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1.   Introduction 

 

1.1.   The cell — basics, history and microscopy  

 

Life is characterized as a system that exchanges energy and substances with its 

surroundings. It can actively grow, develop and evolve. In addition, it has the ability 

to react to stimulus and generate new living ―offspring‖. One such living unit is a cell, 

that can function as a single organism (―one piece puzzle‖) or as the smallest 

functional component amongst thousands of other cells, that all together make a 

multicellular organism as a whole. Whether it lives as a ―one piece puzzle‖ or not, it 

experiences a series of nano-scale events that are organizing its surface and interior. 

Eukaryotic cellular components are highly organized to perform the function they are 

morphologically and structurally specialized for. From cell’s membrane through 

cytoskeleton and organelles, nucleus and genetic material comprised within, there are 

hundreds of signaling pathways that orchestrate the complex life of a cell. In addition, 

most cells have the ability to make new ones in a process of duplication of genetic 

material and eventually, division of the cytoplasm to create two identical daughter 

cells in a process called mitosis.  

To study such a complex system, various methods have been developed, but maybe 

the most revolutionary one was the idea to magnify it and observe it through a 

microscope. In 1590’s two Dutch spectacle makers, Hans and Zacharias Jansen 

assembled the first compound microscope by mounting two lenses in a tube. In 1609, 

Galileo Galilei assembled a compound microscope by combining the convex and 

concave lenses. Further optical designs and experiments followed as Anton van 

Leeuwenhoek assembled a microscope with greater magnification, which enabled 

detailed studies on bacterial cells. In 1931, Ernst Ruska started building the electron 

microscope and soon after fast progress followed with constructing different types of 

high resolution microscopes, like a confocal microscope. Even though there were 

reports on earlier confocal microscopes, the first confocal scanning microscope was 

built in 1955 by Marvin Minsky and further improvement followed with assembling 

the confocal laser scanning microscope. This system comprises an optical imaging 

technique for increasing optical resolution and contrast of a micrograph by means of 

adding a spatial pinhole placed at the confocal plane of the lens to eliminate out-of-
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focus light. Confocal microscope uses point illumination and a pinhole in an optically 

conjugate plane in front of the detector to eliminate out-of-focus signal - the name 

"confocal" stems from this configuration. As only light produced by fluorescence 

very close to the focal plane can be detected, the image's optical resolution, 

particularly in the sample depth direction, is much better than that of wide-field 

microscopes [1]. 

The first person who described the cell as a basic unit of life was Robert Hook, an 

architect, natural philosopher and scientist. He first used the term in 1665, while 

looking at thin slices of cork (Figure 1a) [2]. His observations were soon extended to 

wood and plant tissue, as well as to fly’s eye.  

The process of duplication and production of new living cells was named mitosis as 

coined by Walther Flemming. Already in 1880s he drew in detail his observations on 

mitosis (Figure 1b) [3]. Nevertheless, his study and interpretation of events in the 

mitosis laid foundations for further research on mitotic cell division. 

 

 

 

Figure 1. Advances in cell biology: a) Image of a Hook’s thin cork sample slice showing cellular 

organization [2]; b) Flemming’s drawing of mitosis with chromosomes and structures today known as 

components of the mitotic spindle [3]; c) Image of population of HeLa cells stably expressing H2B in 

mCherry (blue) and tubulin in SiR. Image is acquired with a confocal microscope. In the middle is a 

HeLa cell in metaphase of mitosis [4].  
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There are thousands of types of cells comprised within a single multicellular 

organism, but as there are so many diverse organisms living on planet Earth, this 

makes a huge variation of cell types one can study. From single cell organisms, 

neurons, fibroblasts, newt lung cells, to HeLa cells and many more, all of them 

making a good model system for conducting different types of experiments.  

HeLa cells are the oldest used human cell line established by George Gey. They were 

isolated from a cervical cancer patient Henrietta Lacks and characterized with a 

previously never seen special feature: immortality- once isolated, they could be kept 

alive and grow. These cells have been maintained in vitro since their derivation in 

February, 1951. (Figure 1c) [5]. 
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1.1.2.   Cell cycle 

 

The very first living cell must have had a somewhat primitive mechanism of making 

new ones and some aspects of this process could be evolutionary conserved. The 

process itself relies on certain complex structures that are newly assembled or 

disassembled on the onset of mitosis while others are degraded or assembled when 

mitosis comes to an end. The scenario in which the symmetric distribution of 

chromosomes in two daughter cells occurs is complex and intriguing. During ~24 

hours, cell is going through series of events known as the cell cycle. It is roughly 

divided in interphase and mitosis (M phase), (Figure 2). 

 

 

 

 

Figure 2. Overview scheme of the cell cycle with pointed G1, S, G2 and M phase. The cell cycle lasts 

for ~24 hours, with M phase occupying only approximately an hour of the entire cycle [6].  
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Interphase is a period between two mitotic divisions, during which daughter cell 

recovers and prepares for the next division. It is divided in G1, S and G2 phase, 

during which cell doubles its mass of proteins and organelles. ―G‖ in G1 and G2 

stands for gap phase and it gives the cell time to feed, grow and to control the 

accuracy of ongoing events. In S phase that lasts for 10-12 hours, the cell’s genetic 

material is being duplicated, so that it could be equally distributed to new daughter 

cells in M phase. During G2 phase certain events are preparing a cells interior for 

division, as for example duplication of centrosomes. At this point is also possible for 

cell to enter the, so called G0 phase, which is a resting period that can last for days, 

weeks or even years before the cell resumes the cell cycle [7]. Mitotic cell division is 

divided in distinct phases, depending on the organization and behavior of 

chromosomes. During prophase, which is the beginning of the process, proteins 

condensins help replicated DNA strands to condense in the nucleus. Thus condensed 

into structures called chromosomes, the DNA becomes compact and its length is 

reduced by more than 1000-fold [8]. In the meanwhile, mitotic spindle begins to form 

between two centrosomes in the cytoplasm. Mitotic spindle is a highly dynamic, 

complex machinery that orchestrates the progression through mitosis. It is composed 

of certain structures that direct its behavior, architecture and mechanics. Centrosomes 

are components that were duplicated in G2 of interphase, and are crucial for 

establishing the two opposite poles of the spindle. Their duplication also ensures that 

each daughter cell inherits one. Further on, centrosomes are organizing centers of 

microtubules, which are highly dynamic structures that make the fundamental part of 

the spindle. Microtubules are hollow polar structures composed of tubulin subunits. 

Their minus end is fixed at certain position (e.g. centrosome), while the plus end is 

more dynamic. In the late prophase, a complex protein assembly is formed on highly 

condensed DNA on both sides of the centromere. It is called kinetochore, and it is 

responsible for interaction of chromosomes with the growing microtubules. In pro-

metaphase of open mitosis, nuclear envelope breaks down and assembly of mature 

spindle takes place. This allows the chromosomes to come in contact with 

microtubules of the mitotic spindle. Alternatively, in closed mitosis typical for yeast 

cells, nuclear envelope doesn’t breakdown. Once chromosomes become connected to 

growing microtubules via their kinetochores, active movement of chromosomes can 

begin. In the next step, during metaphase chromosomes become aligned in the 

equatorial plane of the mitotic spindle halfway between two poles of the spindle. At 
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this point sister chromatids are still held tightly bound by multisubunit protein 

complexes called cohesins. In subsequent anaphase, cohesins are degraded and sister 

chromatids become separated in a synchronized manner. Once separated in anaphase 

A, sister chromatids are pulled away from each other towards two poles of the 

spindle. Kinetochore bound microtubules shorten, and in subsequent anaphase B the 

distance between two spindle poles increases and chromosomes are effectively pulled 

further away. As mitosis slowly comes to an end, in telophase separated 

chromosomes meet the spindle poles and begin to de-condense. At this point, nuclear 

envelope begins to assemble around each set of chromosomes. On two sides of the 

former metaphase plate the contractile ring is formed and finally the process comes to 

completion, when cytoplasm becomes separated by narrowing of the contractile ring 

(Figure 3) [7]. At this point the nuclear envelopes are fully formed around daughter 

chromosomes and the production of two identical cells is completed. These newly 

formed daughter cells can soon begin the same remarkable process. 

 

 

 

Figure 3. Live images of HeLa cell acquired on a confocal microscope (Zeiss LSM 710 NLO inverted 

laser scanning microscope, Zeiss, Jena, Germany). This cell line stably expresses tubulin fused to GFP 

(green) and H2B fused to mCherry (magenta). First image (up left corner) is showing cell in interphase. 

Following images are summarizing events in mitosis: condensation of chromosomes (prophase); 

nuclear envelope breakdown and attachment of chromosomes to microtubules of the spindle 

(prometaphase); alignment of chromosomes in equatorial plane of the spindle (metaphase); segregation 

of chromosomes (anaphase), narrowing of contractile ring (telophase); division of cytoplasms 

(cytokinesis). 
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1.1.3.   Regulation of mitosis and cell cycle checkpoints 

 

It is important that the newly formed daughter cells can carry out the same process 

with as less errors as possible. Since mitosis is a truly fundamental process in 

continuation of life, the cell has evolved a complex signaling network that regulates 

and controls a pause or progression through the process itself. Regulation of the cell 

cycle is evolutionary well preserved amongst all eukaryotic cells. In yeast cells, it has 

been shown that cdc genes (cell-division-cycle genes) are crucial in passing through 

the control steps of the cell cycle [9]. The control steps function as a clock, which can 

stop so as to give time for an appropriate machinery to be fixed or to fix the 

encountered error. Basically, this system delays certain sequential steps of the cycle, 

if necessary, and is regulated by means of negative intracellular signals. At the heart 

of the cell cycle control system is a family of protein kinases known as cyclin-

dependent kinases (Cdks), which are present in a cell in constant levels but are 

cyclically active. By phosphorylating certain intracellular proteins, they regulate DNA 

replication, mitosis and cytokinesis- major events in the cell cycle [7]. Cdks are 

regulated by cyclins, which can bind to cdks and activate them. Since the cyclins 

themselves undergo cyclic synthesis and degradation, cdks’ activity depends on the 

abundance of cyclins in the cell. There are 3 described checkpoints that control the 

accuracy of fundamental events (Figure 4). In G1 checkpoint, also known as the 

restriction checkpoint, a control mechanism ensures that the conditions are favorable 

for cell to enter the S phase. Since G1 is the first phase after cytokinesis, this control 

step checks ―how the cell is feeling‖, and when is the right time to continue the cycle. 

If conditions are favorable, a cell can proceed past restriction point and begin the 

duplication of DNA, or it can, alternatively, enter the G0 quiescent state, thus 

postponing S phase. During G2 checkpoint, just finished DNA synthesis is checked 

for damage and errors that could have occurred during DNA replication. At this point 

a cell can either enter mitotic division or delay it. The final checkpoint, called the 

spindle checkpoint, occurs in metaphase to ensure that chromosomes are properly 

attached to microtubules of the mitotic spindle and aligned in the metaphase plate 

[10]. This checkpoint is the last barrier for chromosomes to get separated in the 

following anaphase. Described checkpoints control the progression through the cycle 

and the cell relies on these mechanisms to ensure correct DNA replication and 
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chromosome segregation, proper division of cytoplasm and finally production of two 

healthy, functional daughter cells.  

 

 

 

 

 

 

 

 

Figure 4. Scheme of a cell cycle with timing of restriction points. G1 checkpoint makes sure that the 

conditions are appropriate for DNA duplication. G2 checkpoint checks whether DNA was duplicated 

without errors. Mitotic spindle checkpoint (checkpoint in mitosis) ensures that all chromosomes are 

properly attached to k-fibers and oriented in a way that they could be pulled to centers of new daughter 

cells [11].  
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1.2.   Components of the mitotic spindle 

 

During mitosis recruitment of different proteins is crucial. Many of them build up the 

structures that orchestrate the mitosis itself. One such macromolecular structure is the 

mitotic spindle that pulls duplicated chromosomes apart.  

 

 

 

1.2.1.   Centrosomes 

 

Centrosomes are microtubule organizing centers (MTOC) in animal cells. They are 

composed of two centrioles and associated pericentriolar matrix (Figure 5). 

Centrosomes and associated components determine the geometry of microtubules 

arrays throughout the cell cycle, and thus influence cell shape, polarity and motility, 

as well as spindle formation, chromosome segregation and cell division [12]. All 

centrosomes contain a structured core to which more than 50 copies of γ-tubulin ring 

complex (γ-TuRC) are connected [8]. Each γ-TuRC contains 13 copies of γ-isoform 

of tubulin that define the position of microtubule nucleation, the polar orientation of 

the polymer, and the lattice into which tubulin assembles [13]. Although they are 

involved in many events throughout the cell cycle, their possibility to form two poles 

of the spindle and to nucleate microtubules makes them an important component of 

the spindle. Centrosomes are duplicated in interphase in a process known as the 

centrosome cycle. Once duplicated, centrosomes move to opposite sides of the 

nucleus where they form two poles of the future spindle. As the nuclear envelope 

breaks down in pro-metaphase, they nucleate microtubule asters that will build up the 

mitotic spindle.  
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Figure 5. a) Scheme of a centrosome with major components pointed out: centrioles as the central 

structure, pericentriolar matrix and nucleated microtubules [14]. b) Image of mitotic cell with 

centrosomes labeled red, microtubules green and kinetochores magenta. Centrosomes in red represent 

two poles of the spindle [15].  

 

 

 

 

1.2.2.   Microtubules 

 

Microtubules are a cytoskeletal component of the cell, composed of protein tubulin. 

The tubulin subunit is a heterodimer formed from two closely related globular 

proteins α and β tubulin, tightly bound together by non-covalent bonds. Microtubules 

are assembled as long, hollow cylinders with an outer diameter of 25 nm. This 

cylindrical structure is built from 13 protofilaments, each composed of alternating α-

tubulin and β-tubulin molecules [7]. Both α and β monomer can bind one molecule of 

GTP. If it is bound to α tubulin, GTP will never be exchanged or hydrolyzed, while β-

tubulin bound GTP can undergo hydrolysis to produce GDP. This hydrolysis has an 

important effect on microtubule dynamics. Indeed, microtubules often switch between 

phases of growth and shrinkage. This remarkable behavior was discovered in 1984 

when Tim Mitchison and Marc Kirschner [16] deduced that microtubules switch from 

growth to shrinkage when they lose their GTP caps: ―We report here that 

microtubules in vitro coexist in growing and shrinking populations which interconvert 

rather infrequently. The dynamic instability is a general property of microtubules and 
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may be fundamental in explaining cellular microtubule organization‖. Today we 

know that they possess intrinsic polarity with their minus ends embedded in MTOC, 

e.g. centrosome, while the (free) plus end is more dynamic and switches fast between 

growth and shrinkage, a.k.a. catastrophe (Figure 6). Microtubules grow when αβ-

tubulin collides with the end of a protofilament and forms a non-covalent bond. These 

collisions occur more frequently when the tubulin concentration is higher, and thus 

the growth rate increases linearly with more tubulin [17]. Microtubule ends with 

bound GTP are stable and polymerize, whereas ends containing GDP are unstable and 

depolymerize. In addition, there is a possibility for microtubules to switch from 

shrinkage to growth in a process known as rescue. Driving these processes are a host 

of microtubule-associated proteins (MAPs) that make microtubules grow faster, 

shrink slower, undergo catastrophe more often, and so on [18]. This, so called, 

dynamic instability is particularly frequent within microtubule populations that build 

up the mitotic spindle. Microtubules of the mitotic spindle are more dynamic than 

ones present in interphase, with complete exchange of spindle microtubules and 

soluble subunits occurring within seconds [19]. Already in 1950s Shinya Inoué [20] 

observed that spindles are made of aligned protein fibers that exist in rapid dynamic 

equilibrium with a pool of unassembled subunits. He proposed that spindle fiber 

disassembly generates force to move chromosomes. Indeed, once the nuclear 

envelope breaks down in pro-metaphase, chromosomes become free to make contact 

with the growing microtubules via their kinetochores. These, kinetochore bound, 

microtubules are called k-fibers and they generate forces on chromosomes throughout 

mitosis. During prophase, these forces direct the alignment of chromosomes to the 

metaphase plate and in anaphase they are directed to segregate chromosomes and pull 

them towards each pole of the spindle.  
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Figure 6. Scheme of microtubules with depicted growth and shrinkage as their dynamic property [21]. 

 

 

 

 

 

1.2.3.   Kinetochores 

 

Kinetochores are large, sticky protein complexes formed on centromeric regions of 

chromosomes during late prophase. For high-fidelity chromosome segregation, 

kinetochores must be correctly captured by microtubules of the mitotic spindle before 

anaphase onset. The vertebrate kinetochore, as seen by transmission electron 

microscopy, appears as a trilaminar stack of plates that is situated on opposite sides of 

the centromeric heterochromatin of the mitotic chromosome [22]. The properly 

assembled kinetochore contains two main regions (Figure 7). The inner one is tightly 

associated with the centromeric DNA and appears like a discrete heterochromatin 

domain throughout the cell cycle. The outer, highly dynamic plate is the site of 

interaction with the growing microtubules. In vertebrate cells, it contains about 20 

anchoring sites for plus ends of growing microtubules of the spindle. Additionally, it 

has been shown that kinetochores can nucleate microtubules, both on isolated mitotic 

human chromosomes [23] as well as in vivo [24; 25]). These kinetochore-nucleated 

microtubules may speed up kinetochore capture and the process of spindle assembly 
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[26; 27]. During pro-metaphase, microtubules nucleated at centrosomes grow and 

shrink rapidly until they encounter and bind to kinetochore by pivoting of 

microtubules around the centrosome [28]. Once this connection occurs on both sister 

kinetochores (on two sides of centromeric region), which links chromosome to 

opposite spindle poles, the bipolar orientation of a chromosome is established. Thus 

formed orientation is crucial for establishment of forces that will act on chromosomes 

throughout the following events in mitosis.  

 

 

 

     a)                b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. a) Scheme of a chromosome with two chromatids as seen in M phase of the cell cycle. 

Kinetochore is positioned in a centromeric region of each chromatid with inner layer connected to 

chromatin fibrils, outer layer that both nucleates and binds microtubules, and middle layer in between 

[29]. b) Image of mitotic cell with kinetochores labeled red and microtubules green. Dense green 

signal corresponds to k-fibers bound to kinetochores [30]. 
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1.2.4.   Non motor proteins 

 

In addition to fundamental microtubules and described components, a crucial role has 

to be assigned to microtubule associated proteins (MAPS) and motor proteins. These 

proteins direct the assembly, behavior and performance of the spindle. MAPs act as 

structural elements of the microtubule component of the cytoskeleton and mitotic 

spindle. Some MAPs stabilize the assembled polymer, whereas others mediate the 

interaction between individual microtubules and between microtubules and other 

components of the cytoskeleton. Non-motor proteins promote the formation and 

maintenance of mitotic spindles through diverse mechanisms including the nucleation 

and organization of microtubules, influence on motor function, and regulation of cell 

cycle control. In general, these proteins are relatively large, and many are only 

expressed during G2/M phase of the cell cycle [31]. They can act as cross-linkers that 

hold microtubules in close vicinity. For example, NuMa binds microtubules directly 

and mechanically crosslinks microtubules at spindle poles [32]. Some non-motor 

cross-linking proteins mutually stabilize antiparallel microtubules in the spindle mid-

zone. Others act as end binding proteins that control microtubule dynamics and 

persistent microtubule growth. Further on, non-motor proteins can interact with motor 

proteins. In some circumstances, the interaction is direct and the non-motor protein 

controls the function of the motor protein [32]. 

 

 

 

1.2.4.1.   PRC1 

 

Protein regulator of cytokinesis 1 (PRC1) is a midzone-associated protein required for 

cytokinesis and its bundling activity is crucial for the formation of spindle’s midzone. 

Its C-terminal domain binds to microtubules and N-terminal domain is necessary for 

dimerization. The rod domain located in between, together with the N-terminus 

facilitates binding of other proteins, for example kinesin-4. Its microtubule bundling 

is regulated by Cdk phosphorylation in a way that, when phosphorylated, it can bind 

to microtubules but cannot cross-link them. Once dephosphorylated, it can cross-link 

microtubules and form antiparallel bundles. PRC1 works in tandem with kinesin-4 

which translocates it to the midzone in metaphase [33]. 
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1.2.4.2.   End binding proteins 

 

Growing microtubules accumulate at their plus ends multiple structurally unrelated 

factors collectively termed MT plus-end tracking proteins, or +TIPs. The most 

conserved and ubiquitous +TIPs are end binding proteins (EBs) [34]. They are core 

components of microtubule plus-end tracking protein networks. EBs are relatively 

small dimeric proteins which contain an N-terminal calponin homology (CH) domain, 

responsible for the interaction with microtubules, a linker region of unknown 

function, and a C-terminal coiled coil domain that extends into a four-helix bundle, 

required for dimer formation [35]. Through their C-terminal sequences, EBs interact 

with most other known +TIPs and recruit many of them to the growing microtubules 

ends [36]. Structural studies suggest that the EBs probably act by enhancing lateral 

interactions between individual protofilaments and may affect MT lattice structure 

[37; 38]. Mammalian cells express three members of the EB family- EB1, EB2 and 

EB3. It has been shown in mouse fibroblasts that EB1 is involved in formation of 

stable microtubules and that simultaneous depletion of EB1 and EB3 increases 

microtubule catastrophe frequency and disrupts persistent microtubule growth [35]. 

EB3 localizes throughout the cell cycle only to the plus ends of growing microtubules 

[39], and accumulates at the centrosome [40; 41; 42], from early prophase until the 

end of mitosis, concurrently with the increase of microtubule nucleation rates at the 

centrosome [43]. In mitosis, microtubule property to switch between growth and 

catastrophe becomes important for generating forces on chromosomes. This dynamic 

instability is, not exclusively, but still highly regulated by exchange of EBs and 

GTP/GDP. 
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1.2.5.   Motor proteins  

 

Motor proteins move across cytoskeleton and actively organize cell’s interior. By 

using energy, they make traffic of all intracellular components possible. Transport 

inside the cell requires forces to move and position various molecular assemblies and 

organelles. These forces are mostly generated by motor proteins such as myosin, 

kinesin and dynein. To exert forces, motor proteins bind with one end to cytoskeletal 

filaments and with the other end to the cell cortex, a vesicle or another motor [44]. 

Whilst myosins are associated with contractile activity in muscle and non-muscle 

cells, kinesins and dyneins are microtubule motor proteins. Cytoskeletal motor 

proteins use structural changes in their nucleoside-triphosphate-binding sites to 

produce cyclic interactions with a partner protein. Further on, each cycle of binding 

and release must propel them forward in a single direction along a filament to a new 

binding site on the same filament. For such unidirectional motion, a motor protein 

must use the energy derived from ATP binding and hydrolysis to force a large 

movement in part of the protein molecule (Figure 8), [7]. The organization of 

microtubules into the highly ordered bipolar array of the mitotic spindle depends on 

activities of numerous motor and non-motor microtubule-associated proteins. Motor 

proteins have received significant attention because they generate force on 

microtubules during spindle formation and throughout mitosis. In that way, motor 

proteins actively walk across microtubule fibers and direct their active movement, 

thus, for example, controlling the separation of mitotic spindle poles. Some of the 

motor proteins form oligomers that can crosslink adjacent microtubules, and in that 

way they can move one microtubule relative to the other, with the direction of 

movement dependent on the polarity of both motor protein and microtubules. 

Alternatively, such motor proteins can slide antiparallel microtubules past each other 

in the overlap zone of the spindle.  

 

 

 

 



17 

 

 

 

 

Figure 8. Scheme of direction of the motor proteins moving along a microtubule. Note that some 

proteins in kinesin family have the ability to move towards minus ends as well [45]. 

 

 

 

 

 

1.2.5.1.   Kinesins 

 

There are approximately 14 families of kinesin-related proteins (KRPs). Most of them 

walk towards plus end of the microtubule, but in addition to this behavior, some walk 

towards the minus end, and some depolymerize microtubules. At the cellular level, 

kinesin motors perform a variety of functions during cell division and within the 

mitotic spindle where they help chromosomes get segregated with the highest fidelity 

possible [46]. Their structure can roughly be summarized in having two heavy chains 

and two light chains per active motor, two globular head motor domains, and an 

elongated coiled-coil responsible for heavy chain dimerization. Most kinesins have a 

binding site in the tail for either a membrane organelle or another microtubule, thus 

giving them specific roles in mitotic and meiotic spindle formation and chromosome 

separation during cell division. The fastest kinesins can move their microtubules at 

about 2-3 µm/sec [7].  
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1.2.5.2.   Dyneins 

 

The dyneins are a family of minus-end-directed microtubule motors and are unrelated 

to kinesin superfamily. They are composed of two or three heavy chains, including 

motor domain, and a large and variable number of associated light chains. The dynein 

family has two major branches. Cytoplasmic dyneins are found in, probably all 

eukaryotic cells. They have a role in vesicle trafficking and in localization of the 

Golgi apparatus near the center of the cell. Other branch contains the axonemal 

dyneins which are highly specialized for the rapid and efficient sliding movements of 

microtubules that drive the beating of cilia and flagella, as well as of one’s 

orchestrating mitosis. Dyneins are the largest of the known molecular motors, and 

they are also among the fastest with the ability to move their microtubules at the 

remarkable rate of 14 µm/sec [7]. 
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1.3.   Metaphase spindle – architecture and forces 

 

There are many crucial points in mitosis, but maybe the most important one is the 

capture of chromosomes by microtubules of mitotic spindle. Spindle microtubule 

minus ends are focused into two poles which dictate where segregated chromosomes 

are transported at anaphase. Forces that focus microtubules into poles are crucial to 

spindle organization and function. In order to maintain its structural integrity, it is 

crucial for the spindle to be able to continuously rebuild poles by reorganizing and 

sorting new microtubule structures [47]. Once in contact with the spindle apparatus, 

chromosomes slowly become aligned in the metaphase plate and are at this point 

waiting to be pulled apart.  

Different classes of microtubules that are all assembled from the same pool of tubulin 

subunits contribute to spindle’s shape and architecture. They are all extremely 

dynamic and are generally organized with their minus ends at or near the spindle 

poles and with their plus ends extending outward to from three distinct populations 

that make the spindle [48]. Astrals grow in all directions and interact with cell cortex, 

while inter-polar microtubules and k-fibers grow towards mid-zone (Figure 9).  

Microtubules that bind to kinetochores with their plus ends, become k-fibers that can 

exert a pushing or a pulling force on chromosomes. It has been shown in high 

resolution electron microscopy tomography that there are two distinct fibrous 

connections between the kinetochore and k-fiber microtubules. One set of fibers 

directly encircles the tip of the microtubule and another set of fibers attach to the 

microtubule wall. Since the organization of the outer plate of the kinetochore 

resembles a spider’s web, it is possible for the kinetochore to interact with 

microtubules at various angles [49]. In that way, one chromosome with two 

chromatids and two sister kinetochores gets connected to opposite spindle poles via 

two sister k-fibers. Thus formed bi-orientation of chromosomes on the mitotic spindle 

makes it possible for microtubules to exert certain forces on kinetochores, which are 

partially driven by microtubule’s dynamic instability. Some of these forces act on 

chromosomes but most are generated at the kinetochore, and they don't seem to 

depend on the number of microtubules in a k-fiber [49]. Once these forces get 

established they are directed to move chromosomes back and forth until they become 

aligned in the spindle midzone, i.e. equatorial plate or metaphase plate. Once 

established, metaphase, from physical point of view, becomes a stable state as all 
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forces acting within the spindle are accurately balanced and parameters describing the 

system reach and hold stationary values [50]. At this point spindle’s steady-state 

length is determined through the integrated action of mechanisms that generate and 

respond to mechanical forces [51]. The axis connecting two spindle poles defines the 

spindle length, whilst the axis connecting two opposite outermost sister kinetochore 

pair is considered as spindle width. In addition to basic components of the spindle, 

motor and nonmotor proteins also play a significant role in establishing spindle 

length. In particular, the balance between plus-end-directed and minus-end-directed 

motor proteins can determine spindle length. Increasing the level of one of the plus-

end-directed motor proteins produces abnormally long spindles, whilst increasing the 

level of one of the minus-end-directed motor produces abnormally short spindles. 

This balance between opposing motor proteins is regulated by certain Cdks (M-Cdk) 

in a way that at least one of the motor proteins has to be phosphorylated in order to 

bind to the spindle [7]. The length of the spindle is maintained by overlapping 

antiparallel microtubules that are pushed outward by molecular motors. In this way 

the inward tension in the microtubules connecting the poles with kinetochores is 

balanced. Additionally, it is expected for the spindle length to depend on cell size, 

since the function of this assembly is to physically move sister chromatids into the 

center of nascent daughter cells. Length is important for spindle function and it 

typically increases with cell size and genome size [52]. It has been shown that spindle 

length increases with cell length in small cells, but in very large cells spindle length 

approaches an upper limit [53]. Once established, spindle length can have certain 

effects on spindle performance and segregation of chromosomes.  

In addition to k-fibers, non-kinetochore microtubules comprise the majority of 

microtubules in mammalian spindles that have been studied by electron microscopy. 

During metaphase, they bundle together 30-50 nm apart in groups of 2-6, with anti-

parallel interactions apparently preferred [54]. Their function is poorly understood, 

but it is believed that they help integrate the whole spindle and ensure its bipolarity. 

Contrary to many textbook models, their minus ends are not simply located at poles, 

but rather throughout the spindle [55]. Although antiparallel microtubules are a bit of 

a mystery, it is known that they form overlapping bundles in the spindle midzone. It is 

the place to which many motor and nonmotor proteins get recruited. For example 

kinesin-14 and kinesin-5 are capable of sliding antiparallel spindle microtubules. 

Kinesin-14 is a minus end directed motor and it is believed to promote spindle 
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shortening (inward directed force), whilst kinesin-5 probably promotes increased 

spindle length (outward directed force) [56]. 

Astral microtubules grow in all directions whilst having their minus ends fixed at 

centrosome. Whilst growing, some eventually encounter cell cortex and establish 

certain interactions that could have a role in positioning the spindle within the cell. 

They turnover at a rate similar to non-kinetochore microtubules [57] and are capped 

by gamma-tubulin complexes at centrosomes. In contrary to antiparallel microtubules, 

these do not appear to slide [58]. 

 

 

 

Figure 9. Scheme of the mitotic spindle with different populations of microtubules present within. 

Astrals, shown in yellow, grow in all directions. K-fibers, shown in green bind to kinetochores on 

chromosomes. Antiparallel microtubules, shown in thin blue lines, are mutually cross-linked in the 

spindle midzone.  

 

 

 

 

 

 

 

 

 



22 

 

1.4.   Spindle assembly and performance  

 

Mitotic spindle begins to form in prophase between two centrosomes that were 

previously duplicated in interphase. The initial stages of spindle assembly are marked 

by motor-dependent separation and movement of centrosomes to opposite sides of the 

prophase nucleus [56]. Thus separated, they will form two poles of the spindle. 

Cytoplasmic dynein clusters parallel microtubules into spindle poles [59] and 

transports NuMa to build poles [32]. At poles, dynein and NuMa tether microtubules 

in a way that pole structure remains robust despite dynamic instability of 

microtubules [60]. 

Centrosomes nucleate microtubules of the spindle. Most of them will search for 

kinetochores, but only ones that grow towards spindle midzone can encounter and 

capture them. Microtubules extend from centrosomes preferentially in the direction of 

chromosomes which is dependent on concentration gradients of RanGTP and its 

associated proteins around chromosomes [28]. Ran is a member of GTPase family, 

and it facilitates microtubule rescue, bi-polar spindle formation, and kinetochore-

microtubule interactions. First requirement for growing microtubules to start 

searching at all is that the nuclear envelope breaks down, which happens in pro-

metaphase. After this event, chromosomes become free to get caught by the growing 

microtubules. As a microtubule grows from the centrosome in an arbitrary direction, 

it probes the space as it searches for kinetochores. Even though a single microtubule 

probes only one direction, numerous directions will be explored eventually because 

numerous microtubules grow from the centrosome [28]. Once kinetochore is 

encountered, its proper capture is achieved in a stepwise manner. First, kinetochores 

are captured by the lateral surface of a single microtubule that extends from either 

spindle pole. Once captured, kinetochore is transported poleward along the 

microtubule [61], until the end-on connection is established (Figure 10). After the 

initial microtubule capture, kinetochores develop a bundle of 15-30 parallel 

microtubules that connect them to spindle poles. In a mature k-fiber, tubulin 

heterodimers are constantly added in the kinetochore and removed from the minus 

ends in the pole thus promoting k-fragment elongation [27].  
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Figure 10. Scheme of kinetochore attachment and establishment of biorientation. a) Kinetochore 

captured by a lateral surface of a growing microtubule that extends from one pole. b) After first 

established interaction, kinetochore is transported towards the pole from which the microtubule it is 

bound to originates. c) Certain events at this point are not clear but at this point a certain mechanism 

will ensure that kinetochores eventually become properly bioriented. d) Kinetochores become properly 

bioriented when they are attached to microtubules extending from opposite poles [61]. 

 

 

 

 

In addition to, so called, centrosomal pathway that nucleates microtubules of the 

spindle, there is also a chromatin mediated pathway. In cells lacking centrosomes, 

spindle can be assembled through chromosome directed pathway. In fact, those cells 

rely exclusively on this pathway in which microtubules are nucleated and stabilized 

near chromosomes and kinetochores by the RanGTPase [62] and the chromosomal 

passenger complex (CPC) [63]. CPC complex is a combination of various proteins 

that all combined help the assembly and maintenance of the spindle. Dasra A and 
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Dasra B have been identified as components of the CPC containing Incenp (inner 

centromere protein), Survivin, (member of the inhibitor of apoptosis family) and the 

kinase Aurora B. Aurora B has the role in attachment of the mitotic spindle to the 

centromere as it localizes to k-fiber region near kinetochores. This complex targets to 

different locations at different times during mitosis, where it regulates correction of 

microtubule attachment errors, activates spindle assembly checkpoint and regulates 

contractile apparatus that drives cytokinesis [64].  

Once all chromosomes become bi-oriented, they begin to oscillate in the spindle 

midzone. Both microtubule attachments and dynamics at the kinetochore contribute to 

sister kinetochore oscillation. Plus and minus end-directed motors associate with 

kinetochores, suggesting that motors could drive the movement of chromosomes 

either towards or away from the spindle equator [65]. The velocity of chromosome 

movement is rather constant, occurring at 2 µm/min, which is consistent with the rates 

of motor proteins associated with kinetochores [66]. For example, microtubule 

depolymerizing kinesin MCAK is important for sister kinetochore coordination 

during oscillations [67]. Eventually, chromosomes actively get positioned in the 

equatorial plane of the spindle in metaphase. Congression of the last chromosome 

marks the transition to the metaphase, during which oscillations are continued until 

cohesins are broken down and at this point chromosomes are readily segregated.  

It has been proposed that the synchrony of chromatid-to-pole movement during 

anaphase A depends on the poleward flux of spindle microtubules. Poleward 

microtubule flux occurs due to the depolymerization of microtubule minus-ends and 

is driven mostly by members of the kinesin-5 family of motors which push 

microtubule minus-ends apart. This movement pulls kinetochores apart thus helping 

chromosomes segregate. It is also thought that anaphase A movement is driven by 

depolymerization of k-fibers at the kinetochore.  

Poleward flux drives spindle elongation in anaphase B. Kinesin-5 motor was 

proposed to drive antiparallel microtubules slide apart thus exerting force on the 

spindle poles. At the same time, depolymerization of the minus ends at poles is 

stopped, poleward flux is turned off and interpolar microtubules exert pushing force 

on the spindle poles thus separating spindle poles with approaching chromosomes. 
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Figure 11. Scheme of anaphase A and B mechanism. First, in anaphase A separated chromosomes are 

pulled towards opposite poles. Soon after, in anaphase B poles move more apart pulling the attached 

chromosomes to the center of two new daughter cells [68]. 
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1.5.   Goal of the research 

 

The goal of this research is to study nature of the mitotic spindle in HeLa cells, to understand 

its mechanics and to refresh currently known facts about architecture of the spindle as a 

whole. Due to spindles appearance and structural complexity, it is difficult to understand its 

components whilst it is intact and unperturbed. For this reason, laser microsurgery was 

applied. Behavior of the ablated part of the spindle makes it possible to analyze the 

distribution of forces acting within it. Additionally, the response to the cut shows certain 

structures that behave as a single object. As a response to the applied ablation, these structures 

are moving together, thus revealing their connection. Resulting moving part comprises sister 

kinetochores, an intact sister k-fiber, a bundle of microtubules located between sister 

kinetochores and finally, the remaining stub as a leftover part of the cut sister k-fiber. 

According to text books, there is no direct interaction between sister k-fibers. A recent study 

revealed microtubule bundle between sister kinetochores as a structural component in the 

spindle which was named bridging microtubules [50; 69], (Figure 12). My interest is to 

understand this bundle, and with the mentioned observation following conclusion has been 

made: bridging microtubule bundle is connected to sister k-fibers via certain interactions that 

are still preserved after applied laser ablation. Main hypothesis is that it laterally connects 

sister k-fibers and contributes to distribution of forces in the spindle.  

 

 

 

 

Fig 12. New model of the spindle with bridging microtubule bundle laterally connecting sister k-fibers. Note that 

the antiparallel composition of bridging bundle is not pointed out in this scheme.  
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It has already been shown recently that bridging microtubule bundle is composed of 

antiparallel microtubules. Since it has been proven that cross-linking protein PRC1 is located 

in the antiparallel region of the bridging microtubule bundle [50], I wished to affect its 

thickness by reducing the amount of PRC1. With this approach I would expect the force 

balance to be perturbed. Following analyses were conducted in treated cells: primary response 

to the cut, bridging microtubule bundle thickness and shape of the spindle. From 

measurements of the mentioned primary response, force balance in the spindle element was 

analyzed which was put in correlation with the bridging microtubule thickness. Shape was 

analyzed in order to extract the amount of forces acting at certain parts of the spindle.  

Other approach was to observe microtubule dynamics in the cut part of the spindle. For this 

reason, HeLa cell line stably expressing EB3 fused to GFP was used. Within chosen time, 

with clear events occurring in the region between sister kinetochores, it would be possible to 

track individual growing microtubules. My hypothesis here is that it should be possible to 

observe comets passing between sister kinetochores, thus revealing the individual 

microtubules that grow in the bridging microtubule bundle. Since bridging bundle is 

composed of antiparallel microtubules, I additionally expect to see comets passing in opposite 

directions. 
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2.   Materials and methods 

 

2.1.   Cell culture  

 

HeLa-TDS cells were permanently transfected and stabilized using pEGFP-a-tubulin plasmid 

(courtesy of Mariola Chacon), which was acquired from Frank Bradke (Max Planck Institute 

of Neurobiology, Martinsried). Cells were grown in Dulbecco’s Modified Eagle Medium 

(DMEM) (1 g/l D-glucose, L-glutamine, pyruvate) with 50 µg/ml geneticin (Life 

Technologies, Waltham, MA, USA), 10% fetal bovine serum (FBS, Gibco, Life 

Technologies) and 1% penicillin and streptomycin. The cells were kept in a Heracell 

humidified incubator (Thermo Fisher Scientific, Walthman, MA, USA) at 37°C and 5% CO2. 

Cells were split and reseeded every 48-60 hours. Described cell maintenance was applied to 

all cell lines used in this study.  

HeLa cells stably expressing 2xGFP-EB3 and CENPA fused to mCherry were permanently 

transfected with retroviral plasmid (courtesy of Julie Welburn). Cells have been checked for 

mycoplasma by Lonza luminometar and PCR and were myco negative. 

 

2.2.   Imaging and laser microsurgery 

 

Prior to live cell imaging, medium was replaced with Leibovitz L-15 CO2 independent 

medium (Gibco, Life Technologies) containing 10% FBS and 1% antibiotic mixture of 

penicillin and streptomycin. Imaging was performed with a Zeiss LSM 710 NLO inverted 

laser scanning microscope with a Zeiss PlanApo 63x/1.4 oil immersion objective (Zeiss, Jena, 

Germany) heated with an objective heater system (Bioptechs, Butler, PA, USA). Cells were 

maintained at 37°C in Tempcontrol 37-2 digital Bachhoffer chamber (Zeiss). For excitation, a 

488 nm line of a multi-line Argon laser (0.45 mW, LASOS) and a helium-neon (HeNe) 594 

nm laser (0.11 mW) were used for GFP and RFP respectively. The laser power used for 

excitation was in range 8-15% with a pinhole size 0.7 µm. The microscope was equipped with 

a QUASAR detector with 32 channels (Zeiss, Germany), which made it possible to image two 

emission bands in parallel: 490-561 nm for GFP and 588-694 nm for RFP fluorescence. Laser 

microsurgery was performed on the outmost k-fiber in a user defined region of interest (ROI) 

by means of a single Ti:Sa femtosecond pulsed laser (Chameleon Vision 2, Coherent), set to 

800 nm wavelength. During laser ablation, no images were acquired. For RNA interference 
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experiment, time lapse Z-stacks of 6 optical planes with a 500 nm step were taken at 2.5-5 

second interval with averaging of four scans. For EB3 experiment, time laps Z-stacks of 2 

optical planes were taken at 0.6-1 second interval with averaging of either 1 or 2 scans. The 

system was controlled by ZEN 2011 software (ZEISS, Germany).  

 

 

 

2.3.   RNA interference 

 

2.3.1.   Transfection and sample preparation 

 

Cells were transfected by electroporation using Nucleofector Kit R with the Nucleofector 2b 

Device, using the high-viability O-005 program (Lonza, Basel, Switzerland). The following 

protocol was used: cells at approximately 60% con-fluency were trypsinized for 5 minutes. 

Counting of cells was performed in Neubauer improved chamber and 1 million cells were 

collected and centrifuged for 5 minutes at 1000 rpm at room temperature. Medium was 

removed and cells were resuspended in nucleofector solution containing 200 nM siRNA 

constructs (targeting, SiGENOME smart pool, Human PRC1 or nontargeting, SiGENOME 

control pool, nontargeting #1, Dharmacon) together with 2 µg of mRFP-CENP-B 

(kinetochore protein) plasmid (pMX234) provided by Linda Wordeman (University of 

Washington School of Medicine). Cells in nucleofector solution were collected and placed in 

a plastic cuvette that was inserted in the nucleofector machine and the appropriate program 

was applied. Transfected cells were seeded in 35 mm poly-d-lysine coated glass coverslip 

dishes (MatTek Corporation, Ashland, MA, USA) in different concentrations (high, medium, 

low). Prior to imaging cells were synchronized in the same dishes. Cells were incubated in 

thymidine (Sigma-Aldrich, St. Louis, MO, USA) at final concentration 2 mM for 17 hours. 

Cells were then washed 3 times with warm phosphate buffered saline (PBS) and left in 

DMEM medium with supplements for ~3 hours. After incubation, Cdk1 inhibitor RO-3306 

(Calbiochem, Merck Millipore, Billerica, MA, USA) was added at a final concentration of 9 

μm and were incubated in RO-3306 for ~6 hours. After washing 3 times in warm PBS cells 

were left in the incubator with 2 ml DMEM medium to recover. Finnally, cells were arrested 

in metaphase by using proteasome inhibitor MG-132 (Sigma-Aldrich, St. Louis, MO, USA) at 

20 μm concentration. The imaging was performed in L-15 medium and MG-132 ~20 minutes 

after adding MG-132 as described, 72 hours after transfection. 
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2.3.2.   Image analysis 

 

All image precessing was performed in ImageJ (National Institute of Health, Bethesda, MD, 

USA) and MatLab (MathWorks, Natick, USA). Successfulness of applied ablation was 

determined by at least one of the following characteristics: outward movement was clear 

enough; interkinetochore distance changed obviously after performed microsurgery; the gap 

that is formed on the cut k-fiber was getting spread towards the spindle pole it originates 

from.  

 

 

2.3.2.1.   Velocity of outward movement 

 

Cut spindle element moves outward with certain velocity. Kinetochores were tracked using 

Low Light Tracking Tool, an ImageJ plugin [70]. The kinetochores were tracked in xy-plane 

within individual imaging planes. The start and end times of the outward movement were 

manually selected. Initial position and maximum displacement were observed as a change in 

movement during certain time. This data was used for calculating mean velocity of outward 

movement. Velocity of the outward movement was measured in siRNA treated cells as well 

as in nontargeting control cells. 

Percentage of change in interkinetochore distance was extracted from the tracking data 

performed with the Low Light Tracking Tool.  

 

 

2.3.2.2.   Bridging fiber thickness 

 

Intensity of the signal between kinetochores was measured with a 3-pixel thick line tool 

between outermost sister kinetochores in the cut spindle element that was perpendicular to the 

line joining the two sister kinetochores. Intensity profile was taken along this line and the 

mean value of the background cytoplasm signal was subtracted from it. The signal intensity of 

the bridging fiber was calculated as the area under the peak closest to the kinetochores. The 

intensity of the k-fiber signal was measured 1 µm away from one of the sister kinetochores. 
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2.3.2.3.   Spindle shape 

 

Using multipoint tool, the shape of an ablated spindle element was tracked before and after 

microsurgery. At time point before ablation, tracked line was extending from one spindle pole 

along intact k-fiber until first sister kinetochore. The gap between sister kinetochores was not 

tracked in order to know their position. After the gap, tracking was continued along following 

sister k-fiber (to be cut) to finally meet other spindle pole. This measurement gives us the 

contour of a spindle element which makes it possible to extract robust parameters like spindle 

length (distance between two spindle poles) and width (distance between sister kinetochore 

pair in the spindle element and the axis connecting two spindle poles), angle on the 

centrosome and angle at kinetochores. The two angles were calculated by fitting a line 

through 3 points on the measured contour of the spindle element. The angle of tracked k-fiber 

in the vicinity of the centrosome and the angle of the k-fiber in the vicinity of the kinetochore 

enable us to determine and calculate the amount of force acting on centrosome and the 

amount of force acting on kinetochore. After ablation, continuous change in the contour was 

measured during 3 time frames after it was applied in order to extract the straightening of the 

cut spindle element. 

 

 

 

 

2.3.3.   Polyacrylamide gel electrophoresis and Western blot 

 

Transfected cells at 80% confluency were lysed in RIPA (radioimmunoprecipitation assay 

buffer, ENZO life science, Germany) lysis and extraction buffer with protease inhibitors 

(complete protease inhibitor cocktail tablets, Roche, Germany) as recommended by the 

manufacturer. Concentration of isolated proteins was measured using BCA (bicinchoninic 

acid assay) protein assay kit (Pierce Biotechnology, USA). Proteins were denatured by the 

combination of SDS (sodium dodecyl sulfate) and beta-mercaptoethanol in the loading buffer. 

Lysates were cooked for 10 minutes at 95°C and separated by SDS-PAGE (sodium dodecyl 

sulfate polyacrylamide gel electrophoresis, NuPAGE 10-well 4-12% Bis-Tris gels, Invitrogen, 

USA; 120 V, 2hrs). Separated proteins were transferred to nitrocellulose membrane (15 V, 

o/n) and analyzed by western blot with primary monoclonal anti-PRC1 (1:1000 in 5% milk) 

and anti-GAPDH antibodies (1:500 in 5% milk). Rabbit polyclonal anti-PRC1 (protein 
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regulator of cytokinesis 1) antibody (H-70) (Santa Cruz Biotechnology, USA) was used for 

PRC1 detection and a Mouse monoclonal anti-GAPDH (glyceraldehyde 3-phosphate 

dehydrogenase) antibody (0411) (Santa Cruz Biotechnology, USA) was used for detection of 

GAPDH. Membrane was then incubated in secondary polyclonal anti-mouse and anti-rabbit 

antibodies (1:5000 in 5% milk) for 2 hours. Proteins were visualized by chemiluminescence, 

with ECL (enhanced chemilumescence, GE Healthcare, USA) and SuperSignal West Dura 

(Thermo Scientific, USA) used as chemiluminescence substrates for detection of HRP 

(horseradish peroxidase) conjugated antibodies. Detection was conducted on Amersham 

Hyperfilm ECL films (GE Healthcare, USA), which were then scanned.  

 

 

 

2.3.4.   Immunocytochemistry 

 

Immediately after imaging, cells were fixed in ice-cold methanol (100%) for 3 minutes and 

washed. In order to permeabilize cells membranes, cells were incubated in triton (0.5% in 

phosphate buffer saline (PBS)) for 25 minutes at room temperature softly shaken. Unspecific 

binding of antibodies was blocked in blocking solution (1% normal goat serum in PBS) for 1 

hour on 10°C softly shaken. Cells were incubated in 250 µl of primary antibody solution 

(1:50 in 1% normal goat serum (NGS) in PBS) for 48 hours at 10°C. Rabbit polyclonal anti-

PRC1 antibody (H-70) (Santa Cruz Biotechnology, USA) was used. After washing of primary 

antibody solution, cells were incubated in 250 µl of secondary antibody solution (1:500 in 2% 

NGS in PBS; A21430, Alexa fluor 555 F (ab’) 2 fragment of goat anti-rabbit IgG (H+L), 

molecular probes, USA) for 1 hour at room temperature softly shaken and washed. After 

washing of the secondary antibodies, cells were incubated in a DAPI solution (1:1000 in PBS) 

for 5 minutes at room temperature and washed. After each incubation step, washing was 

performed three times for 5 minutes in PBS softly shaken at room temperature. 

Successfulness of performed protocol was eventually analyzed under the microscope Zeiss 

LSM 710 NLO inverted laser scanning microscope (Zeiss, Jena, Germany).  
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2.4.   Image analysis in EB3 experiment 

 

Video material of cells with applied microsurgery was chosen for analysis of the growing 

microtubules in the bridging microtubule bundle depending on the following criteria: outward 

movement of the cut spindle element should preferably be strong enough so as to distinguish 

EB3 comets growing in the k-fiber and continuing along the region between sister 

kinetochores; certain spindles with less pronounced response to the cut were not rejected if it 

was possible to clearly describe the events occurring in the spindle element. Further on, in 

video material of cells that met the chosen criteria, certain time with clear events in the cut 

spindle element was selected. Videos were analyzed in ImageJ either by eye, making montage 

of the selected time or finally by visualizing microtubule dynamics during selected time by 

using kymographs. Velocity of the growing microtubules was measured by using the line tool 

extending from initial comet position until the point where it is still visible/distinguishable. 

Comets used for measuring velocity were tracked for at least 4 time frames (~2.8-3 seconds). 
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3.   RESULTS 

 

3.1.   Set up for microscopy and interpretation of laser microsurgery    

 

HeLa cell lines used in this research express different proteins of interest fused with 

fluorescent markers (e.g. green fluorescent protein (GFP), mCherry, red fluorescent protein 

(RFP)). I was interested in the mitotic spindle and the localization of different proteins in that 

machinery helps us understand its structure and composition. Since we visualize proteins with 

different localization and behavior, properly assembled and unperturbed spindles, when 

mutually compared, may appear morphologically different, but the spindle is convex with 

length defined as the axis connecting two spindle poles, whilst the axis connecting two 

opposite outermost sister kinetochore pair determines the spindle width.  

Microscopy, as a method that enables us to study living cells, combined with different types 

of experiments conducted in cell lines with fluorescently labeled proteins, teaches us about 

their role in spindle architecture and performance. For live cell imaging I used laser scanning 

microscope equipped with Ti:Sa (Titanium:Sapphire) femtosecond pulsed laser (Chameleon 

Vision 2, Coherent) that was used for performing laser microsurgery (further also referred to 

as ―cut‖ or ―(laser) ablation‖) on the outermost k-fiber, i.e. on one of the sister k-fibers bound 

to sister kinetochore pair which is the furthest from the axis connecting two spindle poles. 

This structural component was named the spindle element and it consists of sister kinetochore 

pair and all its bound microtubules (Figure 13).  

 

 

 

 

Figure 13. Scheme of the spindle element with scissors indicating the position of the laser microsurgery. 

Chromosomes and spindle poles are depicted in gray color, kinetochores are shown in magenta, k-fibers in green 

and antiparallel microtubules in blue color. One spindle element extends from one spindle pole to the opposite 

one, and it comprises two sister kinetochores and all coupled microtubules (e.g. two sister k-fibers). 



35 

 

I was particularly interested in proteins tubulin, PRC1 and EB3, which have distinct roles in 

the spindle. In addition to selected, labeled protein of interest (tubulin and EB3), all HeLa cell 

lines used in this study, were transfected with a sequence coding for fluorescently labeled 

kinetochore protein. HeLa cell line stably expressing tubulin-GFP was transfected with 

mRFP-CENP-B plasmid, and was used to study force distribution in the mitotic spindle, 

whilst HeLa cell line stably expressing 2xGFP-EB3 and the kinetochore protein CENP-A 

fused with mCherry was used to study microtubule dynamics. By visualizing kinetochores it 

was possible to set the position of the cut and to observe their behavior as a response to the 

applied ablation. For conducting the laser microsurgery experiment, cells were chosen 

depending on the signal intensity of the fluorescently labeled proteins of interest. In particular, 

only cells that were expressing labeled kinetochore protein and labeled protein of interest 

(tubulin or EB3) were selected for imaging. The signal intensity in chosen spindles was 

preferably in the range from medium to strong. Additionally, the phase of mitosis for 

performing laser microsurgery was chosen depending on the alignment of kinetochores in the 

metaphase plate. If chosen criteria have been met, laser microsurgery was performed on the 

outermost k-fiber. In my experiments, all cells with multipolar spindles, as well as ones in 

which the spindle was tilted in the z-direction, were discarded for acquiring video material.  

Now let’s describe the possibilities, which are given to us through laser ablation. The laser 

ablation performed in the selected spindle element reveals its mechanical properties. The 

position of the cut was in my experiment set in vicinity of one of the sister kinetochores rather 

than in the proximity of the spindle pole. The response to applied ablation enlightened my 

understanding on forces acting in the spindle. With this approach, the system was perturbed in 

a way that these forces became released and this event opened possibilities for describing 

spindle mechanics. Performed laser ablation mostly resulted in movement of the cut spindle 

element which is in correlation with the force present within. In addition to this basic 

response, mentioned movement clears up the composition of the cut part of the spindle, thus 

exposing the structural components present within. Since the spindle is structurally complex, 

ablation turned out to be an important approach in analyzing single spindle element resolved 

from the neighboring ones. In both cell lines, the outermost k-fiber in z-position was selected 

for ablation because the spindle element thus predominantly moved in the x,y-plane. To 

consolidate, the response to laser ablation revealed structural components of the cut part of the 

spindle, and by analyzing the response it was possible to describe the force distribution in the 

spindle.  
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When it comes to forces, laser microsurgery results in two distinct responses which occur 

within seconds after it was performed. One is the outward movement (movement away from 

the center of mass of the spindle) of intact part of the cut spindle element — two sister 

kinetochores move together with the k-fiber that is still connected to one spindle pole and 

with the microtubule bundle located between two kinetochores. When thoroughly analyzed, 

this response can reveal a lot about force that acts in the spindle element. The outward 

movement suggests presence of compressive force acting at certain part of the spindle element 

and release of this force after microsurgery. This observation was expected since the bent 

shape of the spindle element suggests that it is compressed. By measuring the velocity of 

sister kinetochore movement, it was possible to determine the amount of compressive force, 

or at least to determine the difference between differently perturbed spindles. The other 

response is a decrease in distance between two sister kinetochores that lost the connection to 

one pole. This response mostly started occurring immediately after successful cut or 

simultaneously with the outward movement and it suggests presence of a tensile force acting 

on sister kinetochores and its release after microsurgery [72; 73]. Once the connection to one 

pole is lost, centromeric region is no longer stretched. Thus the decreased distance between 

sister kinetochores indicates establishment of the relaxed state. Described, concurrent events 

are defined as the primary response that is the result of forces being released after successful 

laser microsurgery (Figure 14). In HeLa cell line expressing tubulin-GFP and mRFP-CENP-

B, resulting moving spindle element comprised sister kinetochores, an intact sister k-fiber, a 

bundle of microtubules located between sister kinetochores and a stub as a leftover part of the 

cut k-fiber (Figure 15). On the other hand, in HeLa cell line expressing 2xGFP-EB3 and 

mCherry-CENP-A, the cut spindle element was observed as movement of the sister 

kinetochores, whilst the comets of green signal that correspond to growing microtubule plus-

ends were observed throughout the spindle (element) in astral, antiparallel and kinetochore 

microtubules (Figure 16). These two primary responses teach us about the counterintuitive 

force map in the spindle element, which we believe is distributed in a similar manner 

throughout all spindle elements. 
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Figure 14. Scheme of the position of the laser ablation in the spindle element and the primary response. Severing 

of the outermost k-fiber results in release of compressive force in the spindle element (outward movement) as 

well as release of tensile force acting on sister kinetochores in the cut spindle element (decreased 

interkinetochore distance). The primary response depicted in the scheme as seen in HeLa cell expressing tubulin-

GFP (green) and mRFP-CENP-B (magenta). 

 

 

 

 

 

Figure 15. Image of mitotic spindle in HeLa cell expressing tubulin-GFP (green) and mRFP-CENP-B (magenta) 

acquired with laser scanning microscope. Laser ablation reveals structural components in the spindle element: 

intact k-fiber, sister kinetochores, bundle between sister kinetochores and a stub as a leftover part of the cut k-

fiber that is still connected to the sister kinetochore that was closer to the ablation point. White bar represents 1 

μm scale.  
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Figure 16. Laser ablation outcome as observed in HeLa cell line stably expressing 2xGFP-EB3 (green) and 

mCherry-CENP-A (magenta). The comets of green signal make the contour of the spindle. With applied ablation 

it was possible to analyze the microtubule dynamics in the region between sister kinetochores. As seen in 

pictures, majority of comets are observed in k-fibers and antiparallel microtubules. However, when analyzing a 

small region between sister kinetochores, many astral microtubules were observed passing in their close vicinity. 

For this reason, only time frames with clear region around sister kinetochores were selected for analysis. White 

bar represents 1 μm scale. 

 

 

 

Successfulness of applied ablation was in my experiments determined by at least one of the 

following characteristics: outward movement was clear enough; interkinetochore distance 

changed obviously after performed microsurgery. In addition to these criteria set both in EB3 

and RNAi experiment, an additional criterion was set in RNAi experiment: the gap that is 

formed on the cut k-fiber was getting spread towards the spindle pole it originates from. This 

additional criterion hasn't been set in EB3 experiment since my primary intension wasn't to 

visualize fluorescently labeled microtubules nor to analyze the mechanics of the primary 

response in this experiment, but rather to observe clear events in the region of interest. 
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3.2.   Self-repair mechanism 

 

To fortify, cut spindle element consists of the intact k-fiber, sister kinetochore pair, the 

bridging bundle and a remaining stub as a part of the cut k-fiber that is still bound to sister 

kinetochore which was closer to the ablation point. After the primary response, secondary 

response takes place. Recent study described a self-repair mechanism of the spindle that takes 

place soon after the outward movement reaches its amplitude [47]. It was usually observed as 

movement of the cut spindle element in reverse direction of the direction of the outward 

movement. In one scenario this movement towards spindle’s center of mass resulted in 

reconnection and reintegration of the cut spindle element to the spindle. If it occurs in 

opposite direction of the outward movement, the reconnection results in reestablishment of 

forces that were present in the spindle element before the ablation was applied, and it was 

observed as restoration of a tensile force on sister kinetochores. If one would look at the 

reintegrated spindle element that was reconnected in this way, it would be impossible for 

observer to determine position of the cut and to perceive that it was recently performed 

(Figure 17). In other scenario, the spindle element was reconnected in a way that the stub got 

pulled to a totally different position with respect to the position of the spindle element before 

the cut. In certain cases observed in this study, the sister kinetochore pair sometimes twisted 

either inwards (Figure 18) or backwards (Figure 19) and got pulled towards the spindle pole it 

is still connected to. Secondary response occurred in all cell lines used in this study and it was 

observed in ~82 % (63 cells) of analyzed cells (in RNAi and EB3 experiment). In analyzed 

cells were it was not observed, an acquired video material was too short and the secondary 

response has not begun during the acquired time frames.  
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Figure 17. Secondary response with ―healthy‖ reconnection as seen in HeLa cell line expressing tubulin-GFP 

(green) and mRFP-CENP-B (magenta). ~45 seconds after applied ablation, the cut spindle element, as seen in 

the third image, is fully integrated in the spindle with restored tensile force at kinetochores. White bar represents 

1 μm scale. 

 

 

Figure 18. Secondary response in HeLa cell line expressing tubulin-GFP (green) and mRFP-CENP-B (magenta). 

At 13 seconds (s) time point the outward movement takes place, and at 89 seconds (s) time point the mechanism 

of secondary response is pulling the cut spindle element towards the pole it is still connected to. In this image 

sister kinetochores twisted inwards and were transported to the spindle pole. Sister kinetochore with bound stub 

twists in the direction towards spindle’s center of mass. White bar, 1 μm.  

 

 

Figure 19. Secondary response in HeLa cell line stably expressing 2xGFP-EB3 (green) and mCherry-CENP-A 

(magenta). Sister kinetochore with bound stub twisted outwards (in the direction away of the spindle’s center of 

mass) and was pulled to the spindle pole. White bar, 1 μm.  
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3.3.   Construction of a cell model for spindle analysis - PRC1 

 

The greatest motivation for studying basic spindle architecture was the mostly consistent 

composition of the cut spindle element that was observed by Janko Kajtez and Anastasia 

Solomatina in group of Iva Tolić (Max Planck institute of molecular cell biology and genetics, 

Dresden). These observations and recently conducted experiments revealed the bundle 

between sister kinetochores as a novel structural component in the mitotic spindle. It is a 

bundle of antiparallel microtubules that laterally connects two sister k-fibers, and it was 

named the bridging microtubule bundle [50; 69]. This bundle is located in close vicinity of 

sister kinetochores (typically underneath kinetochores), and there is a strong evidence for its 

role in balancing forces in the mitotic spindle. Since described primary response teaches us 

about the two opposing forces that act simultaneously in a single spindle element, one cannot 

help but wonder how they are balanced. The bridging microtubule bundle, which came into 

focus as a mechanical link between sister k-fibers, indeed could participate in force 

distribution in the spindle. Even though the only reliable approach in understanding forces 

was to analyze the primary response in a single outermost spindle element, we believe that the 

bridging bundle is found in all spindle elements with consistent role. In addition to analysis of 

the primary response, I measured the thickness of the bridging bundle as described in chapter 

―Materials and methods‖. 

Good approach in describing the hypothesized role of the bridging bundle in force balance 

was to affect its composition. Solomatina and Kajtez recently showed that they understood the 

system in a way that they could perturb it by changing the expression levels of chosen 

proteins [50; 69]. Since they hypothesized that the bridging bundle is composed in an 

antiparallel manner, they were interested in determining a cross-linking protein that is found 

in the bridging bundle. That protein turned out to be PRC1 (amongst others yet to be defined) 

and the laser microsurgery in their experiments resulted in the previously described primary 

response. In HeLa cell line stably expressing PRC1-GFP and transiently mRFP-CENP-B, we 

visualize the spindle midzone, which is in agreement with localization of the PRC1 protein. In 

the outermost spindle element, sister kinetochores are positioned in immediate proximity of 

the PRC1 signal and the laser ablation in their experiment revealed that the antiparallel bundle 

is moving together with sister kinetochores in the cut spindle element. This observation 

indicates that microtubules in the bridging bundle emanate from opposite poles and are 

mutually met in the equatorial region of the spindle where they form the antiparallel bridging 
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bundle. Their perturbation experiment was focused in increasing the thickness of antiparallel 

regions in the spindle. In HeLa cell line overexpressing PRC1 and tubulin, laser ablation was 

applied and analysis of outward movement and bridging bundle thickness was conducted. 

Their experiments motivated me to perturb the system in the opposite way by producing cells 

with decreased expression of PRC1 (decreased tehickness of the bridging bundle) and thus 

confirm that the bridging bundle balances forces in the mitotic spindle.  

 

 

 

 

3.3.1.   Analysis of laser ablation in PRC1-depleted cells 

 

I hypothesized that by reducing the bridging bundle thickness, it would be possible to achieve 

less pronounced primary response. I used RNA interference to reduce the level of PRC1 

protein which would result in decrease of the antiparallel regions (their thickness and/or 

length) in the spindle. I expected the knockdown to affect the bridging bundle thickness, and 

that the outward movement would be in correlation with the reduced thickness. This 

experiment was performed in HeLa cell line stably expressing tubulin-GFP, and was 

controlled by nontargeting siRNA. Nontargeting siRNA constructs are unmodified siRNA 

duplexes used as negative control. Cells treated with nontargeting control are used to reflect a 

baseline cellular response that can be compared to the cells that have been treated with target-

specific siRNA. In treated cells I measured the bridging bundle thickness, velocity of the 

outward movement, change in interkinetochore distance and spindle shape. Since tubulin is a 

microtubule subunit, in this cell line microtubules are visualized as continuous green signal in 

kinetochore and antiparallel microtubules, whilst astrals are usually more or less apparent. 

Due to overlapping signals of k-fibers and antiparallel microtubules, laser ablation in this 

experiment also clears up components in the cut spindle element, as recently described. 

Analyses conducted in my RNAi experiment were led by the same idea that motivated Kajtez 

and Solomatina. For this reason, chosen results will be presented side by side in same graphs 

and thus directly compared.  

In RNAi treated cells, laser ablation was performed as described in section 2.2. ―Imaging and 

laser microsurgery‖ of ―Materials and methods‖ and 3.1. ―Proteins of interest, microscopy and 

laser microsurgery‖ of this chapter. The outermost spindle element was selected in the 

imaging z-plane and the laser ablation was performed on one of two sister k-fibers. Applied 
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severing of the k-fiber would result in perturbation that would teach me about the mechanical 

properties of the cut part of the spindle. Compared to my control cells and recently conducted 

experiments by Solomatina and Kajtez, the results revealed whether the spindle mechanics 

has been perturbed in my experiment.  

Once performed, successful laser ablation results in release of compressive force in the 

spindle element and in a release of tensile force acting on sister kinetochores (Figure 20 a)). 

Release of tension is observed as decreased interkinetochore distance and it was one of the 

criteria that determined the successfulness of performed ablation. The amount of tensile force 

wasn’t quantified in my analysis, but was rather used to show that it was in average released 

after performing laser microsurgery. For analysis I chose 48 spindles with at least one of the 

criteria for successful ablation satisfied. Percentage of change in interkinetochore distance 

was extracted from the tracking data performed with the low light tracking tool (Figure 20 b)). 

Analysis of the release of tensile force revealed that interkinetochore distance decreased in 

~85% (41 cells) of analyzed cells. In ~6% (2 cells) it was impossible to perceive the change in 

interkinetochore distance due to overlapping signal with neighbouring kinetochores in time 

frames before ablation. In ~10% of cases (5 cells) the distance between kinetochores didn’t 

decrease, and the successful cut was determined by at least one of the remaining criteria.  
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a) 

 

b) 

 

 

Figure 20. a) Primary response in HeLa cell line expressing tubulin-GFP (green) and mRFP-CENP-B (magenta). 

White bar represents 1 μm scale. b) Interkinetochore distance (KC-KC distance) in the cut spindle element was 

measured in time frame before the ablation (value ―0‖ on x-axis) and was tracked continuously during the 

following time frames, for each spindle with met criteria of successful cut. Red (PRC1 siRNA) and blue 

(nontargeting control) lines are given as mean values of continuous change in interkinetochore distance with 

corresponding light red and light blue area marking standard deviation.  

 

 

 

 

 

 

 



45 

 

Cut spindle element moves outwards with certain velocity which is in strong correlation with 

the amount of compressive force acting in the spindle element. Kinetochores were tracked 

during 3 time frames after ablation (~9 sec.) using Low Light Tracking Tool. I observed the 

outward movement (more or less pronounced) in ~83% (40 cell) of all analyzed cells. In 12% 

(6 cells) of cases I observed no outward movement, and in 6% (3 cells) of cases the sister 

kinetochores moved inwards (towards the spindle’s center of mass). The velocity of their 

(outward) movement was measured in PRC1 siRNA treated cells, as well as in nontargeting 

control cells (Figure 21). I expected for the data measured in nontargeting control cells and 

PRC1 siRNA to be mutually significantly different. In particular, the velocity of outward 

movement should have been lower in our PRC1 siRNA treated cells when compared to 

nontargeting control cells. Regardless of predicted outcome, the velocity of outward 

movement in PRC1 siRNA treated cells is only slightly lower in comparison to control cells. I 

assume that the chemicals used in my synchronization protocol affected the response to 

ablation.  

 

  

 

Figure 21. Average outward movement (KC displacement) as measured in siRNA treated cells (thin red line) and 

nontargeting control cells (thin blue line). We were interested in first response that occurs within seconds after 

performing laser ablation (x axis). On y axis is the displacement of sister kinetochore that was closer to the 

ablation and its movement was tracked as displacement in y axis, which describes movement of sister 

kinetochore away from spindle's center of mass. Light red area (PRC1 siRNA) and light blue area (nontargeting) 

are represented as standard deviation. 
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Cells used in RNAi experiment were synchronized prior to imaging. The synchronization 

protocol was successful in a way that spindles appeared healthy and weren’t tilted in the z-

direction. However, drugs used to arrest cells in metaphase are in certain ways affecting 

mitotic spindles. It would be more preferable not to use them in order to reduce the treatment 

of cells. I observed several merotelic attachments of kinetochores in synchronized cells, 

which affected the outward movement velocity as well as the possibility for the outward 

movement to reach its amplitude that would usually depend on the amount of compressive 

force in the spindle element. Merotelic orientation is an error that occurs in connection of 

sister kinetochores. In this case one kinetochore in sister kinetochore pair is attached to 

microtubules emanating from opposite poles of the spindle. The comparison of primary 

response between my control cells and tubulin-GFP cell line will be pointed out in this section 

where my synchronized cells will be plotted on the same graph with the results of Kajtez and 

Solomatina measured in control cells (HeLa cell line expressing tubulin-GFP and mRFP-

CENP-B). My nontargeting control cells and PRC1 siRNA treated cells had similar outward 

movement in comparison to HeLa cell line stably expressing tubulin-GFP that was used as a 

control in Kajtez and Solomatina experiment (Figure 22).  

 

 

 

 

 

 

 

 

Figure 22. Kinetochore displacement in 

PRC1 siRNA treated cells (thin red line), 

nontargeting treated cells (thin blue line), 

unsynchronized tubulin-GFP control 

cells (thin green line, [62]) and in 

synchronized tubulin-GFP cells (thin 

light green line) by Kajtez and 

Solomatina, [50; 69]. Light areas with 

coupled colors of the thin lines are given 

as standard deviation. 
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3.3.2.   Analysis of bridging bundle thickness 

 

In order to determine the correlation between bridging bundle composition and outward 

movement, I measured thickness of the bridging bundle. Measured intensity of the signal 

between kinetochores was interpreted as bridging microtubule thickness. Amongst 48 

analyzed cells, both PRC1 siRNA and nontargeting, the bridging bundle was observed by eye 

in ~64% (31 cells) of cut spindle elements. In ~25% of spindle elements (12 cells) bridging 

bundle hasn’t been observed by eye, and in ~8% of cases (4 cells) it was impossible to 

distinguish the cut spindle element from the neighboring ones. To estimate the ratio between 

bridging microtubule bundle and k-fiber, the signal intensity of k-fiber was also measured. 

This measurement was done in proximity of one of the sister kinetochores, on the side facing 

the spindle pole (Figure 23. a)). Measured thickness ratio bMT/k-fiber is 20±14 % for 

nontargeting (15 cells) and 14±14 % for PRC1 RNAi (26 cells). From this measurement it 

was estimated that bridging bundle contains 25% of microtubules in the k-fiber in 

nontargeting control cells, and 16% in cells with reduced levels of PRC1. When put in 

correlation with previously measured data of k-fiber thickness obtained with electron 

micrographs (17±2 microtubules in k-fiber [74]), my data indicates that there are 3±1 

microtubules contained within thinner bridge. In addition to difference in the primary 

response, the measured ratio between k-fiber and bridging bundle thickness was bigger in 

nontargeting control cells used in my experiments, than in control cells used in Kajtez and 

Solomatina experiment. MG132 (carbobenzoxy-Leu-Leu-leucinal) is a potent protease 

inhibitor (one of the chemicals used in our synchronization protocol) that was used to arrest 

cells in metaphase so as to achieve the same phase of mitosis in cells chosen for further 

experiments. It is possible that once the metaphase is prolonged more microtubules grow in 

the k-fiber thus making the measured ratio between k-fiber and bridging bundle bigger. Since 

the measured ratio revealed such unintentional perturbation, it was expected for the outward 

movement to depend on these conditions and it indicated that compression was affected and 

that it modulates the outward movement.  

Even though measured difference isn’t pronounced, thickness data can be put in correlation 

with the outward movement (Figure 23. b)). T-test (performed in MatLab) of comparison 

between PRC1 siRNA and nontargeting treated cells revealed the p-value: p=0,186 which 

indicates that the difference isn’t significant. When compared to tubulin-GFP cells line, 

calculated p-value of the t-test is p=2,641 * 10^(-12) for PRC1 siRNA, and for nontargeting 

control cells is p=2,829 * 10^(-7), thus not revealing significant difference. 
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a) 

 

 

b) 

 

 

Figure 23. a) Scheme of measurements of thickness ratio bMT/k-fiber as performed in PRC1 siRNA and 

nontargeting treated cells. Blue line represents measurement and plot (blue) of signal intensity of the bridging 

bundle, whilst the yellow line and plot represent measurement of signal intensity of k-fiber and bridging bundle 

(―a.u.‖ stands for arbitrary units). Measurements are performed as described in section ―Materials and methods‖. 

White bar represents 1 μm scale bar.  b) Plot of measured data of outward movement and thickness of the 

bridging bundle. ―N(bMT)‖ corresponds to the number of microtubules in the bridging bundle and ―KC 

displacement‖ corresponds to the change in the position of kinetochore that was closer to the ablation site in y 

axis and it was measured in first time frame after ablation. For number of cells, first set of values in the legend 

(―tub-GFP‖, N=37 for tubulin-GFP cell line, ―tub-GFP sync‖, N=15 for synchronized tubulin-GFP cell line, 

―siRNA, 72h‖, N=26 for PRC1 siRNA treated cells, ―nontargeting‖, N=15 for nontargeting control cells) 

corresponds to x-axis, whilst second set of values corresponds to y-axis. Since thickness could not be measured 

in all cells due to the overlapping of signal in the bridging bundle with the signal of neighboring microtubules, 

some cells had to be eliminated from thickness measurement. 
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3.3.3.   Analysis of the spindle shape 

 

Spindle element, in which the ablation was performed, was tracked with multipoint tool in 

ImageJ (National Institute of Health, Bethesda, MD, USA). This measurement was conducted 

in a time frame before ablation and in three time frames after the k-fiber has been severed. 

Points set along the outermost sister k-fibers give us the contour of a chosen spindle element. 

In intact spindle element (time frame before the applied ablation) these measurements can be 

analyzed in a way that it is possible to extract the values of spindle length (distance between 

first and last point in the analyzed contour, i.e. distance between spindle poles) and half-width 

(distance between the axis connecting first and last point in the analyzed contour and the axis 

connecting first and last point in the gap between sister kinetochores), (Figure 24). Measured 

average value of spindle length is 11.6±1.3 μm in PRC1 siRNA treated cells (32 cells), and 

the average spindle length in nontargeting treated cells 12.2±1.7 μm (15 cells). In same cells 

measured average value of the spindle half-width is 5.6±0.5 μm in PRC1 siRNA treated cells, 

whilst the value of the same parameter in nontargeting treated cells is 5.3±0.6 μm. This 

analysis, when compared to tubulin-GFP measurements performed by Kajtez and Solomatina 

(measured length is 11.1±1.2 μm and half-width is 5.0±0.7 μm (52 cells)), showed that 

spindle length and width weren’t perturbed in cells with decreased expression of PRC1. In 

addition to these parameters, from these measurements angle at the kinetochore and angle at 

the centrosome were extracted by fitting a line through three points in the vicinity of the gap 

between kinetochores (for kinetochore angle) and through first three points of the contour (for 

centrosome angle). Angle at the centrosome was determined 1μm away from the centrosome 

and the angle at kinetochore was calculated at the end of the k-fiber, i.e. at kinetochore. These 

measurements were conducted in time frames following the laser ablation. Measured angle 

near the centrosome in PRC siRNA is 66.1±9.4 (n=26), and the angle at kinetochores in same 

cells is 12.5±11.8 (n=26). In this way it was possible to calculate the straightening of the cut 

spindle element which occurs as a consequence of the applied ablation. These values were 

used for calculating the amount of force acting on the centrosome and on the kinetochore. 

This work was done by Maja Novak in group of Nenad Pavin at Physical department of 

Faculty of Science in Zagreb. By introducing a physical model in study of the bridging 

bundle, it was possible to calculate certain values that couldn't be measured in performed 

experiments. By combining my experimental data with theoretical model it was possible to 

describe the system in more detail. By using analyzed experimental input (spindle length and 

width, angle at the centrosome, angle at the kinetochore, and the number of microtubules in 
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the bridging bundle) following parameters were calculated as the output of the physical 

model: position of the junction point (point of interaction between the k-fiber and the bridging 

bundle, which will be described in chapter ―Discussion‖), force at the kinetochore and force at 

the centrosome. The angle between the pole and sister kinetochores in the spindle element 

increased by 1.4±1 degrees after the cut (Figure 25).  

 

 

 

 

Figure 24. Average spindle contour as measured in PRC1 siRNA treated cells with error bars representing 

standard deviation. The plot is given as curvature that can be described along one sister k-fiber extending from 

the spindle pole and ending at the kinetochore. Values are normalized with centrosome position in value 0 and 

with position of sister kinetochore further from the ablation set to value 1. 
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Figure 25. Straightening of the cut spindle element as a response to applied ablation. The change in angle 

between the spindle pole and the kinetochores (―Theta pole-KC-KC‖) is tracked during three time frames after 

the performed ablation (frame after cut). Measured value of the t-test gave p-value: p=0,321 for comparing the 

change in ―angle pole-KC-KC‖ between PRC1 siRNA and tubulin-GFP. This calculation showed insignificant 

difference. 
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3.3.4.   Analysis of PRC1 expression in siRNA treated cells  

 

3.3.4.1.   Immunocytochemistry 

 

When changing the expression levels of proteins, which will teach explorer about the system 

he studies, it is important to quantitatively determine the level of abundance of protein of 

interest. There are several approaches one can choose to quantitatively describe the level of 

knockdown or overexpression of proteins affecting the studied system. In our experiments, a 

good approach would be to determine the level of knockdown in cells that were imaged and 

analyzed, rather than determining the abundance of chosen protein in the whole population of 

cells, which would be revealed by, for example, Western blot. Thus, immunocytochemistry 

was the preferred approach in determining the amount of PRC1 protein in analyzed cells. By 

labeling the dish with treated cells before experiment with laser ablation, and saving the x and 

y positions of individual cells, it would be possible to place the dish in the same orientation 

and find the exact same cells after performing the immunocytochemistry protocol. Thus, the 

level of protein of interest could be determined in cells that were analyzed and this data could 

be correlated with the laser ablation outcome. Eventually, the analysis conducted in this way 

would enable us to compare it between individual cells. Although the method itself wasn't 

reliable at the moment, the protocol has eventually been improved. The major issue was to 

rely on the positions that were saved in the software that controls the imaging system. If an 

error occurs in the x and y position values, it is impossible to find the same analyzed cells. 

Since the population of cells in the dish was synchronized there were many mitotic cells in the 

dish. Further on, the secondary response occurs in a way that the cells with applied ablation 

cannot be distinguished from the cells that weren’t used in the experiment at the moment. For 

these two reasons it was important to rely on the positions saved by the system. The protocol 

was improved on several levels. First, I tried out two chemicals usually used to fix cells. 

Methanol turned out to be better in comparison to paraformaldehyde. Whilst 

paraformaldehyde preserves mitotic chromosomes, methanol preserves the morphology of 

microtubules. Since I was interested in analyzing tubulin associated proteins, methanol was 

used. In addition to this improvement, I prolonged the incubation time (2 days) for the 

primary antibodies and got better results (Figure 26).   
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Figure 26. Improved immunocytochemistry protocol showing localization of PRC1 protein (red) in the spindle. 

It is expected for this protein to be most abundant in the spindle midzone. Left image corresponds to PRC1 only 

(Alexa fluor 555 F), whilst image on the right is acquired in the same cell with tubulin shown in green (GFP) and 

chromosomes in blue (DAPI). Images are acquired on Zeiss LSM 710 NLO inverted laser scanning microscope 

with a Zeiss PlanApo with 63x/1.4 oil immersion objective (Zeiss, Jena, Germany). 

 

 

 

 

3.3.4.2.   Western blot 

 

In order to quantify the abundance of proteins in a studied system, it is possible to perform the 

western blot as a method that is used to detect specific proteins of interest in a sample or 

lysate. If compared with different control populations (control sample or lysate) it is possible 

to estimate the relative abundance of protein of interest in analyzed system. In that way, 

western blot is often used to estimate the level of knockdown or overexpression of proteins. 

This method is additionally useful in determining the parameters of the experiment (e.g. 

concentration of used chemicals) prior to collecting the statistically relevant data of perturbed 

system. In my experiment it was important to quantitatively describe the level of knockdown 

of PRC1 in order to show that my measured data (when compared to control cells) is a 

consequence of conducted experiment. In addition to previously described 

immunocytochemistry, western blot should reveal the level of PRC1 in population of RNAi 

treated cells. Quantification of PRC1 protein was performed in PRC1 siRNA treated cells, 

nontargeting control cells and in untreated HeLa cell line stably expressing tubulin-GFP 
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(Figure 27). Western blot was only partially successful in revealing difference in levels of 

PRC1 protein in treated cells and HeLa cell line stably expressing tubulin in GFP.  

 

 

 

 

Figure 27. Western blot for PRC1 protein in siRNA treated cells (targeting), untreated HeLa cell line stably 

expressing tubulin in GFP (tubulin) and nontargeting treated cells (non-targeting). 24, 48 and 72 hrs represent 

different time points at which proteins were isolated. Western blot reveals slightly lower amount of PRC1 

protein in PRC1 siRNA in comparison to nontargeting. GAPDH was used as a loading control since it is stably 

and constitutively expressed in most tissues and cells. 
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3.4.   Analysis of microtubule dynamics in EB3 experiment 

 

Other approach in understanding the bridging bundle was led by the fact that microtubule 

dynamics is a major property of all microtubule populations in the spindle. The idea was to 

analyze their growth throughout the spindle. In this experiment, HeLa cell line stably 

expressing 2xGFP-EB3 and mCherry-CENP-A was used. In HeLa cells with labeled end 

binding proteins, the spindle is seen as a rush of comets that make the contour of the whole 

spindle. In chosen cell line, the laser ablation was performed on the outermost k-fiber so as to 

achieve dissociation of a cut spindle element away from the rest of rushing comets in the 

spindle. I hypothesized that it would be possible to observe microtubule dynamics in the 

region between sister kinetochores. Depending on the response to applied ablation, cells with 

clear events in the cut spindle element were selected for further analysis. Since bridging fiber 

is composed of antiparallel microtubules, I expected to see comets passing between sister 

kinetochores in two directions.  

Out of 338 videos with applied ablation, in 163 videos interkinetochore distance decreased 

after performed ablation and in 168 videos outward movement of the spindle element was 

achieved. Depending on the laser ablation outcome, 16 cells with maximum displacement and 

clear events in the region between sister kinetochores, were selected for further analysis.  

 

 

 

 

 

 

Figure 28. Mitotic spindle at the beginning of anaphase in HeLa cell line with EB3 labeled green (GFP) and 

kinetochores red (CENP-A-mCherry) as seen under Zeiss LSM 710 NLO inverted laser scanning microscope. 
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3.4.1.   Determination of microtubule growth rate and microtubule dynamics in bridging 

bundle 

 

EB3 cell line makes it possible to determine the growth rate of different classes of 

microtubules that make the spindle. Velocity of their growth was measured in ImageJ as 

described in chapter ―Materials and methods‖, section ―Image analysis in EB3 experiment‖. 

Measured velocity of individual growing astral microtubules was 0.2±0.04 µm/s, (69 comets). 

Microtubules in the k-fiber grow with measured velocity of 0.22±0.02 µm/s, (12 comets). 

Finally, microtubules in the region between sister kinetochores grow with measured velocity 

of 0.22±0.02 µm/s, (16 comets).  

In the cut spindle element it was possible to distinguish comets that either stopped at first 

sister kinetochore they met or, alternatively, passed between sister kinetochores. The comets 

that passed between sister kinetochores were counted only when it was possible to observe 

them exclusively in the region between sister kinetochores. For this reason laser ablation was 

used to achieve the dissociation of the cut spindle element away from the rest of the spindle 

(Figure 29). Number of comets that stop and pass was determined either by eye, making 

montage of the selected time or finally by visualizing microtubule dynamics during selected 

time by using kymograph (Figure 30). Release of compression and tension were not analyzed 

in this experiment. 

 

 

 

 

Figure 29. Laser ablation response in HeLa cell line stably expressing EB3-GFP (Green) and mCherry-CENP-A 

(magenta). At 63rd second (s) and 66
th

 second after ablation a comet is seen passing between sister kinetochores. 

White bar represents 1 μm scale bar.  
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a) 

 

b) 

 

 

 

Figure 30. a) Selected part of montage of the video from above with comet passing between sister kinetochores. 

b) Kymograph of the entire selected time with clear events in the region between sister kinetochores. Note that in 

the kymograph 5 comets pass between, so one EB3 comet in the montage corresponds to one comet in the 

kymograph.  
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Comets that stop at first sister kinetochore they meet are interpreted as microtubules that grow 

in the k-fiber, and I detected 2.78±0.12 comets per minute. Comets that pass between sister 

kinetochores are interpreted as microtubules that grow in the bridging microtubule fiber, and I 

detected 2.42±0.1 comets per minute. If measured by eye, 2.42±0.1 comets pass between 

sister kinetochores, whilst kymograph revealed 2.6±1 passing between. 

In one cut spindle element, comets that pass between sister kinetochores, both from the 

ablation site, 0.57±0.05 comets per minute, as well as from the connection, 1.85±0.1 comets 

per minute were observed. This additionally confirms that bridging microtubule bundle is 

composed of antiparallel microtubules. All error values are given as standard deviation. 
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4.   DISCUSSION 

 

4.1.   Force balance in the mitotic spindle 

 

Mitotic spindle is a truly remarkable assembly that orchestrates equal distribution of 

chromosomes to two daughter cells. Errors in its performance often lead to chromosome 

missegregation which can have serious consequences, like birth defects and can lead to 

cancerous cells. In the past decades a lot has been revealed about its composition, mechanics 

and performance. Described microtubules, kinetochores and motor and non-motor proteins 

direct the spindle’s behavior. However, our understanding is still far from complete. It is not 

completely clear how all the components intermingle within and around the spindle and how 

they mutually direct each other’s behavior. What is clear is that it is all about the forces acting 

within the spindle. They are dependent on biophysical properties of molecules that 

intermingle throughout the spindle. Molecular motors, microtubule dynamic instability, 

elastic elements and friction are lead actors in force generation [51]. These forces drive 

chromosome capture, their biorientation and oscillations, their alignment in the metaphase 

plate and eventually synchronous separation and equal distribution to new daughter cells.  

Force map in the spindle has already been analyzed and it is known that there is compressive 

and tensile force acting within one spindle element. One cannot help but ask how these 

opposing forces act along a single spindle element which can be imagined as elastic rod. The 

compression could have its origin in the fact that astrals, which interact with the cell cortex, 

polymerize on the cell boundaries and thus could exert force on the spindle poles [74]. 

However, in some cases spindle moved a lot within the cell, whilst preserving its shape. 

Could the motor proteins acting between the astrals and the cortex contribute to its rapid 

movement inside the cell? On the other hand, compressive force could originate from within 

the spindle itself. Since a term spindle matrix comprises all motor and nonmotor proteins 

acting in the spindle, all of them together could contribute to certain inward forces. Motor 

proteins as dynein and some minus end directed kinesins could increase the span of 

antiparallel regions [75], which could further become more stable by recruitment of nonmotor 

crosslinking proteins. At the same time, mechanical tension between sister kinetochores 

signals proper biorientation of chromosomes on microtubules of the mitotic spindle and 

selectively stabilizes these attachments [76]. The stabilization of tensile force and kinetochore 

attachment to microtubule is highly regulated by Aurora B kinase, which phosphorylates key 
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microtubule-binding elements within the kinetochore [77]. We were interested in analyzing 

how these opposing forces are distributed along one spindle element. Many have wondered 

about the forces in the spindle, and there was a need to introduce some unidentified 

compensating components: ―How is tension generated on k-fibers, and how is it balanced by 

compression in other spindle components?‖ [51]. ―Primitive‖ force maps of the spindle 

suggested that non-kinetochore microtubules bear the compressive load that would balance 

tension at kinetochores [51]. Whilst some discussed the spindle matrix and its components 

(NuMa, Skeletor, poly(ADP-ribose)), others were quite clear about the requirements for some 

yet unidentified element that would balance compressive force near poles and tensile force at 

kinetochore (Figure 31), [51]. Further on, as already mentioned, antiparallel microtubules do 

not exclusively have their minus ends fixed at poles, but are rather localized throughout the 

spindle. It was stated that many non-kinetochore microtubules have their minus ends 

embedded in k-fibers, where they presumably couple mechanically to kinetochore 

microtubules [55]. We believe that it is the bridging bundle that could balance these opposing 

forces by linking sister k-fibers, thus regulating the transition from compression to tension 

along one spindle element. In experiments conducted here and elsewhere [50; 69], it was 

shown that as a response to applied ablation, both compressive and tensile force are released 

in the cut part of the spindle. What makes sense in understanding the force distribution, is to 

perturb it. Since we believe that the bridging bundle is a good candidate, it seemed that by 

changing it, we could analyze the difference in response to the ablation. By reducing its 

thickness we expected to achieve less compression, and by applying laser ablation, it would 

be possible to describe some difference. What couldn’t be expected is the greatness of effect 

on the spindle as well as on the laser ablation outcome. Even though the difference in primary 

response is not very different from our control, the system was slightly perturbed. Successful 

experiments were recently performed with the same logic, but with opposite approach. In 

experiments in which the bridging bundle was made thicker, the different primary response 

was obvious in comparison to control cells. In these particular experiments, antiparallel 

bundles were made thicker by overexpressing crosslinking protein PRC1 and tubulin [50; 69]. 

The laser ablation outcome in their experiments was shown to be more pronounced in 

comparison to untreated cells. In particular, outward movement, as the primary response to 

ablation, was faster. As the bridging bundle is composed of antiparallel microtubules, their 

thickness was also increased, thus indicating that the amount of compressive force acting in 

the spindle element was increased. By reducing levels of the same protein, we managed to 

slightly reduce the bridging microtubule thickness. But how does the reduced level of 
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crosslinking protein produce decreased antiparallel bundle thickness? Does the absence of one 

protein in that region just make more space for other proteins to get recruited to their 

localization spot? Further on, what is the lowest possible velocity of the outward movement? 

If it is possible to achieve no outward movement as a response to applied ablation, it would 

mean that there is no compressive force in the spindle. In this case, would it be possible for 

spindle to assemble at all and to perform its function of segregating chromosomes? 

Regardless of questions that remain to be answered, we believe that bridging bundle 

contributes to the force map in the spindle and results of performed experiments show that it 

could be the best candidate for performing this role.  

 

 

 

 

 

Figure 31. Scheme of a proposed force map in the spindle with compression and tension acting ―back to back‖ 

within individual spindle components, i.e. k-fibers [51].  

 

 

 

Considering the fact that the bridging bundle, being composed of antiparallel microtubules, 

stores certain motor and non-motor proteins within, basic forces these proteins exert are 

acting as well within bridging bundle. The activity of plus-end directed motors between 

antiparallel microtubules drives their sliding, known as the poleward flux. It is known that the 

poleward flux acts in k-fibers, but since individual k-fibers have uniform polarity, it is not 

clear how this would be achieved. Now that it is clear that a novel structural component is 

present in the spindle, many unclear activities could be unraveled. Since they are a lateral 

connection between two sister k-fibers, and contain microtubules of opposite polarity 

comprised within, it is quite possible that it is the bridging bundle that drives this activity. 

Since this mechanism, driven by motor proteins, is involved in anaphase, this would mean 
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that the bridging bundle could contribute to this phase of the cycle. In experiments including 

laser ablation at precise time right before anaphase, one would expect to see the 

interkinetochore distance decrease (release of tension) and immediate continuous increase in 

interkinetochore distance that indicates the beginning and continuation of anaphase. Indeed, it 

was shown already that chromosomes can get segregated without one of the sister k-fibers 

being connected to one pole [78]. In those experiments, evidence was presented for dynein to 

mediate the poleward movement that segregates chromosomes that lack the connection to one 

pole. In other proposed mechanism, called the Pacman activity, chromosomes are segregated 

due to depolymerizing k-fiber microtubules at the kinetochore [79; 80; 81]. It is thought that, 

when the tension between kinetochores is lost as the response to applied ablation, the Pacman 

mechanism gets activated [81]. Regardless of these findings, we speculate that it is the 

poleward flux acting within antiparallel microtubules in the bridging bundle that drives these 

events.  

 

 

 

 

4.2.   Junction point 

 

Since bridging bundle is a mechanical connection between sister k-fibers, there has to be 

some sort of junction point of bridging bundle on each sister k-fiber. This point of interaction 

could be imagined as a merging or a branching point. Indeed certain experiments already 

indicate that there is a strong possibility for their existence [69]. In experiments designed with 

the position of the cut with respect to the junction point, it was shown that interkinetochore 

distance sometimes doesn't change. It was proposed that when the cut is positioned between 

junction point and kinetochore, the interkinetochore distance was reduced since the 

connection between k-fiber and the bridging bundle is partially lost. In that case tension 

would be released and interkinetochore distance would be reduced. On the other hand, if the 

cut is positioned in a way that junction point becomes part of the cut element that moves 

outwards, tension would be preserved and interkinetochore wouldn’t change. Since there are 

firm indications for the presence of junction point, it would become a novel component in the 

composition of the spindle as well as the bridging bundle itself. It would be interesting to see 

wether it could be the boarder point of kinetochore oscillations. Chromosome oscillations, 

which eventually position them in the metaphase plate are driven by summing of stochastic 
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forces at the kinetochore and chromosome arms along with dynamic instability of 

microtubules [82]. If microtubule depolymerases could act beyond junction point in direction 

towards the spindle pole, what would happen with that point of interaction between the 

bridging bundle and the k-fiber? If depolymerases would ―consume‖ the junction point, that 

would probably mean that the bridging bundle would undergo loss of interaction with the k-

fiber. Thus, one could more easily imagine that the junction  point itself could oscillate on the 

k-fiber. These oscillations could, at certain time points, be independent of the chromosome 

oscillations but often they could be driven by the chromosome oscillations as well (Figure 

32).  

Although experiments performed in this thesis did not question the precise biological function 

of bridging microtubule bundle, one cannot help but wonder about its possible roles 

throughout mitosis.  

 

 

Figure 32. Scheme of postulated chromosome oscillations coupled with the bridging bundle region.  

 

 

 

 

4.3.   Secondary response 

 

Secondary response to the laser microsurgery is the reconnection of the ablated spindle 

element back to the spindle. Since in experiments conducted here it is observed in majority of 

analyzed cells, it is not a coincidence. This behavior was already shown and analyzed in other 

research groups. It was shown that dynein pulls the stub back towards spindle’s center of 

mass and helps it reintegrate in the spindle. After the cut, some time is needed for dynein to 

accumulate on the newly formed minus end of the stub. At one point, the stub would be 

reconnected to some adjacent microtubules and get pulled towards one of the spindle poles 
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[48]. Laser microsurgery is not something that would happen normally in the spindle, but still 

it is able to recover from such a perturbation. Since it is fundamental for chromosomes to get 

equally and synchronously segregated, there are many self-repair mechanisms that correct 

different types of errors in the spindle structure and performance. Reconnection results in 

reestablishment of forces that were released after microsurgery. If the reconnection occurs in 

a normal way, the forces are reestablished and regular subsequent events can unravel. 

Chromosomes in the cut spindle element can begin oscillating again and further steps of the 

process, e.g. anaphase, can be carried out.   

 

 

 

 

4.4.   Dynamics of bridging microtubules 

 

We have shown in HeLa cell line stably expressing 2xGFP-EB3 that there is a certain 

microtubule dynamics present in a region between sister kinetochores. The conclusion is that 

it is occurring within the bridging microtubule bundle. By using laser ablation, we managed to 

observe clear events of microtubule growth both in direction from intact k-fiber, as well as 

from direction of ablation site, thus confirming the antiparallel composition of bridging fiber. 

These experiments were performed in order to see whether some microtubules grow beyond 

first sister kinetochore they encounter. Since it was believed that k-fiber is capped on the 

kinetochore, some growing microtubules between sister kinetochores would reveal a bundle 

located in between. Since in most observed cases comets were observed clearly growing from 

one sister kinetochore towards other sister kinetochore, one wouldn’t think that they are just 

simply astral microtubules growing in a random way. In these experiments it was difficult to 

quantify where the starting point of their growth is so we didn’t focus on that particular 

analysis. Within the selected time, we observed comets stopping at first kinetochore, thus 

revealing growing microtubules in the k-fiber. Comets showing growing microtubules in the 

k-fiber would typically pile up on kinetochore and some would eventually continue growing 

towards the other sister kinetochore. This observation suggests that the bridging microtubules 

grow in direct proximity of the k-fibers and branch out to form the bridging bundle. How is 

their growth directed in a way that they eventually meet the following sister k-fiber if there 

already aren’t any microtubules present? 
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 Quantification of dynamics in k-fiber and bridging fiber revealed the similar growth rate in 

both. The role of the bridging microtubules was not investigated in EB3 experiment. Our 

hypothesis was that, if there are some microtubules laterally connecting the sister k-fibers, we 

should be able to observe growing microtubules in the region between sister kinetochores 

which was experimentally confirmed. Measurements of microtubule growth rate are 

consistent with previously measured data [83]. By measuring the growth rate of microtubules 

in the bridging fiber, it is shown that they grow with same velocity as the ones in the k-fiber. 

This suggests that their growth is regulated in a similar manner as the growth of other 

populations of microtubules in the spindle, thus revealing the same nature of bridging 

microtubules as of those that are already known. 
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5.   Conclusions 

 

From the text books, k-fibers stop when they bind to kinetochores and it was assumed that 

sister k-fibers are not in direct contact. In this project we recognized that there is a bundle of 

non-kinetochore antiparallel microtubule bundle spanning the region between sister 

kinetochores and it was named bridging microtubule bundle. From two different point of 

views the analysis of this bundle was conducted.  

In one experiment my goal was to test whether some microtubule dynamics could be observed 

in the region between sister kinetochores. To test this, the laser ablation assay was applied. It 

helped me to distinguish certain events in the chosen region of the spindle. This experiment 

was performed in a cell line stably expressing end binding protein and a kinetochore protein. 

After collecting cells with good signal by performed FACS (fluorescence activated cell 

sorting), this experiment was significantly improved. Laser microsurgery made it possible for 

me to describe certain clear events and I observed microtubules growing in opposite 

directions in the region between sister kinetochores and they were interpreted as those 

growing in the bridging microtubule bundle.  

The other experiment was performed in order to perturb the role of bridging fiber in the 

distribution of forces in the spindle. I believed that this could be achieved by reducing the 

level of protein that crosslinks antiparallel microtubules in the bridging fiber. Laser ablation 

was performed here as well, since it teaches us about the forces acting in the cut spindle 

element. I expected the outward movement to be less pronounced and to have lower velocity 

in comparison to control cells. I suspect that the chemicals used in synchronization protocol 

affected the conditions in treated cells. In order to minimize the treatment of cells, I would 

prefer not to synchronize them in further experiments. Even though conducted analysis did 

not reveal significant difference between control cells and PRC1 siRNA treated cells, this 

experiment indicates the right approach to perturbing the force balance, which will be further 

investigated. 
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