Title Statističke metode kreditnog skoringa
Author Marija Kovačević
Mentor Siniša Slijepčević (mentor)
Committee member Siniša Slijepčević (predsjednik povjerenstva)
Committee member Miljenko Marušić (član povjerenstva)
Committee member Zvonimir Tutek (član povjerenstva)
Committee member Ivica Nakić (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2014-09-26, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Kreditni skoring je statistička metoda koja se koristi da se ocijeni koliki je rizik da će novi klijent, koji podnosi zahtjev za kredit, ili već postojeći klijent kasniti u otplati kredita ili da uopće neće biti u stanju isplatiti kredit. Drugim riječima, kreditni skoring je metoda za određivanje kreditnog rizika koji nosi klijent. Koristeći povijesne podatke i statističke tehnike kreditni skoring pokušava izolirati efekte određenih karakteristika koje klijenta vode u situaciju da ne može otplaćivati kredit. Rezultat ove metode je skor koji banka koristi kako bi rangirala klijente na osnovu rizika koji oni nose. Na osnovu toga koliki rizik banka želi prihvatiti, određuje se granični skor, tako da će klijentima koji imaju veći skor od graničnog biti odobren kredit, a oni koji imaju manji skor će biti odbijeni. Da bi napravili model, analitičari analiziraju povijesne podatke ranije odobrenih kredita, tj. analiziraju kako su se raniji klijenti ponašali pri otplati kredita, da bi odredili karakteristike koje su korisne pri ocjeni da li je klijent sposoban redovito otplaćivati kredit. Samim tim su i klijenti podijeljeni na dobre i loše. Cilj je sto točnije klasificirati klijente na dobre i loše, jer pogrešna klasifikacija donosi i veće troškove koji tom prilikom nastaju. Ukoliko se nekog klijenta koji je dobar klasificira kao lošeg, samim tim će taj klijent biti odbijen i time se gubi profit koji se mogao ostvariti da mu se odobrio kredit. Međutim, mnogo je veća greška da klijenta, koji je loš, klasificira kao dobrog i odobri mu se kredit jer time nastaju određeni gubici kada klijent više ne bude u mogućnosti otplaćivati kredit. Zato nam je vrlo bitno da ove greške svedemo na minimum. Međutim, ni to nije tako jednostavno. Smanjenje greške koja nastaje pogrešnom klasifikacijom loših klijenata dovodi do povećanja greške pogrešne klasifikacije dobrih klijenata i obrnuto. Iz tog razloga treba razmotriti kakav je odnos u gubicima koji nastaju pri pogrešnoj klasifikaciji i na osnovu tog kriterija odlučiti koju grešku treba minimizirati.
Abstract (english) Credit scoring is a statistical method that is used to assessing the risk that a new client who applies for a loan, or an existing client delay in repayment of the loan or it will not even be able to pay off the loan. In other words, credit scoring is a method for determining the credit risk of carrying a client. Using historical data and statistical credit scoring techniques trying to isolate the effects of particular features that a customer lead to a situation where they can not repay the loan. The result of this method is the score that bank used to rate its customers based on the risk that they carry. Based on that, how much risk the bank wants to accept it, is determined by marginal score, so that customers who have a higher score than the border will be granted credit and those who have less imminent be rejected. To create the model, analysts analyze historical data previously approved loans, ie. analyze how the previous customers behave when repayment of the loan, in order to determine the characteristics that are useful in assessing whether the client is capable of repaying the loan regularly. Therefore customers are divided into good and bad. The objective is to accurately classify customers into good and bad, because misclassification brings higher costs that arise. If a customer who has a good classified as poor, thus the client will be denied and are lost profits that could be realized that he approved credit. However, a much larger error to the client, which is classified as bad is good and grant him credit for time incurred certain losses when the client is no longer able to repay the loan. So we have a very essential that these errors to be minimized. However, it is not so simple. Reducing errors resulting misclassification of bad customer leads to an increase in errors of misclassification good customers and vice versa. For this reason, you should consider what is the relationship of losses resulting from the incorrect classification on the basis of the criterion to decide which errors should be minimized.
Keywords
kreditni skoring
kreditni rizik
Keywords (english)
credit scoring
credit risk
Language croatian
URN:NBN urn:nbn:hr:217:648591
Study programme Title: Finance and Business Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Closed access
Terms of use
Repository Repository of the Faculty of Science
Created on 2019-02-19 10:35:50