A(i)
1 and A(i)

2 contain the
maximal amount of linearly independent columns of A1 and A2, respectively. This means
that the subspace spanned by A = [A1 A2], is the same subspace as the one spanned by
the matrix [A(i)

1 A(i)
2], so there must be exactly r linearly independent columns in the matrix

[A(i)
1 A(i)

2], which are then sampled into A(i+1). �

18 CHAPTER 2. COMPUTING THE PREPROCESSING STEP ON THE GPU

A1 A2 A3 A4

R1 R2 R3 R4

P1 P2 P3 P4

QRPQRP QRP QRP QRP

QR QR QR QR

Figure 2.2: One step of the pivoting procedure. The matrix is split into block columns
of width 2b. The QR decomposition of each of the block columns is computed to obtain
the triangular factors of each of the blocks. Finally the QR decomposition with column
pivoting of each of the triangular factors is performed and first b elements of the resulting
permutation are selected. These elements designate the n/2 columns which will be used to
build the matrix A(i+1) for the next step of the pivoting procedure.

Now we only need to show how to find the QR decomposition with column pivoting
of a tall and skinny matrix A j. First, we compute the QR decomposition of A j using Algo-
rithm 2.2, which computes the QR decomposition of a tall and skinny matrix, obtaining a
2b×2b matrix R and then compute the QR with column pivoting of R using a single thread
block. As we are only interested in the permutation P we do not need to compute the or-
thogonal factor Q, which saves threads and allows the efficient computation of a 2b × 2b
matrix block using 2b2 threads and at most 2b steps.

To compute the QR with column pivoting of a single block, in each step of the decom-
position we use a method similar to Algorithm 2.3. We divide the threads into b groups
of 2b threads. First, we find the column with the largest norm — each group of threads is
instructed to find the norms of two columns via reduction. Once we have all of the column
norms a single group of threads uses reduction on the norms to find the column with the
largest norm. Lastly, the column with the largest norm is swapped with the first column.

2.3. COMPUTING THE COMPLETE ORTHOGONAL DECOMPOSITION 19

Algorithm 2.4: Pivoting algorithm for the QR decomposition
Block Pivot(in :: A, in :: b, out :: P);
Description: Finds at most b linearly independent columns of A ∈ Rm×n and returns

their indices as elements of the array P ∈ Rb.
begin

A(0) ← A;
i← 0;
while A(i) has more than b columns do

partition A(i) →
[
A1 · · · Ak

]
, where A j have 2b columns;

Use Algorithm 2.2 to obtain the R factor from the QR decomposition of A j

for all j = 1, . . . k (label the R factors with R j) ;
device do compute the QR decompositions with column pivoting of the

2b × 2b matrices R j and obtain the permutations P j;
Apply P j to the columns of each of the matrices A j and obtain A′j;
Take the first b columns of each of the matrices A′j and from them form A(i+1);
i← i + 1;

end
Set P to the list of indices of A(i)’s columns in the original matrix A;

end

This completes the pivoting of the first column and we are free to use Givens rotations in
the same manner as in Algorithm 2.3 and annihilate the subdiagonal elements of the first
column. Note that we cannot start to annihilate other columns, as we still do not know
which column will be the next pivot. This explains a single step of the QR decomposition
with column pivoting. The rest of the steps are done analogously. Again, we are only
interested in the permutation matrix P, so we do not need to compute the Q factor.

After finding b independent columns (or less in case the rank of the matrix is less than
b) we permute the matrix A so these b columns become the first columns in the matrix,
perform the QR decomposition of the first m×b block of A and update the trailing m×(n−b)
part of A. We continue with the rest of the matrix in the same manner. As soon as we find
less than b independent columns, we stop the computation and report the rank of the matrix
to be the total number of linearly independent columns found during all of the steps of the
algorithm.

After finding the QR decomposition with column pivoting:

A = Q
[
R
0

]
PT

where Q is orthogonal, R ∈ Rr×n upper trapezoidal with full row rank and P is a permutation

20 CHAPTER 2. COMPUTING THE PREPROCESSING STEP ON THE GPU

matrix, we only need to compute the RQ decomposition of R in order to get the complete
orthogonal decomposition. The procedure is analogous to Algorithm 2.1, but instead of
operating on blocks of columns, we operate on blocks of rows and apply rotations to the
columns to get the decomposition

R =
[
0 R′

]
VT ,

where R′ is upper triangular nonsingular and V orthogonal.

2.4 Putting It All Together
Now that we have all the building blocks for the preprocessing step we describe how to
combine them to get the complete algorithm. In order to get the largest gain in memory
usage, while retaining efficiency of a single block we need the matrix block size b to
be as large as possible. Since we need the thread block size to be equal to 2b2 for the
pivoting scheme, the only b which gives a candidate block size from Section 2.1 is b = 16
(2b2 = 512). We also said that we use groups of threads of size 2b = 32. The most
natural choice is to use a single warp as a group, as this way we have the best possible
constant memory usage, since the whole group will access the same value of the table T in
Algorithm 2.3.

The algorithm proceeds as follows: let (A, B), A ∈ Rm×n, B ∈ Rp×n be the matrix pair
we need to preprocess. First, initialize U, V and Q to identity matrices. We compute the
complete orthogonal decomposition of B and update the matrices A, V and Q in parallel
with the computation of B, applying the individual b × b blocks on the block-rows of V
and Q. This will increase the utilization levels of the GPU in the final steps of reductions,
when there is only a small amount of computation left to be done. Compute the complete
orthogonal decomposition of the first m× n− l block of A and update U, Q and the trailing
block of A in parallel. Finally, compute the QR decomposition of the bottom-right (m−k)×l
block of A and update U in parallel.

Chapter 3

Numerical Testing

The algorithm was tested on a machine with a 4-core Intel Xeon CPU and an Nvidia Tesla
S2050. Even though the Tesla S2050 system consists of 4 GPUs this algorithm uses only
one of them, so a version of the algorithm that utilizes all 4 GPUs would achieve addi-
tional speedups. We test the algorithm’s speed, rank detection, backward error and the
effect on the computed generalized singular values. The results are compared with those
of LAPACK’s and MKL’s xGGSVP routines.

3.1 Test Matrices

The input data for the algorithm consists of a matrix pair (A, B) ∈ Rm×n ×Rp×n. In all of the
tests the number of rows of both matrices (m and p) are set to be equal. The algorithm was
tested on inputs with different ratios of the number of rows (m) and the number of columns
(n). The exact ratios were 1 : 1, 2 : 1, 4 : 1 and 8 : 1, and for each of the ratios ten matrices
of different sizes were generated. The ranks of the matrices were also set to a fixed fraction
of the number of columns. The rank of B (l from Theorem 1.3) was set to 0.5n and the rank
of [AT BT]T (k + l from Theorem 1.3) to 0.8n.

The matrices were generated using MATLAB’s randnmethod to generate matrices T1 ∈

Rm×k+l, T2 ∈ R
p×l and T3 ∈ R

n×n. Then, matrices U and RA were obtained as Q and R factors
of the QR decomposition of T1, V and RB as Q and R factors of the QR decomposition of T2

and Q as the Q factor from the QR decomposition of T3. Matrices RA and RB were padded
with zeros from the left to the width of n columns. Finally, the pair (A, B) was generated
by setting A = URAQ and B = VRBQ.

21

22 CHAPTER 3. NUMERICAL TESTING

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
e
e
d
 (
m
n
2
/t
im

e)

1e9 Speed (ratio = 1:1)

LAPACK

MKL

GPU

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

0

1

2

3

4

5

sp
e
e
d
 (
m
n
2
/t
im

e)

1e9 Speed (ratio = 2:1)

LAPACK

MKL

GPU

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sp
e
e
d
 (
m
n
2
/t
im

e)

1e10 Speed (ratio = 4:1)

LAPACK

MKL

GPU

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

size (n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
e
e
d
 (
m
n
2
/t
im

e)

1e10 Speed (ratio = 8:1)

LAPACK

MKL

GPU

Figure 3.1: The speed of our algorithm (green) compared to the speed of MKL’s (blue) and
LAPACK’s (red) implementations of DGGSVP

3.2 Speed

The speed was tested by running our algorithm and MKL and LAPACK versions of xGGSVP
using the same matrix pair (A, B) as input. The results are summarized in Figure 3.1. The
number of rows (m) of the input matrices is plotted on the x-axis and the speed mn2/time
on the y-axis. The algorithm outperforms single-threaded LAPACK’s implementation by
roughly a factor of 10x, with more speedup gained on the tall and skinny matrices. It is
slightly faster than the multi-threaded MKL’s implementation, up to a factor of about 2x
on the tall and skinny inputs.

3.3. RANK DETECTION 23

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

0

200

400

600

800

1000

1200

1400

1600

ra
n
k

Rank (ratio = 1:1)

LAPACK (k+ l)

MKL (k+ l)

GPU (k+ l)

LAPACK (l)

MKL (l)

GPU (l)

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

0

100

200

300

400

500

600

700

800

ra
n
k

Rank (ratio = 2:1)

LAPACK (k+ l)

MKL (k+ l)

GPU (k+ l)

LAPACK (l)

MKL (l)

GPU (l)

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

0

50

100

150

200

250

300

350

400

ra
n
k

Rank (ratio = 4:1)

LAPACK (k+ l)

MKL (k+ l)

GPU (k+ l)

LAPACK (l)

MKL (l)

GPU (l)

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

size (n)

0

50

100

150

200

250

300

350

400

ra
n
k

Rank (ratio = 8:1)

LAPACK (k+ l)

MKL (k+ l)

GPU (k+ l)

LAPACK (l)

MKL (l)

GPU (l)

Figure 3.2: The ranks (k and k + l) of the matrices computed by our algorithm, LAPACK
and MKL. The computed l is marked with the striped lines and k + l with the full lines. Our
algorithm is shown in green, MKL’s version in blue and LAPACK’s in red.

3.3 Rank Detection

For the GSVD algorithm for triangular matrix pair (either implicit Kogbetlianz or Hari–
Zimmerman) to work it is crucial for the preprocessing step to accurately determine the
rank of the matrices A and B and return a nonsingular B13. For this reason the rank detection
properties, i.e. computed k and l were also tested. Figure 3.2 compares the rank detection
of our algorithm and LAPACK’s and MKL’s implementations. The x-axis again represents
the matrix size and the y-axis the ranks of the matrices. The stripped line is the rank of the
matrix B (parameter k) and the full line is the rank of the pair (A, B). We can see that all of
the algorithms successfully compute the required ranks.

24 CHAPTER 3. NUMERICAL TESTING

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

14.0

14.2

14.4

14.6

14.8

d
ig
it
s

Backward error (ratio = 1:1)

LAPACK (A)

MKL (A)

GPU (A)

LAPACK (B)

MKL (B)

GPU (B)

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

14.2

14.4

14.6

14.8

15.0

d
ig
it
s

Backward error (ratio = 2:1)

LAPACK (A)

MKL (A)

GPU (A)

LAPACK (B)

MKL (B)

GPU (B)

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

14.2

14.4

14.6

14.8

15.0

d
ig
it
s

Backward error (ratio = 4:1)

LAPACK (A)

MKL (A)

GPU (A)

LAPACK (B)

MKL (B)

GPU (B)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

size (n)

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15.0

d
ig
it
s

Backward error (ratio = 8:1)

LAPACK (A)

MKL (A)

GPU (A)

LAPACK (B)

MKL (B)

GPU (B)

Figure 3.3: Backward errors of our algorithm (green), LAPACK (red) and MKL (blue).
Full lines show the number of correct digits when “reconstructing” the matrix A, and striped
lines the same for the matrix B.

3.4 Backward Error
To test the stability of our algorithm we look at the backward error. Suppose that the true
preprocessing step decomposition is A = URAQT , B = VRBQT , but due to round off errors
we compute a slightly perturbed Ũ, R̃A, Q̃, Ṽ and R̃B, i.e. we get a decomposition

A + δA = ŨR̃AQ̃T , B + δB = ṼR̃BQ̃T ,

where δA and δB are small relative to A and B, respectively. To approximate the accuracy
of our algorithm we compute the relative sizes of δA and δB:

‖δA‖F
‖A‖F

=
‖A − ŨR̃AQ̃T ‖F

‖A‖F
,
‖δB‖F
‖B‖F

=
‖B − ṼR̃BQ̃T ‖F

‖A‖F
.

3.5. EFFECT ON THE GENERALIZED SINGULAR VALUES 25

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

13.9

14.0

14.1

14.2

14.3

14.4

14.5

d
ig
it
s

Singular value ratios (ratio = 1:1)

svals

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

14.0

14.1

14.2

14.3

14.4

14.5

14.6

d
ig
it
s

Singular value ratios (ratio = 2:1)

svals

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

size (n)

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

d
ig
it
s

Singular value ratios (ratio = 4:1)

svals

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

size (n)

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

d
ig
it
s

Singular value ratios (ratio = 8:1)

svals

Figure 3.4: Difference of the generalized singular values computed by LAPACK and by
our algorithm

Figure 3.3 gives the comparison of our algorithm, LAPACK and MKL. The x-axis is again
the number of rows of the matrix and the y-axis is − log10 (‖δM‖F/‖M‖F),where M = A
(full line) or M = B (striped line). Since the ‖ · ‖F norm gives the average element value
in the matrix (in the context of quadratic mean), the expression above gives the number of
correct digits of the average matrix element. Our algorithm is slightly worse than LAPACK
and MKL, losing about 0.2 of a digit on square matrices and reaching LAPACK’s precision
on extremely tall and skinny matrices.

3.5 Effect on the Generalized Singular Values
The last accuracy measure studied is the effect of our algorithm on the generalized singular
values, compared to the values obtained by LAPACK. The xGGSVD routine which computes
the GSVD consists of two steps. First, the xGGSVP routine is called, which reduces the

26 CHAPTER 3. NUMERICAL TESTING

matrix pair to upper triangular form, followed by a call to xTGSJA, which computes the
GSVD of the triangular matrix pair with nonsingular B using the implicit Kogbetliantz
approach. To test the effect of our algorithm we replace the xGGSVP call with our algorithm
and call xTGSJA on the result. We then compare the obtained generalized singular values
σ

(gpu)
i = α

(gpu)
i /β

(gpu)
i with the corresponding σ

(lap)
i = α

(lap)
i /β

(lap)
i obtained from the call

to xGGSVD with the same input matrices. We only compare the l nontrivial (nonzero and
finite) values. If the ranks of the matrix B computed by xGGSVD and our algorithm differ
we use the smaller rank as the number of nontrivial generalized singular values. This rarely
happens, as shown in Section 3.3, but if it does the largest singular values are likely close to
infinity as they are obtained by dividing αi with a very small βi. For each of the generalized
singular values we compute

− log10

1
l

l∑
i=1

|σ
(gpu)
i − σ

(lap)
i |

max{σ(gpu)
i , σ

(lap)
i }

 ,
which has roughly the same meaning as the expression from Section 3.4. On the x-axis
of graphs in Figure 3.4 is again the number of rows of the matrices and on the y-axis the
value of the expression written above. The difference is, as expected, of the same order of
magnitude as the backward error.

Acknowledgment

I would like to thank my advisor Sanja Singer for proposing the subject of this thesis, all
the invaluable comments, creation of some of the figures and guidance while writing this
thesis. I would also like to thank my parents and my entire family for their financial and
moral support for the entire duration of my studies. Last, but not the least, I would like to
thank Jelena for her love and support, for always being there in times of need. Thank you
all, without you this wouldn’t be possible.

27

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ guide, vol. 9,
SIAM, 1999.

[2] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-avoiding QR de-
composition for GPUs, in: Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International, IEEE, 2011, pp. 48–58.

[3] Z. Bai, The CSD, GSVD, their applications and computations (1992).

[4] Z. Bai, J. W. Demmel, Computing the generalized singular value decomposition,
SIAM Journal on Scientific Computing 14 (6) (1993) 1464–1486.

[5] Z. Bai, H. Zha, A new preprocessing algorithm for the computation of the generalized
singular value decomposition, SIAM Journal on Scientific Computing 14 (4) (1993)
1007–1012.

[6] J. W. Demmel, L. Grigori, M. Gu, H. Xiang, Communication avoiding rank reveal-
ing QR factorization with column pivoting, SIAM Journal on Matrix Analysis and
Applications 36 (1) (2015) 55–89.

[7] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, A. R. LeBlanc, Design
of ion-implanted MOSFET’s with very small physical dimensions, IEEE Journal of
Solid-State Circuits 9 (5) (1974) 256–268.

[8] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, D. Burger, Dark sili-
con and the end of multicore scaling, in: Computer Architecture (ISCA), 2011 38th
Annual International Symposium on, IEEE, 2011, pp. 365–376.

[9] P. G. Martinsson, G. Quintana-Orti, N. Heavner, R. van de Geijn, Householder QR
factorization: Adding randomization for column pivoting. FLAME working note#
78, arXiv preprint arXiv:1512.02671.

29

[10] J. J. Modi, M. R. B. Clarke, An alternative Givens ordering, Numerische Mathematik
43 (1) (1984) 83–90.

[11] V. Novaković, S. Singer, S. Singer, Blocking and parallelization of the Hari–
Zimmermann variant of the Falk–Langemeyer algorithm for the generalized SVD,
Parallel Computing 49 (2015) 136–152.

[12] C. C. Paige, Computing the generalized singular value decomposition, SIAM Journal
on Scientific and Statistical Computing 7 (4) (1986) 1126–1146.

Sažetak

U ovom radu proučavamo algoritam pretprocesiranja za generalizirani SVD i njegovu par-
alelizaciju na grafičkoj kartici. Algoritam pretprocesiranja reducira par proizvoljnih ma-
trica (A, B) na gornje trokutasti par (Ã, B̃) pri čemu je B̃ regularna matrica. Nakon algoritma
pretprocesiranja za računanje generaliziranog SVD-a mogu se iskoristiti specijalizirani al-
goritmi, kao što je implicitni Kogbrliantzov ili implicitni Hari–Zimmermanov algoritam,
koji zahtjevaju ovakvu strukturu para matrica.

U prvom poglavlju rada definiramo generalzirani SVD i opisujemo gornje trokutastu
faktorizaciju koja je rezultat pretprocesiranja. Dodatno, opisujemo potpunu ortogonalnu
faktorizaciju korištenu u postupku pretprocesiranja. U drugom poglavlju opisuju se iza-
zovi koji se pojavljuju pri razvoju algoritama za grafičke kartice te se daje efikasna imple-
mentacija algoritma pretprocesiranja. U zadnjem poglavlju testiramo razvijeni algoritam
na matricama različitih veličina i usporedujemo brzinu, detekciju ranga, povratnu grešku i
utjecaj na generalizirane singularne vrijednosti našeg algoritma te LAPACK-ove i MKL-
ove verzije procedure xGGS VP.

Summary

In this thesis we study a preprocessing algorithm for the generalized SVD and its paral-
lelization on the graphics processing unit. The preprocessing algorithm reduces a general
matrix pair (A, B) to an upper triangular matrix pair (Ã, B̃) where B is nonsingular. After
the preprocessing step a specialized algorithm, such as the implicit Kogbetliantz or the
Hari–Zimmerman algorithm, which requires this structure of the matrix pair can be used
to compute the generalized SVD.

In the first chapter of the thesis we define the generalized SVD and describe the upper
triangular decomposition resulting from the preprocessing step. Additionally, we describe
the complete orthogonal decomposition which is used in the preprocessing step. The sec-
ond chapter describes the challenges that arise when developing algorithms for the GPU
and presents an efficient implementation of the preprocessing step. In the final chapter we
test the algorithm on a variety of matrices of different sizes and compare the speed, rank
detection, backward error and the effect on generalized singular values of our algorithm
and LAPACK’s and MKL’s versions of xGGSVP.

Životopis

Goran Flegar roden je 4. listopada 1992. godine u Varaždinu. Živi u Sračincu gdje pohada
osnovnu školu. Nakon osnovne škole upisuje prirodoslovno-matematički smjer Prve Gim-
nazije Varaždin te se nakon maturiranja 2011. seli u Zagreb gdje upisuje sveučilišni
preddiplomski studij matematike na Matematičkom odsjeku Prirodoslovno-matematičkog
fakulteta. 2014 završava preddiplomski studij i upisuje diplomski studij računarstva i
matematike na istom fakultetu.

Matematika i računarstvo ga interesiraju od osnovne škole, pa sudjeluje na državnim
i nekoliko medunarodnih natjecanja iz informatike. Za vrijeme studija bio je demonstra-
tor iz kolegija Programiranje, Uvod u paralelno računanje te Primjena paralelnih računala.
Nakon preddiplomskog studija provodi mjesec dana u softverskoj tvrtki IGEA, gdje razvija
mobilnu aplikaciju za održavanje Hrvatskih autocesta. Trenutno radi na projektu Eko-
RaMa, čiji je cilj razvoj novog kurikuluma za diplomski studij računarstva i matematike.
Tjekom studiranja primio je nagrade za izniman uspjeh na preddiplomskom i diplomskom
studiju.

Biography

Goran Flegar was born on 4th October 1992 in Varaždin. He lived in Sračinec where he
attended primary school. He graduated from Prva Gimnazija Varaždin and in 2011 moved
to Zagreb to study mathematics at the Faculty of Science, Department of Mathematics.
In 2014 he finished the Undergraduate Programme of Mathematics and enrolled in the
Graduate Programme of Computer Science and Mathematics at the same faculty.

He was interested in mathematics and computer science since primary school, and par-
ticipated in a number of national and a few international competition in computer science.
During his studies at the Department of Mathematics he was a student mentor for the
courses Computer Programming, Introduction to Parallel Programming and Applications
of Parallel Computers. After the undergraduate programme he spent a month in a software
company IGEA as an intern, where he developing a mobile app for the maintenance of
Croatian Motorways. Currently, he is working on the EkoRaMa project, whose goal is to
create a new curriculum for the Graduate Programme in Computer Science and Mathe-
matics. He received rewards for excellent achievement for both the undergraduate and the
graduate study.

	Contents
	Introduction
	Preprocessing Algorithm for the Generalized SVD
	The Generalized SVD and the Preprocessing Decomposition
	Finding the Preprocessing Decomposition

	Computing the Preprocessing Step on the GPU
	The CUDA Programming Model
	Computing the QR Decomposition
	Computing the Complete Orthogonal Decomposition
	Putting It All Together

	Numerical Testing
	Test Matrices
	Speed
	Rank Detection
	Backward Error
	Effect on the Generalized Singular Values

	Bibliography

